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Policy-critical, micro-level statistical data are often unavailable at the desired level
of disaggregation. We present a Bayesian methodology for “downscaling”
aggregated count data to the micro level, using an outside statistical sample. Our
procedure combines numerical simulation with exact calculation of combinatorial
probabilities. We motivate our approach with an application estimating the
number of farms in a region, using count totals at higher levels of aggregation. In
a simulation analysis over varying population sizes, we demonstrate both
robustness to sampling variability and outperformance relative to maximum
likelihood. Spatial considerations, implementation of “informative” priors, non-
spatial classification problems, and best practices are discussed.
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Local economic planning often relies on micro-level data that are not always
available at the desired level of disaggregation. For example, Federal
government-provided economic and employment data for key industry
sectors are often reported at the county level, and obtaining city or ZIP-code
level data may require time-consuming special requests or considerable
expense, or the data may simply be unavailable. In this article, we address
the need for micro-level count data by developing a Bayesian methodology to
“downscale” aggregated count data to lower levels of aggregation using the
information contained in an outside statistical sample.
Suppose a researcher knows the true size of a population (e.g., farmers,

voters, customers) and would like to classify members of that population into
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distinct subgroups (e.g., by farm type, county/region, political party, or
demographic attributes) using independent data sampled from the full
population. In this setting, we demonstrate a method for estimating the
population proportion in each subgroup, in a manner that provides more
stable and robust estimates than maximum likelihood estimation (MLE) in
the face of sampling variability. The method consists primarily of using
simulated random sampling combined with exact calculation of combinatorial
probabilities to estimate the posterior distribution over combinations of
counts. We leverage two key restrictions: (i) the subgroup counts must add
up to the population total, and (ii) the subgroup counts cannot be smaller
than their observed counts in the outside sample, nor larger than the
population minus the sum of observed samples in the other subgroups. This
explicit handling of sampling variability, especially in small- to medium-sized
samples, results in smaller normalized errors and, consequently, more
reliably accurate estimates.
We are not the first to address the demand for more disaggregated data from

aggregated sources. Gocht and Roder (2011), for example, employ a Bayesian
procedure to downscale county-level German Agricultural Census estimates
of land devoted to agricultural use. Their method incorporates land-use data
from GIS to facilitate micro-level environmental impact studies, which would
otherwise be hindered by data protection rules (i.e., censoring). Other
relevant studies include Chakir (2009), Dendoncker, Bogaert, and Rounsevell
(2006), Gärtner, Keller, and Schulin (2013), Howitt and Reynaud (2003),
Polasek, Llano, and Sellner (2010), and Purcell and Kish (1980). These
papers share a common thread of attempting to estimate land-use patterns
using a variety and/or combination of methods, including regression,
multinomial logit, maximum entropy, cross-entropy, and various iterative
fitting procedures. However, while these procedures perform well in their
intended domain, they are ill-suited to solving the downscaling problem for
count data. Intuitively, multinomial logit might be mapped to a count model
in which sampling probabilities are estimated but many observations and
covariates are required. The methods we introduce here are designed to
overcome this problem when the outside sample contains only limited
categorical information.
Another popular application of downscaling involves disaggregation of global

climate data (typically reported at grid levels of 100–200 km2) to a level of
resolution more useful for decision makers and impact assessors. Such
procedures are outlined, for example, in Coelho et al. (2006), Fasbender and
Ouarda (2010), Hashmi, Shamseldin, and Melville (2009), Murphy (1999),
and von Storch, Zorita, and Cubasch (1993). The goals of such estimation
procedures, however, are to disaggregate weather/climate data not only
spatially, but temporally as well, in order to model various potential weather
outcomes for use in forecasting. The procedures outlined by these studies are
both unnecessarily complex, given our particular problem of interest, and
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potentially ill-suited to the count data problem due to highly detailed data
requirements in the outside sample.
In an attempt to balance precision with tractability, we develop a method that is

adaptable to the data and computational resources of the applied researcher.
Namely, we show that reasonable performance can be obtained using a uniform
prior distribution over combinations of counts, but we also demonstrate a
method for researchers to incorporate “informative” prior information generated
by a simple linear regression or one of the more spatially explicit and
computationally demanding methods described above. In our simulation
analysis, we demonstrate a means for testing the best performance among MLE,
the uniform prior, or an informative spatial prior, over a range of population
counts and sample sizes. As might be expected, an informative prior performs
best for the smallest sample sizes and smallest population counts. However, we
find that the uninformative, uniform prior performs best over an unexpectedly
wide range of sample size and population count combinations.
To provide context, we introduce and apply our methods in the setting of

