Günter Bruns

(received October 1, 1961)

1. Let B be a Boolean algebra and let \mathcal{M} and \mathcal{H} be two systems of subsets of B, both containing all finite subsets of B. Let us assume further that the join¹ \lor M of every set M $\epsilon \mathcal{M}$ and the meet \land N of every set N $\epsilon \mathcal{N}$ exist. Several authors² have treated the question under which conditions there exists an isomorphism φ between B and a field Σ of sets, satisfying the conditions:

> if $M \in \mathcal{W}$, then $\mathcal{P}(\bigvee M) = \bigcirc \mathcal{P}(M)$, if $N \in \mathcal{H}$, then $\mathcal{P}(\bigwedge N) = \bigcirc \mathcal{P}(N)$.

An obvious necessary condition for the existence of such an isomorphism is the following distributive law:

If $\{x_{ij} | j \in J_i\} \in \mathcal{P}$ for all $i \in I$, $\{\bigvee_{j \in J_i} ij | i \in I\} \in \mathcal{P}$ and $\{x_{i\alpha(i)} | i \in I\} \in \mathcal{P}$ for all $\alpha \in \prod_i J_i$, then $i \in I$

$$\bigwedge_{i \in I} \sum_{j \in J_i} x_{ij} = \bigvee_{\alpha \in \pi J_i} X_{i\alpha(i)}.$$

However, this distributive law is - in general - not sufficient. In fact, there exist m-complete (m a certain transfinite cardinal) Boolean algebras³ which satisfy this distributive law for all

¹ We denote by " \bigvee , \land " the lattice theoretical operations, by " \bigcup , \land " the corresponding set theoretical operations.

²See Sikorski, Boolean algebras, Berlin-Göttingen-Heidelberg 1960, pp. 79 ff and the literature cited there.

³See Sikorski, loc. cit. p. 93, D).

Canad. Math. Bull. vol 5, no. 1, January 1962.

families
$$(x_i)_{i \in I, j \in J_i}$$
 with $|I| \leq m$ and $|J_i| \leq m$ for all $i \in I$, and,

yet, have no representation of the above mentioned type. So far, it seems to have remained unnoticed that a slight modification of the distributive law yields a necessary and sufficient condition for the existence of such a representation.

2. For an arbitrary set $N \subseteq B$ let $N' = \{x' | x \in N\}$ be the set of all complements x' of elements $x \in N$. For a system n of subsets of B define $n' = \{N' | N \in n\}$. There is no loss of generality if we treat our problem only in the case n = n'. For, as is easily seen, if the equality $\mathcal{P}(\bigvee M) = \bigcup \mathcal{P}(M)$ holds, we also have $\mathcal{P}(\bigwedge M') = \bigcap \mathcal{P}(M')$, and dually. Therefore, if n is an arbitrary system of subsets of B, we mean by an n representation of B an isomorphism \mathcal{P} between B and a field \mathcal{G} of sets which satisfies the condition:

if $N \in \mathcal{H}$ then $\mathcal{Y}(\wedge N) = \bigcap \mathcal{Y}(N)$.

An \mathcal{N} -representation then automatically fulfills also the condition:

if
$$M \in \mathcal{N}'$$
 then $\mathcal{Y}(\bigvee M) = \bigcup \mathcal{Y}(M)$.

A system \mathcal{H} of subsets of B is called closed if it has the following properties:

(a) If $N_1, N_2 \in \mathcal{N}$ then $N_1 \cup N_2 \in \mathcal{N}$,

(b) If $\bigwedge A = \bigwedge N$, N $\epsilon \varkappa$ and for each $x \epsilon N$ there exists an $a \epsilon A$ with a < x, then also $A \epsilon \varkappa$.

