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We use scanning-tomographic particle image velocimetry introduced by Casey,
Sakakibara & Thoroddsen (Phys. Fluids, vol. 25 (2), 2013, p. 025102) to measure the
volumetric velocity field in a fully turbulent round jet. The experiments are performed
for Re = 2640, 5280 and 10 700. Using Fourier-based proper orthogonal decomposition
(POD), the dominant modes that describe the velocity and vorticity fields are extracted.
We employ a new method of averaging POD modes from different experimental runs
using a phase-synchronisation with respect to a common basis. For the dominant azimuthal
wavenumber m = 1, the first and second POD modes of the axial velocity have opposite
signs and appear as embracing helical structures, with opposite twist, while, for the
same parameters, POD modes of the radial velocity extend to the axis of symmetry
and, interestingly, also show a helical shape. The (m = 1)-POD modes for the azimuthal
vorticity appear as two separate structures, consisting of C-shaped loops in the region
away from the axis and helically twisted axial tubes close to the axis. The corresponding
axial vorticity modes are cone-like and appear as inclined streaks of alternate sign in the
r–z-plane, similar to velocity streaks seen in wall-bounded shear flows. Temporal analysis
of the dynamics shows that a (m = 1) two-mode velocity POD representation precesses
with a Strouhal number of approximately St = 0.05, while the same reconstruction based
on vorticity POD modes has a slightly higher Strouhal number of St = 0.06.
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1. Introduction
The high-Reynolds-number round jet is one of the canonical configurations for
investigations into the emergence and dynamics of turbulent coherent structures. It has
been extensively studied both from the perspective of fundamental turbulence physics,
as well as engineering applications. The basic self-similar statistical structure has been
theoretically established, as to the first-order (mean) and second-order (root mean square,
r.m.s.) statistical moment profiles (Pope 2000), while the coherent structures are still
actively pursued.

Turbulent jets occur in many natural phenomena, from geysers to volcanoes, and in
numerous engineering devices, from jet engines to hair blowers. The coherent structures
within such jets are important for the mixing and transport of scalars and momentum,
and their motion can also be used to estimate volume flow rates, for example, in tracking
the amount of spillage from a gushing jet at the ocean’s bottom following the Deepwater
Horizon disaster (McNutt et al. 2012). Philip & Marusic (2012) show that these coherent
structures play an important role in mixing and entrainment in turbulent jets and wakes.

Experimental quantitative studies have been limited by the available technologies of the
day, from flow visualisation, single hot-wires to rakes of hot-wires, to planar particle image
velocimetry (PIV), then stereo-PIV and, most recently, the emergence of tomographic PIV
(Tomo-PIV) over the past two decades, where measurement of three-dimensional velocity
fields has become feasible (Elsinga et al. 2006, 2008; Schröder et al. 2008; Westerweel,
Elsinga & Adrian 2013). In this work, we focus on extracting the dominant modes that
most suitably describe a turbulent jet from volumetric measurements. The study of modes
can shed light on the turbulent dynamics of organised fluid elements, which subsequently
can be used to develop reduced-order models of the jet and, for example, design a control
strategy to diminish undesired jet noise (Jordan & Colonius 2013).

Numerous modal analysis techniques have been proposed, with the most popular and
widespread ones in the fluid dynamics community being proper orthogonal decomposition
(POD) (Lumley 1967, 1970), dynamic mode decomposition (DMD) (Schmid 2010, 2022),
Spectral proper orthogonal decomposition (SPOD) (Towne, Schmidt & Colonius 2018;
Schmidt et al. 2018), and the resolvent analysis (McKeon & Sharma 2010). In light of
recent advances in machine learning (ML) techniques, this new methodology has also been
blended with conventional modal analysis methods and extended to data-driven models
(Otto & Rowley 2019; Duraisamy, Iaccarino & Xiao 2019). Taira et al. (2017) reviewed
different techniques used in the turbulence community with a description of the methods
and an inclusion of implementation examples. In their subsequent paper (Taira et al. 2020),
they present an outlook on how modal analysis results can be interpreted for different flow
conditions, both in fundamental turbulence research and in engineering applications.