estimating spatially disaggregated farm counts by subregion from regional
data, using a sample of Rhode Island farms combined with aggregated data
from the 2012 United States Department of Agriculture (USDA) Census of
Agriculture (herein, “Ag Census”). We explore both county-to-city downscaling
and state-to-county downscaling, and show how spatial patterns at higher
levels of aggregation might be used to construct an informative prior. We
take special advantage of state-to-county downscaling as an example where
the true underlying distribution is known and can be used to validate our
methods. We also use published estimates of uncertainty in the Ag Census
total counts to demonstrate the robustness of our methods to uncertainty in
the top-level population count.
Despite the focus of much of the literature, and our own application, on spatial

downscaling problems, it is important to note that there is nothing inherently
spatial about the mathematics involved. Our method is equally well adapted to
arbitrary classification problems in which it is desired to estimate the size of
population subgroups according to a number of discrete categories. These
applications might include political polling, estimation of workforce participation
rates, demographic breakdowns by gender, age, race, or educational attainment,
or market segmentation analysis. At the same time, though our method does not
require spatial information per se, it is flexible enough to incorporate arbitrarily
complex spatial information as an input to the estimation procedure, by way of
the informative prior.
The remainder of this article is organized as follows. The next section outlines

and derives our estimation methodology, and the following section discusses
selection of a prior. The fourth and fifth sections outline our sample data and
methods, and the sixth section covers the results. The next section discusses
applications of our findings and areas for future research, and the final
section concludes.
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Bayesian Downscaling of Aggregated Count Data

Consider a source of aggregated count data for which estimated count data are
required at the subpopulation (e.g., subregion, demographic classifications)
level, for each subpopulation, s¼ 1, . . . , S. Let N denote counts at the
aggregate level, i.e., population size. We denote the counts to be estimated at
the subpopulation level as Ns, such that the sum of subpopulations counts is
equal to the total population count,

P
Ns ¼ N. We supplement this

population level data with an outside, independently sampled data set with
subpopulation counts, ns, where

P
ns ¼ n< N. That is, the outside sample of

subregion data is a subset of the population to be estimated. The immediate
impact of the outside data set is to constrain the range of eligible values,
which we will denote as N0

s within each combination. Namely,

(1) ns � N0
s � N �

X
s0≠s

ns0 :

Thus, we define C to be the set of all valid combinations of integer-valued
counts satisfying equation 1. The cardinality of this set is denoted |C| and is
given by:

(2) jCj ¼ N � nþ S � 1
S � 1

� �
¼ (N � nþ S � 1)!

(S � 1)!(N � n)!
:

For example, consider Bristol County, Rhode Island. Bristol County comprises
three municipalities and is reported by the Ag Census as containing 42 farms.
Our sample counts for these three subregions are (6, 3, 2). A valid
combination would therefore be any triple with each value equal to or
exceeding the sample count and with the total count equal to 42. Thus, (2,
21, 19) is not a valid combination because there are not enough farms in the
first town, and (25, 12, 7) is not valid because there are too many total farms
(44), but both (6, 34, 2) and (15, 15, 12) are valid combinations.
We have now developed sufficient notation to outline our estimation

procedure. First, recall Bayes’ Rule:

(3)
Pr(AjB) ¼ Pr (BjA) Pr (A)

Pr (B)
∝Pr (BjA) Pr (A):

For our purposes, Pr(A|B) in equation 3 represents the probability of a
specific combination of subpopulation counts given the data, or Pr(Ci|N,
n1, . . . , ns), and the other terms translate similarly. That is:
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(4) Pr (CijN, n) ∝Pr (N, njCi) Pr (CijC0)

¼Pr (njCi) Pr (CijC0)