Obviously the intersection $\bigwedge_k \aleph_k$ of an arbitrary family of closed systems \aleph_k is again closed. Therefore, for an arbitrary system \aleph of subsets of B there exists a smallest closed system $\overline{\aleph}$ which contains \aleph . Moreover, if the meet of every set N $\epsilon \aleph$ exists then $\overline{\aleph}$ has the same property.

Finally, we need the distributive law (D_{γ}) If the family $(x_{ij})_{i \in I, j \in J_i}$ has the properties $\{x_{ij} | j \in J_i\}$ $\epsilon n'$ for all $i \in I$, $\{\bigvee_{j \in J_i} x_{ij} | i \in I\} \epsilon n$ and $\{x_{i\alpha(i)} | i \in I\} \epsilon n$ for all

$$\alpha \in \prod_{i \in I} J_i$$
, then the join $\bigwedge \bigwedge x_{i\alpha(i)}$ exists and the equality $\alpha \in \pi J_i \in I$

$$\bigwedge \bigvee x_{ij} = \bigvee \bigwedge x_{i\alpha(i)}$$

i \ele I j \ele J_i \ele z_i = \alpha \ele \pi z_{i} \ele z_i \

holds.

3. Now we obtain the announced necessary and sufficient condition by postulating distributivity not only for the system \bar{n} but for the system \bar{n} . That is, we prove the following

Theorem. Let B be a Boolean algebra and \mathcal{N} a system of subsets of B which contains all finite subsets and has the property that the meet $\bigwedge N$ of every set $N \in \mathcal{N}$ exists. Then the following two conditions are equivalent:

(1) B has an γ -representation,

(2) B satisfies the distributive law $(D_{\overline{p}})$.

Proof. (1) \rightarrow (2). Let φ be an π -representation. Define the system σ by $\sigma = \{ N \mid N \subseteq B, \ \land N \text{ exists and } \varphi(\land N) = \land \varphi(N) \}$. Obviously the system σv is closed in the above defined sense. Since $\pi v \subseteq \sigma v$ holds, we have $\overline{\sigma v} \subseteq \sigma v$. Therefore the image of the meet of any set $N \in \overline{\pi}$ under the mapping φ is the set theoretical intersection of the system $\varphi(N)$. If the family (x, j) fulfills the assumptions of $(D_{\overline{\rho_1}})$, we infer:

$$\begin{aligned} \varphi(\bigwedge \bigvee_{i \in I} x_{ij}) &= \bigcap_{i \in I} \bigcup_{j \in J_i} \varphi(x_{ij}) = \bigcup_{\alpha \in \pi J_i} \bigcap_{i \in I} \varphi(x_{i\alpha(i)}) \\ &= \bigcup_{\alpha \in \pi J_i} \varphi(\bigwedge x_{i\alpha(i)}). \end{aligned}$$

By this equality the union $\bigcup_{\alpha \in \pi J_i} \varphi(x_{i\alpha(i)})$ belongs to $\varphi(B)$. It follows: $\bigcup_{\alpha \in \pi J_i} \varphi(\bigwedge x_{i\alpha(i)}) = \bigvee_{\alpha \notin \pi J_i} \varphi(\bigwedge x_{i\alpha(i)}) = \varphi(\bigvee \bigwedge x_{i\alpha(i)})$.

39

If we apply the isomorphism φ^{-1} to the equality $\varphi(\bigwedge \bigvee x_{ij}) = i \in J \ j \in J_i$

 $\begin{aligned} & \varphi(\bigvee_{\alpha \in \pi J_{i} \ i \in I} x_{i\alpha(i)}) \text{ we obtain the conclusion of the distributive} \\ & \text{law } (D_{\overline{\alpha}}). \end{aligned}$