The POD method is the earliest modal analysis method used to objectively extract a
hierarchy of coherent structures for turbulent flows. It decomposes the turbulence signal
into a set of orthogonal basis functions, referred to as the proper orthogonal modes, ranked
by the variance they contain, as measured in a defined norm such as, e.g. kinetic energy or
enstrophy. The first few POD modes will thus represent the essential large-scale coherent
structures that capture the essential variance of the turbulent flow. If the flow geometry
allows the exploitation of a symmetry or periodicity in a particular coordinate direction,
the POD modes in this direction degenerate into Fourier modes (see Lumley 1967),
resulting a composite Fourier–POD analysis of the flow-field sequence. For the round
jet of our configuration, the azimuthal direction presents a statistical axisymmetry. Hence,
we choose to use the POD analysis in the non-homogeneous radial and axial coordinate
directions, while employing a Fourier transform in the periodic azimuthal direction.
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The present configuration represents a fully developed turbulent flow issuing from a
circular pipe, flush with the bottom of the tank. The range of length and time scales, as well
as the time resolution of the volumetric data, are limited by both the employed imaging
method and the finite image memory of the cameras. These limitations determine the total
number of volumes in each experimental run, which in turn governs the convergence of
the POD estimates.

In table 1, we summarise, in chronological order, the most relevant investigations
on coherent structures and dominant modes for the round jet. Understanding coherent
structures in a jet has seen more focus on the near-field than the far self-similar region
(Yoda, Hesselink & Mungal 1994). It has long been known from flow-visualisation
experiments that the near-field consists of Kelvin–Helmholtz instability-driven
axisymmetric vortex rings (Crow & Champagne 1971). However, the existence of
large-scale structures beyond the potential core was not as evident as it was for the
near-field. Two-dimensional images of the jet in the far-field obtained by laser-induced
fluorescence experiments by Dimotakis, Miake-Lye & Papantoniou (1983) showed the
outline of the jet either as a zig–zag (antisymmetric) or symmetric pattern. Based on this
observation, they proposed that an expanding spiral mode describes the far-field structures.
However, this was challenged based on subsequent measurements: it was in fact the helical
modes that dominated this region (Tso & Hussain 1989; Yoda et al. 1994). Fourier-based
POD analysis of hot-wire rakes data has also shown that the lower axisymmetric mode
m = 0 dominates in the near-field, while higher modes prevail in regions far from the
nozzle (Glauser et al. 1987; Jung, Gamard & George 2004; Iqbal & Thomas 2007; Tinney
et al. 2008a). Time integration of the two-dimensional rake data, assuming a convection
velocity, have been used to visualise three-dimensional structures. Iqbal & Thomas
(2007) used the λ2-criterion, rendered non-dimensional by the approximate constant
convective velocity and the nozzle radius. They showed that lower-order structures at
z/D = 3 consisted of toroidal shear layer vortices, while the higher azimuthal modes
were characterised by streamwise ‘vortical braids’, reminiscent of a mixing layer. Further
downstream, at z/D = 6, helical vortical structures about the streamwise direction appear,
with no preferred orientation. These helical structures dominate further downstream,
up to the end of the measurement region. Using a similar approach, Tinney et al.
(2008b) observed organised jet columns with a distinct azimuthal structure; however, the
vortical structures become more disorganised further downstream, at z/D = 7. Recently,
modal analysis of DNS data by Mullyadzhanov et al. (2018) demonstrated that the most
important m = 1 azimuthal mode resulted in helical POD modes. The first two POD
modes appeared as mirror modes, with similar shapes but different helical orientation.

In addition to POD, coherent structures from instantaneous flow fields have
been presented based on simulations and volumetric measurements. The organised
axisymmetric vortical structures, caused by a Kelvin–Helmholtz instability in the
near-field, breaks down into disorganised azimuthal structures in the far-field. Suto
et al. (2004) proposed a conceptual model of horseshoe-like eddies, with legs
inclined downstream, based on their simulation and experimental study of a jet. The
proposed eddies were geometrically similar to the horseshoe/hair-pin eddies extensively
researched in wall-bounded turbulence (Head & Bandyopadhyay (1981), Marusic (2001),
Ganapathisubramani et al. (2005)).