∝Pr (njCi)

where (i) n¼ (n1, . . . , nS) denotes the vector of subpopulation counts in the
outside data, (ii) the equality follows from the constraint in equation 1
because only combinations that sum to N are considered, and (iii) the final
proportionality comparison relies on the assumption that the unconditional
probability of a combination is uniform across combinations, representing the
prior in our Bayesian approach. This is the simplest case of a uniform
(“uninformative”) prior over combinations, which we will later generalize.
Equation 4 therefore tells us that the posterior probability of a given
combination is proportional to the probability of our outside data sample
conditional on that combination. For the case of a non-uniform prior this
proportionality does not hold and the final reduction in equation 4 does not
apply.
The analysis is further simplified because the conditional probability of our

data given a combination, Pr(n|Ci), has a closed form according to the
formula for sampling without replacement. Namely,

(5)
Pr(njCi) ¼

YS
s¼1

Yks�1

k¼0

Cs,i � k
N � (s� 1)ns � k

 !
:

Given equation 5, it is theoretically possible to iterate over all eligible
combinations of counts at the subpopulation level and exactly calculate the
posterior distribution over those counts given the outside sample data in n.
Unfortunately, the number of combinations given in equation 2 grows
astronomically large rather quickly in real-world applications. Table 1
provides examples for our application.

Table 1. Number of Eligible Combinations per County

County Farms Towns Sample Number of Eligible Combinations

Bristol 42 3 11 55,278

Kent 126 5 27 4,421,275

Newport 214 6 44 1,291,150,035

Providence 425 16 82 115,508,396,906,738,000,000,000,000

Washington 436 9 65 9,801,540,147,002,170
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Because it is not computationally feasible using contemporary hardware to
calculate equation 5 for each possible combination, we propose a (pseudo)
random sampling procedure in which valid combinations are sample
uniformly from C. These samples are generated by recognizing that each
subpopulation’s count falls in a range containing N� nþ 1 consecutive
integers, whose lower bound is found in our sample for that subpopulation.
Revisiting our previous Bristol County example, wherein N� nþ 1¼ 42�
11þ 1¼ 32, it is only possible for subregional values to fall in the set, {ns
(þ0), nsþ 1, . . . , nsþ 31}. Since each subregion must have the same size
range, the problem reduces to picking uniform integers in this range. If we
offset the uniform integers by their minimum values, then all the random
choices must add up to the same total (also N� nþ 1¼ 32) to be a valid
combination as described above.
This is a well-known problem for which the solution is to randomly choose

switching points, ss∈ {s2, . . . , sS}, without replacement from the set of integers,
{1, 2, . . . ,N� n}. The sampled combination is then derived by differencing the
switching points after setting s1¼ 0 and sSþ1¼N� nþ 1. In order to handle
the minimum switching interval being size 1, the resulting differences are
added to the sample value, minus 1, and the sampled switching points are
taken from N� nþ S� 1 candidate values. Downscaling Bristol County into
three subregions provides N� nþ S� 1¼ 42� 11þ 3þ 1¼ 35. We would
thus randomly sample S� 1¼ 2 switching points from {1, . . . , 35}, setting s1¼
0 and s4¼ 36.

Choosing a Prior

Researchers have two broad choices for estimating the Bayesian prior used in
our estimation method: an uninformative (uniform) prior or an informative
one. While in its most generalized form, our method has no requirement that
subpopulations have additional characteristics from which to estimate a prior,
researchers may be able to elicit a more informative prior based on
additional characteristics of the sampling units. For example, in the case of
classifying farms into subregions, these additional data may include
population, land area, demographic data, etc., at the subregion level. We now
outline a rigorous procedure for eliciting an informative prior. In cases where
such additional characteristic information is unavailable for whatever reason,
researchers have little choice but to assume a uniform prior across the
subpopulations.
In many cases, the assumption that counted units have an equal probability of

occurrence across subpopulations is unrealistic, particularly in our example
application of estimating farm counts. If the data available to the researchers
consist of aggregate count data for multiple populations, as well as additional
covariates at the subregional level (and can thus be summed to the regional
level, e.g., population, land area, demographics, spatial information), one can
test and identify potential informative priors by regressing these covariates
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(summed to the population level) on the population-level count data. By
identifying the covariates that are most predictive of (correlated with) counts
at the population level, one can use these relationships to estimate
subregional farm counts. In this fashion, a more informative prior is elicited
than the simple uniform prior. See Figure 1 for an illustration of how the data
analysis is structured.
To compare the accuracy of estimates resulting from an informative versus

