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Abstract
Subjective energy intake (sEI) is often misreported, providing unreliable estimates of energy consumed. Therefore, relating sEI data to health
outcomes is difficult. Recently, Börnhorst et al. compared various methods to correct sEI-based energy intake estimates. They criticised
approaches that categorise participants as under-reporters, plausible reporters and over-reporters based on the sEI:total energy expenditure
(TEE) ratio, and thereafter use these categories as statistical covariates or exclusion criteria. Instead, they recommended using external
predictors of sEI misreporting as statistical covariates. We sought to confirm and extend these findings. Using a sample of 190 adolescent boys
(mean age= 14), we demonstrated that dual-energy X-ray absorptiometry-measured fat-free mass is strongly associated with objective energy
intake data (onsite weighted breakfast), but the association with sEI (previous 3-d dietary interview) is weak. Comparing sEI with TEE revealed
that sEI was mostly under-reported (74%). Interestingly, statistically controlling for dietary reporting groups or restricting samples to plausible
reporters created a stronger-than-expected association between fat-free mass and sEI. However, the association was an artifact caused by
selection bias – that is, data re-sampling and simulations showed that these methods overestimated the effect size because fat-free mass was
related to sEI both directly and indirectly via TEE. A more realistic association between sEI and fat-free mass was obtained when the model
included common predictors of misreporting (e.g. BMI, restraint). To conclude, restricting sEI data only to plausible reporters can cause
selection bias and inflated associations in later analyses. Therefore, we further support statistically correcting sEI data in nutritional analyses.
The script for running simulations is provided.

Key words: Under-reporting: Plausible reporting: Subjective energy intake: Objective energy intake: Dietary interviews:
Selection bias

Given the global increase in obesity(1), considerable effort has
gone into determining the predictors of energy intake. These
predictors include fat-free mass(2), psychological self-control
and food drive(3,4), socio-economic status(5,6) and various
environmental features(7,8). All these research fields depend on
the crucial assumption that energy intake is correctly measured.
For accuracy reasons, these studies often expend effort to
objectively measure energy intake in the laboratory or find
other methods of indirect energy expenditure assessment(5).
Although collecting such subjective energy intake (sEI) with
questionnaires is considerably easier and cheaper, such data
tend to be misreported, and are therefore often considered
unreliable.
Misreporting can be observed when calculating the energy

balance percentage (EB%) – that is, how well does energy

intake match with total energy expenditure (TEE)? When
calculating the EB% for sEI (sEI/TEE× 100), many findings
show that sEI tends to be under-reported in adults(9) and also
in children(10). This phenomenon has been clearly established
using very large data sets(11,12). Under-reporting is particularly
prevalent in adolescents, with 14–52% of sample under-
reporting(10,13). The EB% can be predicted from several
external variables, ranging from simple BMI(10) and demo-
graphic factors(12) to brain activation to food stimuli(14). Studies
in adults add additional factors such as dietary restraint
and social desirability ((15), reviewed by Macdiarmid &
Blundell(16)). However, very few studies have focused on
providing practical advice on how to handle inaccurate sEI
data(17–19), and only one previous study has focused on this
question in children(20).

Abbreviations: EB%, energy balance percentage; oEI, objective energy intake; PR, plausible reporters; sEI, subjective energy intake; TEE, total energy
expenditure; UR, under-reporters.
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The study by Börnhorst et al.(20) explored various approa-
ches to recover a missing association between obesity and sEI
(dietary recall) data in children. They first divided subjects into
three groups of diet reporting accuracy – under-reporters (UR),
plausible reporters (PR) and over-reporters (OR) – on the basis
of discrepancy between energy expenditure and energy intake.
Next, they tested various recovery approaches such as
restricting analysis only to PR groups, stratifying analysis by
reporting group or controlling for co-predictors of misreporting.
They concluded that the best approach for recovering an
association between BMI and energy intake is to control for
predictors of misreporting, rather than excluding misreporting
groups(20).
What was not evident in the study by Börnhorst et al.(20) is

that excluding misreporting groups can generate artificial
positive bias in later analyses. For instance, Mendez et al.(19)

compared various methods for restricting adult sEI data to PR
and then related that restricted sEI data to BMI. They concluded
that some methods generate a higher effect size between sEI
and BMI than others, recommending the ones with higher effect
size. Rhee et al.(21) recently re-analysed that data and suggested
that the effect size increase likely occurs because of selection
bias. Selection bias is well known in the field of epidemiology
but can be hard to detect(22–24). Selection bias happens when
the dependent variable is conditioned on a variable that partly
relates to the independent variable. Using the case of Mendez
et al.(19) and Rhee et al.(21) as an example, the dependent
variable (sEI) is restricted to PR using a formula that depends on
body mass, and then sEI is related to BMI, which also depends
on body mass. Rhee et al.(21) demonstrated that when there was
no selection bias, focusing on PR was reasonable. An example
would be associating sEI with variables that do not relate to
body mass, such as prospective BMI change or various bio-
markers(21). In the follow-up discussion, Mendez(25) acknowl-
edged that not all methods for correcting sEI work as expected,
and both Mendez(25) and Rhee & Willet(26) underlined that a
better understanding of misreporting correction methods is
needed.
The present study seeked to integrate evidence from