(2) \rightarrow (1). To prove (1), it is sufficient⁴ to show that for each $b \neq o$ in B there exists a maximal (proper) filter F containing b and n-closed in the following sense: if N ϵn and $N\subset$ F then $\bigwedge N\,\varepsilon\,F.~$ We first show that there exists a maximal filter F in B which is π -closed, in fact, even $\overline{\pi}$ -closed. To do this, we write the set of all those two-element subsets of B which consist of two complementary elements $a, a' \in B$ as a family: $(\{a_i, a_i^{\dagger}\})_{i \in I}$. Let ϕ be the set of all mappings α , which attach to each element $i \in I$ one of the elements a_i or a_i^{i} . We assert: if for a fixed $\alpha \in \overline{\phi}$ the set $A_{\alpha} = \{x | x \ge \alpha (i) \text{ for }$ some i \in I} is not a maximal filter which is \bar{n} -closed, then we have $\{\alpha(i) | i \in I\} \in \overline{\mathcal{R}}$ and $\bigwedge_{i \in I} \alpha(i) = 0$. Let us assume first that the set A_{α} is not $\overline{\alpha}$ -closed. Then the set $\overline{A}_{\alpha} = \{x \mid \text{there} \}$ exists a set $N \in \overline{\mathcal{N}}$, $N \subseteq A_{\alpha}$ with $x \ge \bigwedge N$ is, $\overline{\mathcal{N}}$ satisfying the condition a), a filter which properly contains A_{α} . But A_{α} already contains one of each two complementary elements of B. So $\overline{A}_{a} = B$ must hold. This implies the existence of a set $N \in \overline{\mathcal{N}}$ with $N \subseteq A_{\mathcal{N}}$ and $\wedge N = o$. By condition b) we obtain $\{\alpha(i) | i \in I\} \in \overline{n}$ and $\bigwedge_{i \in I} \alpha(i) = 0$. Let us assume next that the set A_{α} is \bar{n} -closed. Thus, in particular, A_{α} is a filter. By hypothesis, A_{α} is not a proper filter, i.e. $o \in A_{\alpha}$. Therefore there exists an element $i \in I$ with a(i) = o, which again implies $\{\alpha(i) | i \in I\} \in \overline{\mathcal{A}}$ and $\bigwedge_{i \in I} \alpha(i) = 0$. We conclude: if A_{α} is not a maximal (proper) filter which is \overline{n} -closed then we have $\{\alpha(i) | i \in I\} \in \overline{n}$ and $\bigwedge_{i \in I} \alpha(i) = 0$. Now, if none of the sets A were a maximal (proper) filter which is \overline{n} -closed, our

⁴See Sikorski, loc. cit., p. 80, 24.1.

distributive law $(D_{\overline{n}})$ would lead to the contradiction: $1 = \bigwedge_{i \in I} (a_i \lor a'_i) = \bigwedge_{\alpha \in \Phi} \bigcap_{i \in I} \alpha(i) = o$. We infer: there exists a maximal (proper) filter in B which is \overline{n} -closed. We still have to show that each element $b \neq o$ is contained in such a filter. To do this, we consider the new Boolean algebra [o, b] and the set \overline{n}_{b} of all those elements of \overline{n} which are contained in [o, b]. Obviously the system \overline{n}_{c} is closed with respect to [o, b] and the Boolean algebra [o, b] satisfies the distributive law $(D_{\overline{n}_{c}})$. As we have just shown, there exists a maximal (proper) filter F in [o, b] which is \overline{n}_{b} -closed. We complete the proof by showing that the filter F generated by F in B is \overline{n} -closed. Let $N \subseteq F$ be an arbitrary element of \overline{n} . By property a) the set $\{b\} \cup N$ also belongs to \overline{n} . But the set $\{b\} \cup N$ has the same meet as the set $\{b \land x | x \in N\}$, and every element of the first has a lower bound belonging to the second. So by property b) the set $\{b \land x | x \in N\}$ belongs to \overline{n} . But this set is obviously contained in F_{b} . By hypothesis the meet $\bigwedge_{x \in N} (b \land x)$ belongs to F_{b} , and from this we obtain that $\land N \ge \underset{x \in N}{x \in N}$ belongs to F, completing the proof.