an uninformative prior, we used the above procedure to elicit and compare
various informative priors using supplemental subregional data obtained from
the 2010 United States Census. Using county-level Census data, we performed
a comprehensive regression analysis, regressing various combinations of
potentially relevant covariates such as population, area, and population
density on our five county-level farm counts. Land area was by far the most
predictive covariate, being significantly positively correlated with farm counts
(0.928). In calculating our prior, we ignore the constant term in the regression
to reduce bias introduced by the fact that the constant term is only meaningful
at the aggregated level because we scaled up the data. Removing the constant
term also imposes the intuitive constraint that a subregion with zero land area
must also contain zero farms. Because of the combinatorial nature of this
problem, the regression-based priors are normalized to sum to the known
aggregate counts. This makes the elicitation of the informative prior in our
example equivalent to distributing N across subregions based on their
proportional land area, such that n0n ¼ Land Arean=Land AreaN .
In what follows, we will explicitly compare predictions of the uniform prior

against those of this simple informative prior and compare both against
maximum likelihood.
Although geographic downscaling is traditionally a spatial problem, the

general form of our method ignores issues of spatial dependency in favor of a
more parsimonious method that requires much less data (and less technical
expertise in the area of spatial modeling). However, the generalized method
can be easily expanded and the use of an informative prior in our procedure
makes the incorporation of features such as spatial dependence relatively
straightforward. While we opt for a simple, one-parameter, area-based prior
as an example here, myriad potential models for eliciting an informative prior
exist, including those discussed in the introduction. Researchers with the
prior belief that the posterior distribution follows a spatial dependency
structure (such as spatial lag or autocorrelation) can easily incorporate such
beliefs into this methodology by eliciting their priors using a spatial model
such as geographically weighted regression (GWR), among many choices.

Sample Data

Rhode Island has 39 municipalities grouped into five counties: Bristol, Kent,
Newport, Providence, and Washington County. Counties range in size from 3
towns in Bristol County to 16 in Providence County. Our aggregated data

Agricultural and Resource Economics Review184 April 2018

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/a

ge
.2

01
7.

26
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/age.2017.26


source comes from the 2012 Ag Census, which contains farm counts by county
and consequently, at the state level. Our outside sample data comes from a
survey administered by the University of Rhode Island in 2011–2012, in
collaboration with local government agencies and agricultural organizations.
It contains a list of addresses for 229 of the 1,243 farms reported in the Ag
Census. We further supplement these data with additional subregional data
provided by the 2010 Census. of these data, only land area was used in our
final estimation procedure (indirectly, to elicit the informative prior). This
information is presented in Table 2.

Methods

Clearly the unknowns in our data set are the city-level counts. We focus instead
on the county totals, as if unknown, so that we can compare the results of our
procedure against the true underlying distribution. By aggregating our regional
counts to the state level and aggregating our sample data to the county level, we
can compare the accuracy of our estimates using (i) a uniform prior, (ii) a simple
spatial prior, and (iii) maximum likelihood. The maximum likelihood estimates
(MLE) differ from those of the Bayesian estimates under the uniform prior since
because N and n are known, MLE estimates for Ns simplify to N̂MLE

s ¼ (ns=n)N.
For each methodology, we evaluate the normalized root mean squared error

(NRMSE) of our posterior point estimates relative to the values reported in the
Ag Census. The NRMSE is simply the familiar root mean squared error (RMSE),
scaled by the average region-size, �Ns ¼ N=S. Using NRMSE supports our goals of
estimating the effects of both population size, N, and sample size, n/N, on the
relative performance of each method.
To obtain estimates for the Bayesian methods, we use the sampling procedure

described in “Bayesian Downscaling of Aggregated Count Data” to calculate
estimates from 100,000 sample combinations. We report as point estimates
the means of the posterior count distributions, which is why decimal values
are observed in the estimates despite only considering integer-valued
combinations. We repeat the procedure 200 times for each estimate to obtain

Figure 1. Structure of Sample Data Analysis
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standard errors of our estimates and calculate the NRMSE of our posterior
estimates relative to the values reported in the Ag Census.
To test the effect of population size,N, on estimation performance, we simulate

five subregions with our county-size proportions and sample proportion
(approx. 0.2), at varying population sizes from N¼ 50 up to N¼ 5,000. To test
the effect of sample size on estimation performance, we again simulate
five subregions with our county-size proportions, this time with a fixed
population size of N¼ 1,250 and with varying sample sizes from n/N¼ 0.01
up to n/N¼ 0.50.
For each comparison, we conduct two simulations, one with observations

bootstrapped from our observed Rhode Island sample, and another randomly
sampled from a multinomial distribution taken only from the population
parameters. The results are nearly identical across the paired simulations,
indicating that the sample data we collected do not contain extreme
deviations from the projected sampling distribution.