Extraction of POD modes in jets, using a rake of hot-wire measurements, has been
reported in the literature, starting from Glauser et al. (1987), wherein the authors
used seven single hot-wires placed along the radial direction, thus measuring only the
streamwise velocity component. Extending this to a rake of 138 hot-wires, Citriniti &
George (2000) measured the streamwise velocity in a two-dimensional cross-sectional
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Authors ReD Investigation method Region Analysis
(Velocity components (z/D)

Measured)

Dimotakis et al. (1983) 2500 LIF 0−35 Coherent
Structures

Glauser et al. (1987) 110 000 7 single wires 3 POD
Hot-wire sensors (Uz)

Yoda et al. (1994) 1000− Scanning LIF 30−83 Coherent
4000 Structures

Citriniti & George (2000) 80 000 Rake of 138 single wires 3 Fourier
Hot-wire sensors (Uz) POD

Jung et al. (2004) 78 400− Rake of 138 single wires 2−6 Fourier
156 800 Hot-wire sensors (Uz) POD

Gamard et al. (2004) 40 000− Rake of 139 single wires 15−69 Fourier
84 700 Hot-wire sensors (Uz) POD

Matsuda & Sakakibara (2005) 1500− Stereoscopic PIV 20−50 Conditional
5000 (2D−3C) Averaging

Iqbal & Thomas (2007) 380 000 Twin rake of 14 X-wires 3−12 Fourier
Probes (3C) POD

Tinney et al. (2008a,b) 1×106 Stereoscopic PIV 3−8 Fourier
(2D−3C) POD

Schmid et al. (2012) 5000 Tomographic PIV Up to 13 DMD
(3D−3C)

Casey et al. (2013) 2640− Scanning tomographic 45−55 Tracking
10 700 PIV (3D−3C) Structures

Violato & Scarano (2013) 5000 Tomographic Up to 10 POD
PIV (3D−3C)

Mullyadzhanov et al. (2018) 5290 DNS 2.5−40 Fourier
(Jet with co-flow) POD
Ianiro et al. (2018) 1000 Tomographic PIV Up to 5 DMD
(Swirling jets) (3D−3C)
Samie et al. (2022) 7300 DNS Up to 30 Conditional

Averaging

Table 1. Summary of important studies on coherent structure analysis in turbulent round jets using modal
decomposition methods, coherent structure identification and conditional averaging methods. This list focuses
primarily on experimental studies, but also comprises the latest relevant direct numerical simulations. The
velocity components measured in the experimental studies is indicated as well. The symbols/abbreviations
are as follows: Uz denotes the axial velocity, 3C stands for ‘three components’, 2D-3C represents ‘three
components’ in a plane and 3D-3C indicates ‘three components in a volume’.

plane (r–θ -plane) in the near-field at z/D = 3, which was then used to analyse POD
modes, while a Fourier decomposition is performed in both the azimuthal and time
coordinates. Using the same hot-wire arrangement, their analysis was extended to modes in
a wider range of streamwise planes: in the near-field (z/D = 2 to 6) by Jung et al. (2004)
and in the far-field (z/D = 20 to 69) by Gamard, Jung & George (2004). These studies
reported that the dominant azimuthal mode is m = 0 near the jet, while m = 2 prevails for
z/D > 6.

Iqbal & Thomas (2007) presented POD results based on three velocity components,
measured using a rake of 14 ×-wire probes arranged in two perpendicular radial lines in
the near-field (covering the interval 3 � z/D � 12) of a turbulent jet. The X-wires measure
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two velocity components at a time, but need to be rotated to measure the remaining
third, thus excluding simultaneous measurements of all three components, as is feasible
using Tomo-PIV. The authors note that m = 2 dominates for the streamwise component,
while the m = 1 azimuthal mode prevails over other modes in the near-field, but its
dominance diminishes further downstream. In the same study, the Strouhal number, where
the eigenvalue spectra peaks for the different azimuthal modes, is reported: based on the
local momentum thickness and the centreline velocity, it scaled linearly with the azimuthal
mode number.