adults(21) and children(20) to study the optimal method of
handling sEI data in adolescents. The main goal was to replicate
the exploratory results of Börnhorst et al.(20) and extend them in
several ways. First, as the effects between BMI and calories
consumed are small, the current study focused on a relatively
new finding that the amount of calories consumed is deter-
mined by fat-free mass(27–29). This association has been tested
previously, as it is known to have medium effect size (β=
0·28–0·42), with objective measures of energy intake(27,29). The
other extensions compared with Börnhorst et al.(20) include the
additional measure of objective energy intake (oEI) that enables
to independently verify the association between fat-free mass
and energy intake, a different type of source for sEI data
(3-d dietary interview) that tests for generalisibility of the
findings, more accurate estimate of TEE by including 7-d
accelerometry in the model and extending the set of predictors
for misreporting to several psychological predictors. In
summary, the current study aimed to test the feasibility, con-
ceptually replicate and extend the statistical approach

suggested by Börnhorst et al.(20). As studies on adults have
suggested the emergence of selection bias(21), we scrutinised
the results from that perspective.

Methods

Study population

The present study analysed data from the fourth wave of a
larger project ‘Risk factors for metabolic syndrome in boys
during pubertal development: a longitudinal study with special
attention to physical activity and fitness’(30–39). The study was
originally started in 2009, where all boys from Grades 3 and 4
from twenty-seven elementary schools in the city and the
surroundings of Tartu, Estonia, were invited to participate. All
schools were in an urban environment. A total of 313 boys,
approximately 84%, agreed to participate. All participants had
no disease that prevented them from taking part in different
parts of the study and were allowed to take part in the
obligatory physical education classes at school (they had no
health-related problems, injuries, etc.)(34). The measurement
period of the currently analysed wave was from November
2012 until April 2013.

A total of 190 participants provided accelerometer data and
dietary interview (sEI) and body anthropometry data (age:
x = 13·99 (SD 0·69), zBMI: x = 0·37 (SD 1·29), BMI: x = 20·91
(SD 4·66)). Responses from psychological questionnaires were
available from 128 participants and oEI data from thirty-nine
participants. Participants in the subsamples did not differ from
participants not within a certain subsample (questionnaire v. no
questionnaire; oEI v. no oEI) in terms of age (t(146·4)= −0·19,
P= 0·851; t(54·4)= −1·28, P= 0·205) or zBMI (t(106·8)= 0·97,
P= 0·334; t(66·8)= 0·21, P= 0·832), suggesting that the sub-
samples were a random part of the bigger sample.

Participants recorded their 72-h sEI for 3 or more days before
onsite testing. Participants were asked to abstain from breakfast
before coming to the test site at approximately 08.00 hours.
As participants had to be picked up from school, sometimes
kilometres away from the testing site, they arrived in groups of
four to eight. The overall study design is presented in Table 1.

All participants completed various questionnaires about their
health habits. A subset of the sample also completed various
questionnaires related to personality and eating behaviours. All
participants had to eat breakfast at the spot; in a subset of
participants, their intake was also weighted.

This study was conducted according to the guidelines laid
down in the Declaration of Helsinki, and all procedures invol-
ving human subjects/patients were approved by the Medical
Ethics Committee of the University of Tartu. All children and
parents were thoroughly informed of the purposes and contents
of the study, written informed consent was obtained from the
parents before participation, and the children provided their
verbal assent.

Anthropometry

The participants’ body height and mass were obtained on the
1st day of the measurements. Body height was measured in
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standing position to the nearest 0·1 cm using a Martin
metal anthropometer. Body mass was measured with minimal
clothing using a medical balance scale (A&D Instruments)
to the nearest 0·05 kg. BMI (kg/m2) was calculated as body
mass divided by the square of body height. BMI is shown
for informative purposes; the analysis was conducted with
zBMI that corrects for developmental effects, created using
World Health Organization scripts(40). The boys’ weight
status was categorised according to zBMI cut-off values. The
biological age of the participants was assessed according to a
self-assessed illustrative questionnaire of the pubertal stage
according to the Tanner classification method by evaluation of
pubic hair(41).
Body composition: fat mass and fat-free mass were measured