Results

The mean NRMSE and standard error for each method are presented in Table 3,
as a function of varying sample size. For a population of 1,250, the Bayesian
methods consistently outperform MLE for all sample sizes up to half of the
population. Among the Bayesian methods, the simple, area-based, informative
prior was best for small samples (due to greater sampling variability), but
the uninformative (uniform) prior was best for samples comprising at least 5
percent of the population. These results suggest a somewhat counterintuitive
finding: namely, that even in cases where detailed spatial information is
available, many applied problems will get more accurate results using the
uninformative prior, even when it might not seem realistic to the application
at hand. The reasoning is that even relatively small samples will quickly
become more representative of the underlying population than a good
informative prior, but not so representative as to obviate the need for a
Bayesian approach over MLE.

Table 2. Farms, Municipalities, and Land Area (mi2) per County

County Farms Land Area (mi2)

Bristol 42 24.16

Kent 126 168.53

Newport 214 102.39

Providence 425 409.5

Washington 436 329.23

Note: Pearson’s Rho¼ 0.928.
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Table 3. Mean Normalized Root Mean Square Error by Estimate Type: Fixed Population Size (1,250) with
Increasing Sample Size

Sample Proportion (n/N) 0.01 0.05 0.10 0.20 0.33 0.50

Uniform prior

Mean 0.393 0.207 0.143 0.1 0.077 0.055

Std. dev. (0.163) (0.088) (0.058) (0.042) (0.029) (0.022)

Overall win % 0.185 0.535 0.61 0.64 0.495 0.465

Win % vs. Informative 0.19 0.59 0.74 0.805 0.785 0.745

Win % vs. MLE 0.95 0.69 0.815 0.79 0.61 0.585

Informative prior

Mean 0.245 0.207 0.173 0.133 0.101 0.069

Std. dev. (0.014) (0.024) (0.025) (0.026) (0.028) (0.024)

Overall wins 0.795 0.405 0.25 0.19 0.185 0.18

Wins vs. uniform 0.81 0.41 0.26 0.195 0.215 0.255

Wins vs. MLE 0.96 0.69 0.505 0.315 0.31 0.335

Maximum likelihood

Mean 0.57 0.265 0.176 0.119 0.086 0.059

Std. dev. (0.209) (0.098) (0.063) (0.044) (0.029) (0.021)

Overall wins 0.02 0.06 0.14 0.17 0.32 0.355

Wins vs. uniform 0.05 0.115 0.185 0.21 0.39 0.415

Wins vs. informative 0.04 0.31 0.495 0.685 0.69 0.665

Note: Boldface indicates estimates with the smallest RMSE compared to the true, known values.
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When examining Table 3, it is important to note that the conventional wisdom
regarding standard errors and statistical significance does not hold because of
correlated testing. That is, we are not testing whether one measure produces a
lower NRMSE on average over independent tests, rather, we are testing whether
one measure produced a statistically significantly lower NRMSE than the others
across the same simulation tests. So, we do not present p-values or a fully
developed hypothesis testing framework with our results. Rather, the
“winning method” which is bold-faced in each column of Table 3, is
determined according to a single transferable vote system as outlined in
Tideman (1995) based on the percentage of “wins” (lower observed NRMSE)
out of 200 trials. In essence, the winning model is chosen according to
winning a simple majority of trials outright, or else winning a “runoff”
between the top two candidates.
For the interested reader, pairwise tests of statistically significant better