Tinney et al. (2008a) performed a POD analysis on Stereo-PIV measurements in a cross-
sectional plane in the near-field of a jet issuing from a converging nozzle of diameter 50.8
mm into an anechoic chamber at a Mach number of 0.85. They looked at the modal energy
distribution for each component of velocity in the near-field of the jet, and concluded that
lower-order azimuthal modes dominate in the potential core and the high-speed side of
the shear layer, i.e. r < r0.5, while higher-order modes have been found on the outer low-
speed side. Here, r0.5 is referred to as the half-radius, where the mean velocity is half
the centreline value. In terms of velocity components, lower-order modes are dominated
by the axial velocity far more than the other two components, which contribute more to
higher-order structures.

Violato & Scarano (2013) used time-resolved Tomo-PIV measurements in the near-field
(up to 10D) of a turbulent water jet at Re = 5000, and analysed the relation between
coherent structures and sound production. They performed POD analysis of the velocity,
vorticity, Lamb vector and its second derivative obtained using the Tomo-PIV technique.
The primary pair of velocity and azimuthal vorticity modes represented the travelling
toroidal vortices after pairing with a characteristic Strouhal number of St = 0.36. The
secondary travelling velocity pair exhibited helical motion.

A brief historical perspective of Fourier-based POD modes is included in the recent
work by Hodžić et al. (2024). Mullyadzhanov et al. (2018) performed a POD analysis
on the direct numerical simulation of a jet from a fully developed turbulent pipe
introduced into the computational domain together with a co-flow chosen as 0.27 times
the jet velocity. They analysed the flow field by dividing the domain into five sub-
domains extending from z/D = 2.5 to 40, with different radii. By performing a Fourier
decomposition of the velocity fields in the azimuthal direction, they focused on the POD
modes in the far-field region. The dispersion relations between the frequency and the phase
velocity has been reported for the first five azimuthal modes. A similar analysis based on
large-eddy simulation (LES) of a jet in a cross-flow has been presented by Mullyadzhanov,
Abdurakipov & Hanjalić (2017).

Following the proposition of horseshoe vortices, there have also been studies based
on analysing instantaneous coherent structures. Matsuda & Sakakibara (2005) used time-
resolved stereo-PIV to analyse a turbulent jet, using Taylor’s hypothesis for the streamwise
direction. They assumed a constant convection velocity to construct the three-dimensional
coherent structures from the planar measurements and observed horseshoe vortices around
the shear region, by plotting iso-surfaces of λ2-structures. By conditional averaging, they
also reported horseshoe structures at 1.5 times the half-radius. Hori & Sakakibara (2004)
previously used scanning stereo-PIV techniques to obtain volumetric three-dimensional
velocity fields and visualised vortical structures in the shear layer. Schmid, Violato &
Scarano (2012) performed time-resolved Tomo-PIV measurements in the near-field of a
transitional jet at Re = 5000. In this study, the authors combined volumetric velocity mea-
surements with DMD analysis to extract coherent flow structures. The analysis revealed
two dominant modes with frequencies corresponding to St = 0.325 and St = 0.646.
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Both dynamic modes, visualised by λ2-criterion, showed axisymmetric vortex rings, with
the second mode being more concentrated near the nozzle, signifying a primary instability.

Casey et al. (2013) measured the time-resolved velocity field in the far-field (z/D = 45
to 55) of a fully turbulent round jet using a scanning Tomo-PIV technique. The method
enabled them to obtain volumetric velocity fields over a substantial depth, compared with
the Tomo-PIV technique. Coherent structures have been visualised for three different
Reynolds numbers in the range Re = 2640 to 10 700, using a vorticity magnitude criterion.
The coherent structures showed a collection of C-shaped structures convected streamwise
at low Reynolds numbers and long tube-like structures at high values of Re. This study
further looked at the temporal evolution of several tube-like structures and quantified the
streamwise variation of structural characteristics, such as the radial position, orientation,
turbulence production and dissipation, and the vortex deformation.