using dual-energy X-ray absorptiometry (DXA; DPX-IQ densit-
ometer, Lunar Corporation) equipped with proprietary software
(version 3.6). Boys were scanned in the supine position wear-
ing light clothing. The medium scan mode and the standard
subject positioning was used for total body measurements,
which were analysed using the extended analysis option. To
reduce the impact of the operator variability factor, one quali-
fied observer analysed all scans over the 2-year period. The CV
for these body composition measurements were <2%; this was
established in our laboratory using duplicate measures in
twenty boys of the same age. Fat mass and fat-free mass
correlated at 0·24, P= 0·001.
Objectively measured physical activity was assessed using an

accelerometer (GT1M ActiGraph) that was worn for 7 d on the
right hip. The accelerometer was programmed to record activity
counts in 15-s epochs, and non-wearing time was defined as
≥20 consecutive minutes of zero counts and was not included
in the analysis. Data from the accelerometer were included for
further analysis if the subject had accumulated a minimum 8h
of activity data/d, for at least 1 weekend day and 2 weekdays.
In the final sample, the median number of valid weekend days
was 2, and the median number of valid weekdays was 5. Other
details of the accelerometer procedure and data processing

have been described elsewhere(35,36). In the present study, we
used counts per min as an indicator of total physical activity. In
a previous study, a similar analytic accelerometer approach
together with body mass was able to predict doubly labelled
water-based TEE with R2 of 0·82, SE of estimate 0·49, prediction
error 0·28(42) (Table 3).

Questionnaires

We included several questionnaires that we suspected could
influence EB%(15).

The Eating Disorders Assessment Scale (EDAS(43)) is a
twenty-nine-item, self-report questionnaire with four subscales:
restrained eating, binge eating, purging and preoccupation with
body image and body weight. These subscales show good
internal consistency and discriminant validity. The construct
validity of the questionnaire has been confirmed by strong
correlations with Eating Disorders Inventory − 2 Estonian ver-
sion(44). In the current analysis, we used the binge eating sub-
scale and restraint subscale, as these are the two main eating
behaviour dimensions(3,45), and the current instrument assesses
these behaviours in a continuous manner. The binge eating
subscale is very similar to other known measures of loss of
control over food(45,46), and loss of control over food is hypo-
thesised to partly reflect reward sensitivity to food(45,47).

Social desirability was estimated from responses to Estonian
Brief Big Five Inventory(48). This is a brief measure of person-
ality based on the example of ‘Common Language’ California
Child Q-Set(49). The scale assesses basic personality dimensions
(neuroticism, extraversion, openness, agreeableness and con-
scientiousness) with eight items each on a five-point Likert-type
scale, and has been previously validated in an adolescent
sample(48). In the current analysis, we used previously mea-
sured social desirability scores of the items (unpublished data)
to calculate a general tendency for responding in a socially
desirable manner, ranging from −1 to 1. The methodology is
described elsewhere(50).

Table 1. Summary timeline of the study

Time Activity

3 + days before onsite testing ∙ Participants recorded the subjective energy intake with help of parents by filling the 72-h food diary*
08.00 hours on the day of onsite testing ∙ 4–8 participants arriving in a group. Providing participants with instructions and questionnaires

∙ Participants were asked about the morning fast
08.15–09.30 hours ∙ Measurement of perceived hunger on a visual analogue scale

∙ Venous blood sampling
∙ After blood sampling, subjects were given the opportunity to snack (oEI)*
∙ Completion of physical activity questionnaires
∙ After snacking, participants started to fill in questionnaires on personality and eating disorders*

The questionnaire set included a measurement of perceived hunger on a visual analogue scale
∙ Participants completed measurements in this order

09.30–12.00 hours ∙ Measurement of DXA, weight and height*
∙ Dietary interview for measuring subjective energy intake*
∙ Tanner estimation*
∙ Measurement of VO2max

∙ Participants completed the anthropometry and dietary interview in no particular order, but VO2max test was
always the last one

7d after onsite testing ∙ Wearing the accelerometer*

* For measurements included in the current study, see the ‘Anthropometry’, ‘Questionnaires’ and ‘Dietary data’ sections for details. No higher timing precision was possible, as boys
participated in onsite testing session in groups because of the way they were transported onsite.
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Dietary data

sEI data were self-recorded. Before study start, participants were
asked to record everything they ate during 2 weekdays and
1 weekend with the help of their parents. Participants were asked
to observe their food intake as closely as possible before the
testing day. During the testing day, participants brought their
written summary of the 3d, based on which they were inter-
viewed by a trained nutritionist. The nutritionist helped in recal-
ling possible forgotten energy items and entered the energy items
into an energy database that automatically calculated relevant
energy(51). From that we estimated their average energy intake
(MJ) per day as an indicator of sEI.
oEI data were measured once in a subset of the sample