performance between two estimators can be determined as follows. The null
hypothesis for pairwise comparison of two identical estimators is that the
number of wins for each estimator follows the binomial distribution with
n¼ 200 draws and p¼ 0.5. So, for individual, pairwise tests of performance,
the threshold for statistical significance at the 95 percent and 99 percent
levels are 113 wins (56.5 percent) and 117 wins (58.5 percent), respectively.
Clearly, to evaluate every possible pairwise test in Table 3 involves many
hypotheses, so p-values would need to be adjusted using either a Bonferroni
correction or stepdown methods to control the family-wise error rate (e.g.,
Romano and Wolf 2005). Explicit testing of multiple hypotheses in this
fashion is beyond the scope of this paper.
Table 4 is structured similarly but shows the effect of varying population size,

given the sample size held fixed at n=N ¼ 20% of the population. The table also
shows the Bayesian methods consistently outperforming MLE, but show subtly
different patterns of performance of the informative prior against the uniform
prior. With the sample size held at a fixed percentage, the informative prior
outperforms for populations smaller than 500, while the uniform outperforms
for larger populations. For populations of exactly 500, the performance of the
two priors is not statistically different at conventional levels.

Discussion

The above results are primarily focused on evaluating the performance of our
Bayesian methods for a case where the underlying distribution is known.
However, our method is only designed to be useful in cases where this
information is unavailable. Furthermore, applications of our procedure to
new problems will likely involve variation in population size, sample size(s)
and availability of an informative prior, distinct from the permutations
described here. In this section, we consider the possibility that future
researchers have access to data at higher levels of aggregation, similar to
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Table 4. Mean Normalized Root Mean Square Error by Estimate Type: Fixed Sample Proportion (0.20) and
Increasing Population Size

Total Farm Count (N) 50 100 250 500 750 1,250 2,000 5,000

Uniform prior

Mean 0.424 0.315 0.194 0.147 0.124 0.1 0.079 0.053

Std. dev. (0.168) (0.129) (0.081) (0.06) (0.052) (0.042) (0.033) (0.021)

Overall wins 0.06 0.105 0.255 0.42 0.605 0.64 0.63 0.635

Wins vs. informative 0.06 0.11 0.285 0.455 0.665 0.805 0.85 0.985

Wins vs. MLE 0.965 0.905 0.88 0.865 0.635 0.79 0.755 0.635

Informative prior

Mean 0.258 0.203 0.159 0.138 0.135 0.133 0.129 0.129

Std. dev. (0.097) (0.075) (0.045) (0.038) (0.034) (0.026) (0.022) (0.012)

Overall wins 0.94 0.885 0.705 0.525 0.335 0.19 0.13 0.005

Wins vs. uniform 0.94 0.89 0.715 0.545 0.335 0.195 0.15 0.015

Wins vs. MLE 1 0.975 0.885 0.7 0.62 0.315 0.22 0.015

Maximum likelihood

Mean 0.605 0.42 0.252 0.182 0.15 0.119 0.094 0.061

Std. dev. (0.225) (0.142) (0.103) (0.071) (0.055) (0.044) (0.036) (0.022)

Overall wins 0 0.01 0.04 0.055 0.06 0.17 0.24 0.36

Wins vs. uniform 0.035 0.095 0.12 0.135 0.105 0.21 0.245 0.365

Wins vs. informative 0 0.025 0.115 0.3 0.38 0.685 0.78 0.985

Note: Boldface indicates estimates with the smallest RMSE compared to the true, known values.
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how we have both state-level and county-level farm counts for Rhode Island
from the Ag Census, and county-level land area data from the U.S. Census.
If it can be assumed that spatial (or other group-wise dependence) patterns are

likely to hold at higher levels of aggregation, then an informative prior can be
calibrated from that data and applied in the downscaling problem. In our
application, that would mean calibrating the land-area prior from county-level
data and then applying it to the city-level downscaling problem. Depending on
the application, however, this assumption may not be palatable. Spatial
econometric models can be conceptualized as having a direct effect from the
covariates and an indirect effect from the spatial dependence structure. If this
indirect effect is relatively smaller at higher levels of aggregation, then
calibrating the prior at higher levels will cause it to appear more informative
than it actually will be in the downscaled analysis. Identifying when this
problem materially affects the analysis is an area for future research. That said,
there is no reason why spatial dependence observed in an econometric model
would predict non-random sampling, so whenever the spatial prior is suspect,
researchers can always default to the uninformative prior for reasonable
performance.
Beyond spatial dependence defined econometrically, there is also the

