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Abstract

The existence of positive solutions of some semilinear elliptic equations of the form -Au =
Xf(u) is studied. The major results are a nonexistence theorem which gives a A* = X*(f, J2) > 0
below which no positive solutions exist and a lower bound theorem for «max for Q. a ball. As a
corollary of the nonexistence theorem that describes the dependence of the number of solutions
on X, two other nonexistence theorems, and an existence theorem are also proved.
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1. Introduction

We study the existence of positive solutions u in C2(ft) n C(ft) of the
semilinear elliptic eigenvalue problem of the form

(1) -Au = A/(«) in ft, « = 0 on aft ,

where ft is a bounded domain in l " (n > 1) with 9ft smooth, A > 0, is
a real bifurcation parameter, / is a C1 nonlinearity, and there are numbers
0 < aQ < ax such that the following conditions are satisfied:

(fl) /(0) > 0, or (fl') f{s) > 0 on (0, a0);
(f2) /(flo) = /(fl,) = O;

(f3) max{F(5): 0 < s < a0} < F{a{), where F{s) = /0' f{a) da .

Note that (fl) and (fl') allow /(0) > 0 and (fl') implies (fl).
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ao\Jbo y a,

FIGURE 1. Typical / ' s

In part of our work we allow / to change sign on (a0, ax), and then we
assume / also satisfies

(f4) there exists b0 in (a0, ax), f(b0) = 0, such that /a*° f(s) ds < 0 and

f(s)>0 on (60 , f l i ) -
If (f4) is assumed, we can find a unique y in (bQ, a,) such that

(2) [yf(s)ds = 0.

It is clear that k = 0 is not an eigenvalue of (1), and if u is a positive
solution of (1) satisfying «max e [a0, ay], then by [1, Lemma 6.2], we know

Four typical / ' s are as in Figure l(a), (b), (c), (d).
Problem (1) has been recently discussed by E. N. Dancer [5], E. N. Dancer

and K. Schmitt [6], C. Cosner and K. Schmitt [4], P. Clement and G. Sweers
[3], P. Hess [8] and H. O. Peitgen, D. Saupe and K. Schmitt [10]. We note
that a theorem of SmoUer and Wasserman [13, Theorem 2.1] is an indirect
motivation for our work.

In [5], Dancer showed that if / satisfies (fl ') , (f2) and (f3) then for large
A, (1) has a positive solution u(x) satisfying

(3) um

In [6], Dancer and Schmitt showed that if / satisfies (f2)-(f4), then the
positive solution of (1) with «max e (b0, ax) satisfies

(4) >y

for general domains Q in K" (n > 1).

https://doi.org/10.1017/S144678870003295X Published online by Cambridge University Press

https://doi.org/10.1017/S144678870003295X


[3] Semilinear elliptic equations 345

In this paper we prove a nonexistence theorem which gives a X* = A* ( / , Q)
> 0 below which problem (1) does not possess any positive solutions satisfy-
ing (3); that is, we provide a lower bound for the least positive eigenvalue of
(1). If Q. is a ball in l " (n > 1), and u is a positive solution of (1) with
"max e (*<)' a\) > w e imProve (4) to

( 5 ) "max > y

by modifying a technique used in [6]. Finally, by degree theory we prove
a corollary of the nonexistence theorem which describes the dependence of
the number of positive solutions of problem (1) on X and we prove two
nonexistence theorems for -AM = M(x, u)f(u).

We point our that Clement and Sweers [3] have independently shown (5)
by techniques different from ours and Cosner and Schmitt's [4], provided
Q satisfies a "uniform interior sphere condition." Their method, however,
seems to require more regularity of / .

Since Q is a bounded domain, we can find a ball B with least radius R
such that Q c B. Let c = /o

fl| f~(s)ds, where f* = max(0, / ) . Since /
satisfies (f2) and (f3), we define X* as follows:

i y2/2cR2 if / satisfies (f4)

(see Figure l(a), (c)), where y is defined by (2),

otherwise (see Figure l(b), (d)).

We first prove Theorem 2 below in Section 2 in the case where Q is a ball
in R" (n > 1) centered at the origin by employing the famous theorem of
Gidas, Ni and Nirenberg [7] on radial symmetry of positive solutions of (1)
and a lower bound theorem for Mmax. Then we use a modified technique of
[6] to prove (1) has no positive solutions for X e [0, X*) for general domains
Q. We prove our lower bound theorem for Mmax at the end of Section 2. In
Section 3, we prove a corollary establishing the dependence of the number of
solutions of problem (1) on X. Finally, in Section 4 we extend our results to
equations of the form -AM — M{x, M)/(M) .