during morning snacking on the day of testing. The main goal of
the snacking was to provide participants with an opportunity to
recover from morning fast before various other measurements
were obtained. In the current analysis, the oEI data provided an
opportunity to verify independently that energy intake is related
to fat-free mass. Clearly, the oEI meal was not the same as the
previous meals, based on which sEI data were reported. At the
same time, previous evidence has shown that the association
between fat-free mass and energy intake is robust – it is present
both for individual meals(29) and for energy intake aggregated
across a full day(27). Therefore, this single meal data were used
to verify the association between fat-free mass and energy
intake in this sample. Because of the study design, offering wide
range of foods was not feasible; the participants were provided
the following easy-to-handle foods: a Mars bar (1·89MJ,
451 kcal) or Snickers bar (2·13MJ, 509 kcal), a pack of cookies
(1·81MJ, 432 kcal) and a 0·5-litre bottle of juice (0·17MJ,
41 kcal). After the participants had stopped eating, they were
asked to leave the remaining food on the table. The remaining
food was weighted using a Soehnle Attraction kitchen scale
(Leifheit AG), with 1 g precision, and weight was converted to
energy on the basis of nutritional information on the packaging.
Number of total MJ consumed was the indicator of oEI.

Statistical methods

TEE (MJ) was estimated from weight and accelerometer data.
The estimators were obtained from a validation analysis where
body mass and accelerometer data could explain 81–82% of
TEE expenditure in children, estimated with doubly labelled
water(42). Although the validation sample was younger than the
current sample, we are unaware of other validation studies that
would provide estimations more suitable for the current sample.
The formula is provided by the second author; it was inad-
vertently not published in the original article(42):

TEE= 0�722 + weight ´ 0�160 + 0�003 ´ counts=min:

We compared the formula-based TEE with TEE derived from
equations developed by Brooks et al.(52) that were based on
age, weight, height and physical activity level. Physical activity
level was converted from estimates of moderate-to-vigorous
physical activity(13) based on accelerometry data. The two TEE
estimates correlated very highly (r 0·97).
To detect UR and OR, energy balance percentage (EB%) was

derived from the formula sEI/TEE×100. A common method to

detect misreporting is to classify participants as UR or OR if they
deviate more than ±1 SD from 100%. The particular SD values are
derived from a formula that accounted for intra-individual variation
in energy intake (CV adjusted for age), day-to-day variation (here
3d) and energy requirement predictor errors(53). We used the
approach of Noel et al.(13) who provided updated CV for boys <14
and ≥14. As a result, the cut-off values for younger and
older age groups for under-reporting were 85·675 and 85·798%
and the values for over-reporting were 114·325 and 114·202%,
respectively.

We first tested whether fat-free mass would predict oEI, in
attempt to replicate previous findings(27,29) using linear regres-
sion, correcting for age. Next, we used a similar regression
model to test whether fat-free mass would predict sEI. There-
after, we tried various correction methods such as excluding UR
and OR, controlling for dietary group status in the regression
analysis and adding predictors of EB% to the regression. Pre-
dictors of EB% were chosen among variables suggested by
previous studies (see first paragraph for an overview). These
predictors included BMI, psychological traits such as restraint,
binge eating and responding to a personality questionnaire in a
socially desirable manner.

In the last model, we used multiple imputation to overcome
the issue that anthropological data were available for the full
sample (n 190) but psychological predictors were available only
for a subset of the sample (n 128). When these predictors are
used together in a regular multiple regression model, the
models would use list-wise data deletion, which would have
considerably reduced the statistical power of anthropological
measures. Multiple imputation(54), in turn, creates multiple
versions of the data set. In each data set, missing values are
drawn from a plausible distribution. Each of the imputed data
sets was analysed separately, and then the results were aggre-
gated. In this case, we created 100 imputed versions of the data
set using Amelia package(55). These data sets were analysed and
aggregated with the mice package(56), relying on small-sample
method to calculate aggregate df(57).

As can be seen in the results, we recovered an unexpectedly
strong association between fat-free mass and sEI when focusing
only on PR (e.g. β= 0·77, model 2 in Table 4). This suggests the
emergence of selection bias. To test for selection bias, we re-
sampled sEI data – every participant randomly received another
participant’s sEI value. Different reporting groups (UR, PR, OR)
were re-identified using the same method as mentioned above.
Thereafter, we re-ran previously tested regression analyses. As
re-sampled data are equivalent of random noise, no variable
should be able to predict re-sampled data. However, if some
variables are able to predict the re-sampled data, the prediction
can be considered to be an artifact arising from correction
methods or selection bias.

To explore how selection bias can influence the results, we
simulated the study data 10 000 times to demonstrate a robust
replication of the artifact. We further explored the extent of
selection bias by varying the association strength between
variables in the simulation. The code used to simulate the data
is provided in the online Supplementary Material.