possibility that the outside data sample is non-random, in the sense that
spatial factors influence response rates. At higher levels of aggregation, this
can be tested simply be evaluating the degree to which the sample contains
outliers relative to a typical sample from a multinomial distribution. A
further verification step is possible using the simulation methods outlined
above at higher levels of aggregation. Namely, the bootstrapped analysis can
be replicated with counts drawn directly from a multinomial distribution
instead of from the sample data. Below, we give an example of simulation
results obtained in this fashion in Tables 5 and 6, which replicate our Tables
3 and 4 but do not use our sample data. For our specific application, it can
be observed that the results are nearly identical, the desired outcome
indicating that systematic sampling bias is unlikely to be a problem in our
application.
If we consider the city-level downscaling problem in our application, the

above procedures indicate that every county in Rhode Island should be
estimated using the informative, area-based prior. Clearly, we do not have the
underlying, true distribution of city-level farm counts for verification, so we
include this observation only for completeness.
Two issues not previously addressed are (i) the effects of uncertainty in the

top-level population estimates, and (ii) the scenarios in which MLE does
outperform the Bayesian estimators, according to conventional wisdom based
on asymptotic results. While our procedure is designed to mitigate potential
estimation error resulting from the increased sampling variability inherent in
relatively small samples, it does not account for potential error in the
aggregate count data. In our application, for example, the Ag Census farm
counts for Rhode Island are reported as 1,243 total farms with a standard
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error of 236 (USDA 2014). The analysis thus far suggests that incorporating an
error term on the total count may have non-linear effects because of
simultaneous changes both in the population size, N, and in the sample
proportion, n/N.
To address this concern, we repeated the simulation analysis using the

uniform prior, with each replication using a different total farm count drawn
from a normal distribution with mean and standard deviation according to
the reported Ag Census mean and standard error. The mean estimated farm
counts arising from this procedure were within 1 percent of the values
estimated with N¼ 1,243. This suggests that errors in top-level counts are
less of a concern, as long as (i) it is recognized that the division of the
population into groups will necessarily result in estimates that are
proportional to the total used, and (ii) that the estimation error in the total
count is not so large as to make the collected sample size unlikely or impossible.
Finally, it is important to give proper context to our finding that these

Bayesian methods outperform MLE. Clearly, this is a finite sample result

Table 5. Mean Normalized Root Mean Square Error by Estimate Type
using Simulated Sample: Fixed Population Size (1,250) with Increasing
Sample Size

Sample Proportion (n/N) 0.01 0.05 0.10 0.20 0.33 0.50

Uniform prior

Mean 0.409 0.213 0.151 0.103 0.077 0.055

Std. dev. (0.168) (0.076) (0.062) (0.049) (0.032) (0.022)

Overall wins 0.17 0.49 0.58 0.64 0.485 0.47

Wins vs. informative 0.175 0.57 0.7 0.805 0.76 0.725

Wins vs. MLE 0.945 0.86 0.795 0.78 0.63 0.585

Informative prior

Mean 0.245 0.208 0.174 0.132 0.098 0.069

Std. dev. (0.015) (0.024) (0.026) (0.027) (0.029) (0.026)

Overall wins 0.815 0.43 0.3 0.18 0.21 0.225

wins vs. uniform 0.825 0.43 0.3 0.195 0.24 0.275

Wins vs. MLE 0.975 0.66 0.5 0.34 0.37 0.365

Maximum likelihood

Mean 0.604 0.255 0.181 0.122 0.089 0.061

Std. dev. (0.228) (0.086) (0.066) (0.044) (0.034) (0.023)

Overall wins 0.015 0.08 0.12 0.18 0.305 0.305

Wins vs. uniform 0.055 0.14 0.205 0.22 0.37 0.415

Wins vs. informative 0.025 0.34 0.5 0.66 0.63 0.635

Note: Boldface indicates estimates with the smallest RMSE compared to the true, known values.
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Table 6. Mean Normalized Root Mean Square Error by Estimate Type using Simulated Sample: Fixed Sample
Proportion (0.20) and Increasing Population Size

Total Farm Count (N) 50 100 250 500 750 1,250 2,000 5,000

Uniform prior

Mean 0.394 0.277 0.214 0.15 0.126 0.103 0.077 0.053

Std. dev. (0.173) (0.111) (0.09) (0.063) (0.053) (0.049) (0.031) (0.022)