2. Main results

THEOREM 1 (Nonexistence of positive solutions). There exists a number X*
defined by (6) such that problem (1), with f satisfying (f2) and (f3), does
not possess any positive solutions satisfying (3) if 0 < X < X*. Moreover, if
f also satisfies (fl), then problem (1) does not possess any positive solutions
satisfying (3) ifO<X<X*.
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REMARK. While it is possible to give a much shorter proof of the existence
of A*, the proof here gives quite a good estimate for the best A*. For
example, the table below shows that our A* is often a much better estimate
than A** = kjd, where d = m a x ^ ^ a > f'(x) and A, is the first eigenvalue
of Laplacian -A subject to Dirichlet boundary condition. Our estimate tends
to be better if n is small and the domain is nearly circular.

We compare A* and A** in the case f{x) = -{x-\){x-2){x-A) which
gives y = 2.614.... , c = 5.750... , and d = 20.333... in the following
domains flcR" (« = 2 or 3) (here we assume fn dx = 1 and we may
remove the requirement that dCl is smooth) (cf. [2]):

Q(fndx=l)
n = 2 Circle

Square
Rectangle , 3 : 2

n = 3 Ball

TABLE

A,
18.168
19.739
21.384
25.646

1

R2

0.318
0.500
0.542
0.385

A**
0.894
0.971
1.052
1.261

A*
1.868
1.188
1.096
1.543

A**
2.089
1.187
1.042
1.223

THEOREM 2 (Lower bound for «max). Suppose f satisfies (f2), (f3), and
(f4). Let y be defined by (2). Let u be a positive solution of (1) with
"max e (*o' a\> • Then u satisfies (5) if ft is a ball in Rn (n > 1).

REMARK 1. Similarly, it is easy to show that Theorem 2 holds if Q is an
annular domain in R" (n > 1) and u is a positive radial solution of (1).

REMARK 2. Cosner and Schmitt [4] proved (4) by an identity of Rellich
for Q satisfying some symmetry conditions. Their proof can be improved to
obtain (5) if /(0) > 0. However, it seems to the authors that the requirement
/(0) > 0 can not be removed.

REMARK 3. Since the parameter A play no role in Theorem 2, we can
replace A/ by / in (1) in its proof.

PROOF OF THEOREM 1. It is easy to see that if A = 0, there is a unique
trivial solution u = 0. We first assume, in addition to (f2) and (f3), that
/ satisfies (fl); that is /(0) > 0. Under this assumption, we first prove the
result in the special case where fl is a ball in E" (n > 1) centered at the
origin.

We assume Q is a ball fi in I " (n > 1) with radius R, centered at
the origin. Suppose problem (1) has a positive solution u satisfying (3) for
some A, 0 < A < A*. It follows from the symmetry result of the Gidas,
Ni and Nirenberg Theorem ([7]) that u is radially symmetric and u has a
unique maximum at x = 0. Hence, u is a positive solution of the following
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two-point boundary value problem:

u\r) + ?-p-u{r) + Xf(u(r)) = 0, 0<r<R,

M'(0) = u(R) = 0,

and

(8) u\r) < 0 for 0 < r < R.

If we multiply all the terms in (7) by u and integrate the result, we obtain

(9) \[u'{r)f + [U{r) Xf(s) ds = -(n-l) f l^- ds < 0.
*• Ju(0) Jo s

So

(10) ifw'W]2 + / f{s)ds<0.
^ Ju(0)

Thus,

f(s)ds,
lu(r)

(11)

= c. (Here, a trick is used.)

Therefore,

(12) -(2cA)1/2 < u\r) (u'(r)<0, for 0 < r < R).

Integrating (12), we obtain

(13) - / {2cX)ll2dr< I u'(r)dr-
Jo Jo

consequently,

(14) -(2cl)1/2R<u(R)-u(0) = -u(0) (since u(R) = 0).

Thus, by (3) and Theorem 2 (proved below), we have

(15) ( u(0)>l2
[ aQ, otherwise.