All analyses were conducted in R environment 3.2.3(58),
occasionally relying on ‘plyr’, ‘plotrix’, ‘truncnorm’, ‘MASS’,
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‘Amelia’ and ‘mice’ packages(55,56,59–62), as well as online
resources(63). Variables that displayed non-normality based on
the Shapiro–Wilk test and observing histograms were trans-
formed to log scale. To avoid values taking log of 0, +1 was
added to all EDAS scores when represented in the log form.
Regression diagnostics were first conducted by scrutinising

the residuals for normality, homoscedasticity and linearity. No
visual violations were found. Thereafter, we analysed whether
any model would have standardised residuals higher than
values usually expected based on typically used criteria. For
instance, <5% of observations should have standardised resi-
duals above 1·95. Similarly, <1% of observations should have
standardised residuals >2·58, and <0·1% of observations
should have standardised residuals >3·29(64). Occasionally,
some models were borderline (e.g. 5·3% of observations had
standardised residuals above 1·96). These borderline models
were inspected further with visual analysis(65). Visual analysis
was based on Cook’s distance plots that were inspected for
potential outliers – that is, we looked for data points that would
have significantly higher Cook’s distance than other variables.
Only in one analysis, such an outlier was found (see the
‘Associations between fat-free mass and energy intake’ section).
However, as removing that outlier did not change the general
model, all data points were retained. In the multiple imputation
analysis, five randomly drawn regression analyses from the 100
analyses conducted were inspected for outliers.

Results

Descriptive variables

Plotting of EB% data revealed that under-reporting was wide-
spread – 74·2% of the participants under-report their sEI (Fig. 1).
Table 2 summarises various descriptive statistics for the whole
sample, as well as for each subgroup. Expectedly, the reporting
groups differed in sEI. Compared with the median intake of PR,
the median intake of under-reporters was 67% and the median
intake of OR was 127%. At the same time, the groups had no
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difference in oEI, suggesting that the group differences in sEI
were due to the EI measurement method. Regarding physio-
logical variables, the groups differed in terms of BMI, zBMI, fat
mass, fat mass index, fat-free mass and fat-free mass index. From
psychological measures, the only difference was observed in
restraint. However, restraint correlated with zBMI (r 0·42,
P< 0·001) and fat mass (r 0·42, P< 0·001). As many variables
displayed non-normality, their log-transformation values have
been used in all reported correlation and regression analyses.

Associations between fat-free mass and energy intake

The results demonstrated that participants indeed chose the
amount of food based on their fat-free mass, as suggested by
Blundell(27). The association was clear for oEI but was con-
siderably weaker for sEI (Table 2, Fig. 2, online Supplementary
Fig. S1). Given that sEI was mostly under-reported (Fig. 1), the
current results highlighted the need for a method for correcting
varying EB% (Table 3).

Methods that adjust for misreporting

In Table 4, the left column summarises the results for different
methods. As expected from Börnhorst et al.(20), the plain model
(model 1) had the poorest explanatory power and R2, and the
model adjusting for predictors of EB% (model 4) was con-
siderably better than model 1 by restoring the beta value closer
to what was expected from oEI data and from previous studies.
Intriguingly, excluding under- and OR (model 2) or controlling
for dietary groups (model 3) seemed to provide even better
results. Both models had very high R2, and model 2 had very
high standardised β. Do these results imply that these methods
are even better?
To test for potential method artifacts, we used the re-

sampling procedure – every participant received a random sEI
value of another participant. We expected that all models
(Table 4, right column) should have non-significant results, as
fat-free mass was predicting essentially noise. Indeed, the

simple model (model 1) and the model adjusting for predictors
of EB% (model 4) had R2 <0·01 (Fig. 3, dashed line; Table 4,
right column). However, the models based on dietary groups
created from re-sampled sEI (models 2–3) still showed a strong
effect (Fig. 3, dashed line; Table 4, right column). This suggests
that group-based methods are unsuitable for the current pur-
poses; there was an association between sEI and fat-free mass,
even though the groups were created based on re-sampled sEI
data and both diet reporting groups and sEI itself should not be
informative. The scatter plots of models 1 and 2 for actual and
simulated data are shown in the online Supplementary Fig. S2.
Together, these results suggest that grouping methods are
unsuitable for recovering the association between sEI and fat-
free mass.

Possible causes of method artifacts

A possible reason as to why the sEI and fat-free mass associa-
tion appears in models 2 and 3 is selection bias; fat-free mass
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Fig. 2. Fat-free mass associations with objective (left) and subjective (right) energy intake. Objective energy intake was measured on the same day, whereas
subjective energy intake was assessed from dietary interview from an earlier period of 3 d. Data not corrected for the effects of age. For illustrative purposes, variables
here are not log-transformed. For log-transformed plots, see the online Supplementary Fig. S1.