Ianiro et al. (2018) used a three-camera Tomo-PIV set-up to study the vortical structures
in the near-field of a transitional swirling jet (up to z/D = 5), at a Reynolds number of
Re = 1000 for swirl numbers in the range of 0 to 0.8. The coherent structures, extracted
using DMD, showed helical vortices in the near-field, with pairing of three vortices in
the shear layer. The authors state that the precessing vortex core interacts with the helical
vortices, enhancing both the breakdown and precession, and supresses the vortex pairing.
Recently, Samie et al. (2022) analysed coherent structures in the near- and intermediate-
fields up to z/D = 25, based on the direct numerical simulation (DNS) of a turbulent jet, at
Re = 7300. Using conditional averaging, they identified both symmetric and asymmetric
horseshoe vortices similar to those seen in wall-bounded flows. The near-field consists of
horseshoe vortices which tend to group together, forming spiral and streamwise-aligned
large-scale structures in the intermediate field. The authors further observe very-large-
scale motions in the intermediate field of the jet.

From the comprehensive review of the literature, we see that most three-dimensional
modal POD analyses of jets have been performed with data from DNS. Analyses based on
physical measurements, however, have been limited to cross-sectional planes, either using
hot-wire rakes or stereo-PIV techniques. The extracted structures are then visualised in
the axial direction using Taylor’s hypothesis of frozen turbulence. In this present work,
we perform a Fourier-based POD analysis of time-resolved three-dimensional volumetric
velocity and vorticity fields measured in the far-field of the jet using a scanning Tomo-PIV
technique, introduced by Casey et al. (2013). In an attempt to attain a long time-series of
snapshots, which is imperative for a proper convergence of the statistics, such volumetric
image-based techniques are limited by the memory of the camera. For this reason, we
present results (dominant POD modes) by averaging over many experimental runs, which
not only ensures improved convergence, but also accounts for variations in the experimen-
tal conditions. Our analysis is then extended to the vorticity field. For both the velocity
and vorticity fields, the dominant modes and their dynamics are extracted and discussed.

2. Experimental set-up and methodology

2.1. Turbulent jet
Figure 1 presents a schematic of the experimental set-up, showing the laser illumination
and the four-camera imaging system. The water-tank test section consists of a 500 mm
high octagonal acrylic tank with each side measuring 185 mm. The jet enters the tank
from a bottom mounted nozzle of inner diameter D = 5 mm. The ratio of the confinement
cross-section to the nozzle cross-section is 8.4 × 103. Violato & Scarano (2013) in
their Tomo-PIV experiments used a similar octagonal tank with a confinement ratio of
3.8 × 103. Water from a constant small-head tank flows through a 500 mm long straight
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Scanning
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Figure 1. Schematic top and front views of the experimental water tank, along with the illumination and the
imaging system. The five-volume scan used with the Fast-scan and Triple-pulse scanning protocols is illustrated
in the figure. The bounding volume of the scanning is represented by the red-dashed lines, with the total size
depending on the scanning protocol. It measures approximately 130 mm × 130 mm in the r−z-plane and
100 mm in the scanning direction. Appendix contains a photograph of the camera arrangement.

steel-pipe before entering the test section. This ensures fully developed turbulent flow
conditions at the outlet of the nozzle into the flat bottom of the tank. A constant flow
rate through the nozzle is achieved by adjusting the height of the overhead tank and
the rotation speed of a displacement pump feeding water into it. The water level in the
octagonal tank is maintained at a constant height using overflow lines, with three outlets
equally spaced around the periphery. The flow rate is set to 0.63, 1.26 and 2.52 litres
per minute. The corresponding Reynolds numbers, Re = ρVj D/µ, are 2640, 5280 and
10 700, where Vj is the average exit velocity of the jet at the nozzle. The experimental
conditions corresponding to these three Reynolds numbers are labelled as Re2K, Re5K
and Re10K; the governing parameters for these three cases are summarised in table 2.
We compute the dissipation rate considering all twelve derivative correlations of velocity
fluctuations as 〈2νsi j si j 〉, where si j = (1/2)(∂ j ui + ∂i u j ). The Kolmogorov scale at the
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Conditions Re2K Re5K Re10K