Hence A > k*. This contradicts the assumption 0 < A < X*. Theorem 1 is
now proved in the special case.

We now prove Theorem 1 for a general bounded domain SI in E" (n > 1)
with dQ. smooth. Let u be a positive solution of (1). The qualitative
behavior of u does not change if we make a translation. Thus, we can
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assume B (which we consider to be the ball with least radius R that covers
Cl) is centered at the origin.

Suppose problem (1), with / satisfying (fl), (f2), and (f3), has a positive
solution M0 satisfying (3) for some Ao , with 0 < Ao < A* (A* is denned by
(6)). Consider the boundary value problem

(16) -AM = A0/(M), xeB, u = 0, xedB.

Define a(x) by

(17) a(x) = uo(x) if*eH; a(x) = 0 ifxe5\Q.

Then, since /(0) > 0, a(x) is a lower solution and fi(x) = ax is an upper
solution (see [11]) of (16). Hence, by the Method of Lower and Upper
Solutions (see [11]), problem (16) has a positive solution v satisfying

for some Ao, with 0 < Ao < A*, which contradicts what we have proved
above for the special case. So if / satisfies (fl), (f2) and (f3), then for
general domains Q, problem (1) has no positive solutions satisfying (3) if
0 < A < A*. Note that condition (fl) was needed to conclude that a(x) is a
lower solution of (16).

Next we assume that / does not satisfy (fl); that is, /(0) < 0. For any
e > 0, we replace / by / ( / = f(s, e)), where f £ Cl satisfies

f(s,e)>f(s) for0<5<a0,

f(s, e) = f(s) for a0 < s < ax,
( 1 9 ) / (0 ,e )>0 , f(ao,e) = f{al,e) = O, and

c + e= f ' f+(s)ds + e> f ' f+(s,e)ds> f '
Jo Jo Jo

Let d = /o
a' /^(s, e)ds. Note that d = d(e) is a function of e. Care must

be taken in choosing / so that (19), especially the last line of (19), holds.
Assume (1) has a positive solution v satisfying (3) for some A > 0.

Clearly, vmax < a , . Then for A > 0,

(20) Av + kf(v, e) > Av + kf{v) = 0.

Hence a(x) = v is a lower solution of

(21) AM + A / ( M , £ ) = 0 , x e f l , M = 0 , *€AQ.

As before, fi{x) = a, is an upper solution. Hence, (21) has a solution u
which satisfies

(22) v(x) < u(x) < a,;
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that is, u satisfies (3) for some X > 0. But consider problem (21); since
/ satisfies (fl), (f2) and (f3), by the previous result, (21) does not possess
positive solutions satisfying (3) if

( y2/2dR2 if / satisfies (f4),

[ ayldR otherwise.

Let e —» 0+ . By (19) we find (1) does not possess any positive solutions if
0 < X < X*. This finishes the proof of Theorem 1.

PROOF OF THEOREM 2. For problem (1), suppose / satisfies (f2)-(f4).
Let y be defined by (2). Suppose Q is a ball in R" (n > 1) with radius
R centered at the origin, and let u be a positive solution of (1) with wmax €
{b0, ax). Then u satisfies (11). From (11), we find that

(23) 0 < ±[u'(r)]2 < / f(s) ds (by (8), u'(r) <0forQ<r<R).
4A. Ju(r)

Now suppose

(24) Mmax - K(0) < y.

Then by (f4),

(25) 0< / f(s)ds< / f(s)ds.
Ju(r) Ju{r)

Choosing r so that u(r) = a0, we obtain

(26) 0< f f(s)ds

which contradicts (2). So if fit is a ball centered at the origin, we obtain (5).
By looking at (1) and making a translation, we can easily show (5) holds for
any ball in R" (n > 1). The proof of Theorem 2 is complete.

3. A corollary

The previous results imply the following corollary.

COROLLARY 1 (Dependence of the number of positive solutions on X). If
f satisfies f(u) >0forue[0, a,] in addition to (fl '), (f2), and (f3), then
there exists a number I > 0 such that problem (1) has no positive solutions
satisfying (3) if X <J, at least one positive solution satisfying (3) if X = J,
and at least two positive solutions satisfying (3) if X>X~.