Table 3. Regression coefficients of fat-free mass predicting objective
energy intake or subjective energy intake, accounting for participant’s age

β B SE t P

Objective energy intake*
(Intercept) −8·26 3·39 −2·43 0·02
Fat-free mass† 0·55 3·1 1·05 2·95 0·006
Age −0·02 −0·04 0·3 −0·13 0·896
Adjusted R2 0·25
df 3, 36

Subjective energy intake†
(Intercept) 1·14 0·47 2·44 0·016
Fat-free mass† 0·17 0·23 0·11 2·04 0·043
Age 0·02 0·01 0·03 0·23 0·82
Adjusted R2 0·02
df 3, 187

* Regression diagnostics found one potentially influential outlier in this model (Cook’s
distance=0·29, standardised residual= 2·09). Without that outlier, the effect of fat-
free mass would be β=0·64, B=3·58, SE= 0·91, t=3·91.

† These variables have been log-transformed to normalise distributions.
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Table 4. Fat-free mass predicting subjective energy intake across different approaches that adjust for misreporting*

Subjective energy intake Re-sampled subjective energy intake

β B SE t df P β B SE t df P

Model 1: simple model
(Intercept) <0·01 1·14 0·47 2·44 187 0·016 <0·01 2·21 0·54 4·06 187 <0·001
Fat-free mass† 0·17 0·23 0·11 2·04 187 0·043 0·03 0·05 0·13 0·37 187 0·715
Age 0·02 0·01 0·03 0·23 187 0·82 −0·06 −0·03 0·04 −0·76 187 0·448
Adjusted R2 0·02 −0·01

Model 2: exclusion of other groups
(Intercept) <0·01 0·19 0·29 0·65 39 0·518 <0·01 −0·07 0·48 −0·15 35 0·883
Fat-free mass† 0·77 0·58 0·12 4·89 39 <0·001 0·69 0·62 0·12 4·95 35 <0·001
Age 0·02 <0·01 0·03 0·13 39 0·901 0·03 0·01 0·04 0·2 35 0·842
Adjusted R2 0·59 0·46

Model 3: adjusting for group
(Intercept) 1·05 0·92 0·34 2·71 185 0·007 1·65 1·11 0·45 2·47 185 0·014
Fat-free mass† 0·3 0·42 0·08 5·03 185 <0·001 0·26 0·42 0·11 3·82 185 <0·001
Age −0·02 −0·01 0·02 −0·26 185 0·793 −0·03 −0·01 0·03 −0·42 185 0·673
Group=UR −0·42 0·04 −11·33 185 <0·001 −0·19 0·11 −1·73 185 0·086
Group=OR 0·2 0·08 2·4 185 0·017 −0·67 0·11 −6·26 185 <0·001
Adjusted R2 0·48 0·36

Model 4: adjusting for predictors
(Intercept) 0·01 0·91 0·49 1·88 168·9 0·062 0 2·44 0·59 4·13 175·4 <0·001
Fat-free mass† 0·35 0·49 0·14 3·47 166·2 0·001 −0·03 −0·05 0·17 −0·31 172 0·759
Age −0·09 −0·04 0·03 −1·04 173·3 0·299 −0·03 −0·01 0·04 −0·29 177·1 0·774
zBMI −0·27 −0·06 0·02 −2·7 148·9 0·008 0·14 0·04 0·03 1·34 164·7 0·182
EDAS: restraint† −0·15 −0·05 0·03 −1·51 88·6 0·135 −0·04 −0·02 0·04 −0·41 123·7 0·682
EDAS: binge eating† 0·07 0·03 0·04 0·73 84·3 0·466 −0·08 −0·04 0·04 −0·81 99·5 0·42
Social desirability −0·08 −0·26 0·34 −0·76 84·3 0·45 −0·01 −0·05 0·36 −0·13 125·8 0·896
Pooled adjusted R2 0·13 N/A

UR, under-report; OR, over-report; EDAS, Eating Disorders Assessment Scale.
* The reference group in the ‘adjusting for group’model provided plausible reports. Data were re-sampled by assigning each participant an energy intake value of another participant. Model 4 is based on the multiple imputation procedure

(see the ‘Statistical methods’ section for details).
†These variables have been log-transformed to normalise distribution.
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relates to the variables used to create the diet reporting accu-
racy groups. Namely, the diet reporting groups are generated
based on EB% – that is, the sEI:TEE ratio. In the current sample,
TEE was highly dependent on participants’ body mass (see
formula in the ‘Statistical methods’ section, r 0·98), and body
mass correlates highly with fat-free mass (r 0·72, P< 0·001).
Indeed, fat-free mass correlates with TEE (r 0·71, P< 0·001).
Therefore, restricting re-sampled sEI data to a PR group that has
an EB% from 85 to 115 could create an association between
re-sampled sEI and fat-free mass (models 2 and 3 in Fig. 3).
In contrast, when all re-sampled sEI data were used in the
analysis, the re-sampled sEI and fat-free mass were not related
(models 1 and 4 in Fig. 3).
The artificial emergence of the association between sEI and