Overall wins 0.05 0.105 0.245 0.41 0.54 0.64 0.72 0.675

Wins vs. informative 0.05 0.115 0.265 0.46 0.635 0.805 0.93 0.99

Wins vs. MLE 1 0.98 0.93 0.725 0.835 0.78 0.78 0.675

Informative prior

Mean 0.242 0.193 0.153 0.142 0.134 0.132 0.131 0.126

Std. dev. (0.095) (0.063) (0.05) (0.036) (0.035) (0.027) (0.023) (0.018)

Overall wins 0.95 0.88 0.725 0.525 0.35 0.18 0.07 0.01

Wins vs. uniform 0.95 0.885 0.735 0.54 0.365 0.195 0.07 0.01

Wins vs. MLE 1 0.98 0.93 0.725 0.57 0.34 0.155 0.015

Maximum likelihood

Mean 0.561 0.397 0.265 0.18 0.148 0.122 0.092 0.059

Std. dev. (0.198) (0.165) (0.096) (0.067) (0.055) (0.044) (0.037) (0.021)

Overall wins 0 0.015 0.03 0.065 0.11 0.18 0.21 0.315

Wins vs. uniform 0.01 0.075 0.11 0.14 0.165 0.22 0.22 0.325

Wins vs. informative 0 0.02 0.07 0.275 0.43 0.66 0.845 0.985

Note: Boldface indicates estimates with the smallest RMSE compared to the true, known values.
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since, asymptotically, Bayesian updating with a uniform prior converges to MLE,
whereas in small samples MLE is equivalent to Bayesian updating with zero
sample weight on the prior. Also, it may not be immediately obvious, but our
application data set includes considerable variation in the group sizes to be
estimated: 42, 126, 214, 425, and 436 (from Table 2). Having extremes in the
group sizes, especially on the small end, leads to inherently noisier sampling
of the smaller groups. This problem can be conceptualized as arising from
the probability that a given sample will be representative of the population
conditional on population size and sample size.
To show how variation across group sizes affects the performance of MLE

relative to the Bayesian methods described here, we ran some preliminary
simulations. The simulated group sizes were all drawn IID from a normal
distribution with sigma given by a fraction of the mean value, and samples
were then drawn from the resulting multinomial distribution. Our sample
data had a standard deviation of 71 percent of the mean count, and MLE did
not outperform the Bayesian methods for any population of N¼ 5,000 or
below. Reducing the standard deviation to 50 percent of the mean count, we
found that MLE was statistically significantly best (lowest NRMSE) for
populations above 2,000 (as might appear in Table 6). These preliminary
results suggest that the efficacy of MLE relative to the Bayesian methods is
not only a function of population size and sample size, but also of the degree
of heterogeneity in the subpopulation counts to be estimated. We leave exact
quantification of these tradeoffs as an area for future research.

Conclusion

Micro-level statistical data are often unavailable at the desired level of
disaggregation, despite their critical importance for applied policy research.
Herein, we present a Bayesian methodology for “downscaling” aggregated count
data to the micro-level, using an outside statistical sample. Our procedure
combines numerical simulation with exact calculation of combinatorial
probabilities. We motivate our approach with an application estimating the
number of farms in a region, using count totals at higher levels of aggregation,
and data sourced from the 2012 USDA Ag Census. In a simulation analysis over
varying population sizes, we demonstrate both robustness to sampling
variability and outperformance relative to maximum likelihood. Our results
show that Bayesian methods have better finite sample performance than MLE in
many cases relevant to applied research, especially for relatively small
populations (N< 5,000).
We develop a number of methods for applied researchers to calibrate

informative prior probabilities, and to estimate whether the combination of
sample size and population size in their application will perform best with
their informative prior, or with an uninformative alternative. In many cases,
the uninformative prior performs reasonably well and can be used as a
default in cases where an informative prior is unavailable, or cannot be
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reasonably calibrated due to spatial considerations. We also show how the
process of calibrating the priors can be simulated to verify that they are not
being affected adversely by outside sample data that contains too many
outliers. Our methods appear to be robust, both to sampling variability in the
outside data sample and also to uncertainty in the top-level population
counts. An area for future research is determining the effects of heterogeneity
in subpopulation sizes on the relative performance of MLE in smaller
populations.
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