(Two typical / ' s are given in Figure l(b), (d).)
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Consider the map Ax on C0(U) = {u e C(U)\u = 0 on dil} denned by
Ax(u) = (-A + tl)~\xf{u) + tu), i > 0, is such that Xf{y) + i > 0 on
[0, flj. So solutions of (1) are fixed points of Ax. The operator Ax is
compact; see [5] for details.

PROOF OF COROLLARY 1. It was shown in [5] that if / satisfies (fl '), (f2)
and (f3) then (1) has at least two positive solutions satisfying (3) if X is large.
Suppose that if X = Xd > 0, there is one positive solution v satisfying (3).
Then, since f(u) > 0 for u > 0, u_ = v is a lower solution of problem (1)
and u+ = a, is an upper solution of (1) for all X > Xd . By the Method of
Lower and Upper solutions [11] again, there is at least one positive solution
satisfying (3) for problem (1) for all X > Xd . Now simply choose I to be
the infimum of all X such that one can find one positive solution satisfying
(3) for problem (1). But for X = 0, there is a unique trivial solution u = 0
for (1). By Theorem 1 we know that 0 < I .

If X = I , we choose a sequence {Xn} , that Xn > I , Xn -> X. The sequence
{un} of solutions un of (1) evaluated at X = Xn is relatively compact in
C0(Q) (since 0 < un < a{ in Q.). Hence, we may assume (for a subsequence)
that un—>u strongly in C0(Q). Taking the limit for Ax (un) = un , we find

Ax(u) = u. So, if X = I , problem (1) has at least one positive solution
satisfying (3).

If X > J, we can first assume that there are finitely many positive solutions
of (l)x satisfying (3). Let u = a{ and u = ux (we choose ux to be the
maximal positive solution of ( l) j satisfying (3); ux exists as proved above),
so u < u, u is a lower solution which is not a solution of (l)x, and u is
an upper solution, which is not a solution of (1 ) x . The strong maximum
principle ensures that u < Ax(u) and Ax(u) <u [12, page 97]. Thus, by
[5, Theorem 2], Ax has at least one positive solution in (M, M) isolated in
C0(Q) with Leray-Schauder degree + 1 , which is stable. By using Theorem
1 and the homotopy invariance property of degree theory [12, page 131] and
decreasing X, we conclude that the sum of the degrees of the solutions of
problem (l)x in

D = {ue C0(U)\u > 0 in Q and a0 < «max < a,}

is 0. Therefore, by the excision property of degree theory [12, page 132],
there is at least one solution of (1)A in D with negative Leray-Schauder
degree (which can be shown to be unstable) which hence is positive in Cl and
satisfies (3). So, if X > X, Problem (l)x has at least two positive solutions
satisfying (3); one is stable and one is unstable. This completes the proof of
Corollary 1.
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FIGURE 2. Bifurcation diagrams for the functions / and g shown
as computed by Peitgen et al.

REMARK 1. Our results agree with the numerical results obtained by
Peitgen et al. in [10], in which they chose two related nonlinearities /
and g as in Figure 2, and used finite difference approximations to obtain
numerically the set of positive solutions in some positive intervals of the
corresponding boundary value problem u" + A/(M) = 0, M(0) = 0 = u{n).

REMARK 2. For star shaped domains Q, P. L. Lions [9, Theorem 3.2] has
related results without requiring / to keep one sign on [0, ax]. For general
domains Q, if / changes sign, the result of Corollary 1 is not known. The
bifurcation diagram of problem (1) could be fairly complicated. Even though
/ is a cubic polynomial having three distinct positive real roots and x is one-
dimensional (n = 1), only some partial results are known; see [13] and [15]
for references.

4. Some extensions

In this section we study the nonexistence of positive solutions of nonlinear
elliptic eigenvalue problems of the form

(27) -AM = Mf(u) in u = 0 on

where M = M{x, u) or M(\x\, u), M > 0 , and M is C1 in u and C
in x, 0 < a < 1. The functions / and Q are the same as in Section 1.

We note that, by modifying the proof of [1, Lemma 6.2], if u is a positive
solution of (27) satisfying «max e [a0, ax], we can show that /(«m a x) > 0.
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Analogously to the definition of A* in (6), we define Â  as follows:

j b2
0/2cR2 if/satisfies (f4) (see Figure 1 (a), (c)),

(zo) An = < - -
[ ajlclc otherwise (see Figure l(b), (d)).