fat-free mass is illustrated in Fig. 4. Although we were interested
in the direct relationship between fat-free mass and sEI (upper
pathway), restricting sEI to PR created an indirect association
between fat-free mass and sEI through body mass/TEE (lower
pathway). This indirect association occurred because fat-free
mass correlates with body mass, and body mass-based TEE
defined the PR group in sEI. Even when whole sample is used,
but the dietary restriction groups are used as covariates, one can
still observe a similar bias (model 3 in Table 4 and Fig. 3, Fig. 5).
To demonstrate the causal role of this sample restriction

pathway, we created a simulation where we varied the corre-
lation between fat-free mass and TEE. Namely, we created
normally distributed variables with similar properties as actual
data on 10 000 people. This included TEE and fat-free mass that
correlated between 0 and 0·90 and EI, which in simulation did
not correlate with any variable. We skipped body mass in the
simulation, as it had high correlation with TEE (r 0·98). There-
after, we calculated EB% (EI/TEE) and the association between
fat-free mass and EI using full data and by creating dietary

reporting groups, which were used for restricting the sample to
PR (like model 2) or using dietary reporting groups as covariates
(like model 3). Under-reporting was defined as EB% <85%,
plausible reporting was defined as EB% ranging from 85 to 115,
and over-reporting was defined as EB% >115. The whole
procedure was repeated 10 000 times to test for robustness.

As can be seen in Fig. 5, the association between fat-free
mass and EI is absent with complete data (solid line, filled cir-
cles). At the same time, restricting data to PR (dashed line,
empty circles), or using dietary group variables as control
variables (dashed line, empty diamonds), created an artificial
association between EI and fat-free mass. The association
magnitude depended on the correlation between fat-free mass
and TEE, and as that correlation decreased the artificial asso-
ciation between EI and fat-free mass decreased. Nevertheless,
the artificial association was present even at the smallest non-
zero correlation (r 0·15). This demonstrates that the dietary
group variable approaches would be appropriate only when
the fat-free mass and TEE correlation is zero. See the online
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Supplementary Fig. S3 for non-standardised regressions. Scripts
used for simulations are available in the online Supplementary
Material.

Discussion

We compared three approaches to control for misreporting of
sEI in adolescent boys – exclusion of misreporting groups,
controlling for misreporting group status and statistically cor-
recting for misreporting using external predictors of EB%. Our
analysis confirmed the exploratory conclusion of Börnhorst
et al.(20) that if children’s energy intake based on sEI data is
related to other variables the sEI should be statistically corrected
for misreporting using separate predictors of EB%. Such statis-
tical correction recovered an association between fat-free mass
and sEI, an association that was expected from both previous
studies and oEI data. We further demonstrated the dangers of
other approaches that exclude misreporting groups or statisti-
cally control for dietary group status; in our analysis, these
approaches created selection bias that artificially boosted the
expected association between fat-free mass and sEI.
Although exclusion of UR and OR has been suggested pre-

viously as a useful technique(17,19), our data suggest that plau-
sibility of dietary interviews does not make the data more
correct. Instead, focusing on plausible data might produce
artifacts – creating an artificially strong association between sEI
and fat-free mass. A likely reason is selection bias – fat-free
mass relates to the body mass of a participant, and body mass is
used to estimate TEE, on which the dietary groups are based
(see formula in the ‘Statistical methods’ section, Fig. 4). If then
participant range is restricted to a narrow range of plausible sEI
values based on the sEI:TEE ratio, an artificial association
emerges between sEI and fat-free mass. Our simulations
showed that a detectable contamination is present even when
the fat-free mass would relate to TEE only at 0·15. Similar to
Rhee et al.(21), our simulation showed that using a narrow range
of PR is only reasonable when the predictor of sEI has a cor-
relation of zero with TEE. However, this zero correlation can be
difficult to achieve, as TEE has multiple components (BMR,
body mass and physical activity), and many physiological
variables tend to be related. Therefore, the zero correlation
between TEE and predictor of sEI has to be demonstrated
before dietary groups-based correction methods are used. To
be on the safe side, we suggest using external predictors of EB%
to correct sEI instead of approaches based on dietary groups.
The current results also highlight the usefulness of data

re-sampling. Selection bias or any other bias can be difficult to
detect, because understanding indirect associations between
physiological variables can be a complex task. Data re-sampling
provides a quick and simple test to check, whether the used
data correction mechanism has created artifacts – an association
that is different from zero. If a correction procedure creates an
association between two variables, which should have zero
association as one of them is random noise, then this correction
mechanism should not be used.
Simulation provides further opportunities to test the

mechanism of the artifact. In this case, we suspected that a

correlation between a predictor variable (fat-free mass) and a
variable used for determining PR (TEE) could cause selection
bias – that is, overestimation of effect size. Simulation provided
an opportunity to test how the overestimation would change
with different correlation magnitudes between fat-free mass and
TEE. Such testing is difficult in real data, as various types of
predictors have to be available (although see Rhee et al.(21) for
an example). On the basis of simulation, we now know that
even a small correlation between fat-free mass and TEE would
have caused a selection bias and overestimation of the sEI–fat
free mass association’s effect size.

The current study once again documented high under-
reporting in adolescents. While the current high estimate (76%)
might be lower when a different sEI estimation method is
used(19,21), the adolescent under-reporting problem is still
widely known from previous literature. The under-reporting
mechanism is hard to capture – ‘the detection of under-
reporting does not automatically reveal the process respon-
sible’(16). A previously outlined reason could be that the task of
tracking food for 3 d could be cognitively too demanding for
adolescents(66). They might forget food items or not comply
with the task. However, current data cannot provide evidence
to the reasons for under-reporting. To properly understand
the mechanisms of under-reporting, future research should
simultaneously measure both sEI and oEI(67) for the same
meals, and experimentally manipulate or randomise possible
mechanisms, such as perception bias(68) or cognitive ability.

Intriguingly, controlling for predictors of EB% recovered the
fat-free mass and sEI association rather well. Although the
association between fat-free mass and oEI was even stronger
(β= 0·51), oEI was measured only for a single meal. Single meal
association with fat-free mass has been similarly strong pre-
viously (r 0·42, 0·29). sEI at the same time was assessed for 3 d
and averaged for a single day. On the basis of previous studies,
one could expect that the association between fat-free mass and
full day EI ranges between β= 0·28 and 0·33(27). In the current
study, the corrected effect size was β= 0·35, which is surpris-
ingly close. At the same time, such success might be the
peculiarity of the current sample and has to be replicated.

The current study has several limitations. Our study group
included adolescent boys, and therefore the effect sizes seen
pertain to this study group. At the same time, our empirical data
and simulations show that the basic principle of selection bias
should remain, and that statistical correction using external
predictors of EB% is likely the best approach. We were unable
to obtain data from questionnaires and oEI from all participants.
However, groups with and without more detailed data did not
differ in terms of basic sample statistics (Table 1), suggesting
that this is not a major concern. oEI and sEI were based on
different measurements – sEI was based on 3-d self-observed
dietary records, whereas oEI was based on one breakfast
comprised of convenience food, which is likely not the most
optimal choice of food. Further, as we captured only one meal
for oEI, we were unable to evaluate the EB% for oEI. Never-
theless, replicating previously known findings that current oEI
can be predicted by fat-free mass allowed us to be certain that
oEI was measured reasonably well. However, future studies
should have (a) more naturalistic food and (b) oEI and sEI data
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should be based on the same food consumed; people should
report what they ate at the same time their eating habits are
objectively captured (e.g. Stubbs et al.(67)). Finally, TEE was
somewhat imprecise, as it was estimated from an equation, as
opposed to measuring actual resting metabolic rate. Measuring
actual resting metabolic rate could have decreased the asso-
ciation between TEE and fat-free mass, decreasing the size of
the artifactual association between sEI and fat-free mass, if only
PR are considered. Similarly, the TEE equation was derived
from a younger sample than the current study sample, possibly
making the TEE less accurate. Nevertheless, our simulations
showed that any association between fat-free mass and TEE
would have caused artifacts, when sEI is related to fat-free mass
in a subsample of PR; therefore, despite the inaccuracies in TEE
measurement, the major conclusion of the paper remains.
The current study also has several strengths, which allowed

us to conclude that misreporting of sEI data should be statisti-
cally corrected using external predictors of EB%. Compared
with Börnhorst et al.(20), we extended the results in several
ways. We related sEI to a different predictor – fat-free mass. The
supposed EI and fat-free mass association was first indepen-
dently verified using oEI data, before we set to recover the
association from sEI. Such an approach enabled us to know
what type of effect size to look for. For methodological
strengths, fat-free mass was objectively measured with DXA,
and TEE for EB% was calculated based on objective physical
activity. We also extended the previous findings by first using a
different measure of sEI, 3-d dietary interview, which ensured
that statistical correction applies for multiple measures of sEI.
Second, we included various psychological predictors of EB%
not included by Börnhorst et al.(20). Despite these methodo-
logical differences, we reached a very similar conclusion,
suggesting the robustness of using statistical correction.
Another strength was the use of several methods to scrutinise

the appearance of selection bias. We first re-sampled our ana-
lysed data, which should have eliminated any association
between sEI and fat-free mass. However, some associations
remained, suggesting the existence of selection bias. We further
demonstrated the causal role of selection bias by varying
association strength between fat-free mass and TEE in a
simulation study.
In summary, we suggest that future studies on sEI should

plan ahead to include the known predictors of EB% in their data
collection procedures. These could include BMI, restraint, social
desirability or other relevant variables(12). Our empirical data
and simulation indicated that studying only PR groups can
artificially increase the regression coefficient in certain condi-
tions due to selection bias. Until more accurate and easily
applicable EI measures are developed, statistically correcting
sEI remains the best approach in large-scale studies.
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