We have obtained two nonexistence theorems and one existence theorem
for some classes of functions M and / and for some domains Q,. First,
by modifying the proof of Theorem 1, we are able to show our Theorem
3, in which M = M(\x\, u), f satisfies (f2) and (f3), and Cl is a bounded
domain which is symmetric with respect to the origin. Finally, we also prove a
nonexistence theorem and an existence theorem for (27) for general domains
£1 in which, in addition to (fl), (f2), and (f3), / also satisfies /(«) > 0 for
M > 0 .

We now consider

(29) -Au = Mf(u) in SI, u = 0 ondCl,
where we assume Q is symmetric with respect to the origin; that is, x e d
implies — x € Q. As before we can find a ball centered at the origin with
smallest radius R to cover Q. We also assume that M = M(\x\, u): (0, R) x
(0, ciy) -> K, M > 0 and satisfies

(Ml) M e C1 in u and Ca in x, 0 < a < 1, and
(M2) M is decreasing in r = |x | , 0 < r < R.

Note that (Ml) and (M2) are needed in applying the Gidas, Ni and Nirenberg
Theorem [7]. Let maxAf(0, y) = Ao, for 0 < y < ax.

Modifying the proof of Theorem 1, we obtain

THEOREM 3 (Nonexistence of positive solutions). There exists a number
A* defined by (28) such that problem (29), with f satisfying (f2), (f3)
and M (\x\, u) satisfying (Ml), (M2), does not possess any positive solution
satisfying (3) ifO < Ao < AQ. Moreover, if f also satisfies (fl), then problem
(1) does not possess any positive solution satisfying (3) / / 0 < Ao < AQ .

PROOF OF THEOREM 3. The proof of Theorem 3 is similar to that of The-
orem 1. Thus, we only point out the differences; these lie in obtaining results
analogous to (9), (10) and (14). First, assume / satisfies (fl), (f2), and (f3),
and Q is a ball centered at the origin. Suppose problem (29) has a posi-
tive solution satisfying (3). Then the Gidas, Ni and Nirenberg Theorem [7]
applies. Thus, we obtain

(9') Uu\r)]2+ f M(t,u(t))f(u(t))u\t)dt = -(n~l) f
^ Jo Jo
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From (9'), we know

0 > ['M(t,u(t))f(u(t))u'(t)dt
Jo

> f M(t, u{t))f{u{t))u\t) dt (M > 0 and u < 0)
Jo

= M(d, u(d)) f f*{u(t))u\t)dt (for some d, 0<d<r; by
Jo

the Mean Value Theorem for Integrals)

> M(0, u(d)) ['' f*(u{t))u{t)dt (by (M2) and f f*{u(t))u\t)dt < o\

>A 0 / f+(s)ds.
Ju{0)

So, by the above, we obtain

(10') Jr[u(r)]2

(note the difference between (10) and (10')). Therefore,

J+{s)ds
< P

Jo
= c.

Following the argument between (11) and (14) of the proof of Theorem 1,
we only obtain

. , , ( L 2 , i f / satisfies (f4),
(15') (2cX0)R

2 > u(0)2 > °2' .
^ a0 , otherwise,

so Ao > X*o, which is slightly different from (15). This contradicts the as-
sumption 0 < XQ < AQ . The case in which Q is a ball is finished.

The rest of the proof for the cases in which Q is not a ball and / does
not satisfy (fl) is quite similar to that in Theorem 1. The proof of Theorem
3 is complete.

Applying the Method of Lower and Upper Solutions [11] again with The-
orem 1, we can easily obtain the following for general smooth bounded do-
mains Q.

THEOREM 4 (Nonexistence of positive solutions). In addition to (fl '),
(f2), and (f3), if f satisfies f(u) > 0 for u e [0, a , ] , then problem (27)
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does not possess any positive solutions satisfying (3) / / sup M(x, y) < k* (A*
is defined by (6)) for (x, y) e Q x (0, a ,) .

Similarly, applying the Method of Lower and Upper Solutions [10] again
with Dancer's [5, Theorem 3], we can easily obtain the following for general
smooth bounded domains.

THEOREM 5 (Existence of positive solutions). In addition to (f l ' ) , (f2),
and (f3), if f satisfies f(u) > 0 for u € [0, a , ] , then problem (27) possesses
at least one positive solution satisfying (3) if there exists a positive number
X (cf. [8, page 952]), large enough, such that X < infM(x, y) for (x,y) €
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