Re 2640 5280 10 700
Vj (m s−1) 0.53 1.06 2.15
η (mm) 0.310 0.210 0.140
ηc (mm) 0.204 0.138 0.092
τc (ms) 41.5 19.0 8.5
Scanning protocol Triple pulse Fast scan Double pulse
Image acquisition rate (fps) 260 1279 450
δt/τc 0.20 0.25 0.26
No. of sub-volumes 5 5 9
L1 × L2 × L3 (mm3) 133 × 128 × 83 99 × 99 × 72 133 × 129 × 91
δI /ηc 16 24 30
δ/ηc 4.1 6.0 7.5
	t (ms) [	t/τc] 57.7 [1.40] 4.7 [0.25] 40.0 [4.70]
Time-series length, N (volumes) 209 524 174
Experimental runs 10 10 15
Size of polar grid P (R × H ) (mm2) 35 × 128 30 × 99 40 × 129

Table 2. Experimental conditions and important turbulent parameters for the three Reynolds numbers cases
and the Tomo-PIV algorithm. Here, Vj is the mean velocity at the nozzle exit and η is the Kolmogorov scale
computed as (ν3/ε)1/4, with ν as the kinematic viscosity and ε as the dissipation rate. The dissipation rate
is computed as 〈2νsi j si j 〉, where si j = (1/2)(∂ j ui + ∂i u j ) at z = 250 mm. ηc is the Kolmogorov scale after
correction by a factor fη ≈ 1.5, which is based on ηmag computed using high-magnification experiments.
τc = (ν/εc)

1/2 is the Kolmogorov time scale based on the corrected dissipation. The complete measurement
volume is made up of many sub-volumes determined by the number of steps used in the scanning protocol.
L1 × L2 × L3 denotes the size of the velocity grid with a grid data spacing δ = δI /4, where δI is the size of
the interrogation window. The time step used for velocity calculations is represented by δt and the time step
between two consecutive velocity volumes is referred to by 	t . The variables R and H are respectively the
radius and height of the cylindrical volume grid onto which the field is interpolated.

middle of the measurement region, averaged over many realisations, is approximately 0.3,
0.2 and 0.14 mm for Re2K, Re5K and Re10K, respectively. For better estimates of η, these
computations are performed using high-magnification measurements at Re = 10 700, with
an optical magnification of 2.25× (referred to as Re10KZ). Five runs have been performed
with a smaller measurement volume of 56 × 46 × 20 mm3. At z = 250 mm, we obtain
ηmag = 0.092 mm, a value approximately 1.5 times smaller than the base magnification
case. The axial variation of η for all three Reynolds numbers and a comparison with
the high-magnification case are shown in figure 23. The Kolmogorov scale based on the
self-similar, normalised dissipation rate ε̂ = εr1/2/〈U zc〉3 = 0.017 from measurements of
Panchapakesan & Lumley (1993) (PL93), at z = 250 mm are 0.280, 0.156 and 0.093 mm
for Re2K, Re5K and Re10K, respectively. They obtained ε from the balance of the kinetic
energy budget and compared these values with estimates based on direct measurements
of derivatives, similar to our approach. Hussein & George (1990) estimated ε̂ = 0.0262,
0.028 for axisymmetry and isotropic assumptions, respectively. The corresponding values
of η for Re10K are 0.084 and 0.082 mm. It is interesting to note that η in the current high-
magnification experiments is close to previous estimates. Hence, we use the factor, fη =
η/ηmag = 1.52, to correct the Kolmogorov scale ηc for the other two Reynolds numbers.
The density and dynamic viscosity of water are ρ = 998 kg m−3 and μ = 1.0×10−3 Pa s.
Between 10 and 15 experimental runs were conducted for each flow rate to obtain an
adequate convergence of the statistics.
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2.2. Velocity measurements
We use the commercial LaVision tomographic PIV system for image acquisition. The
illumination system consists of a high-speed 527 nm Nd-YLF dual-cavity pulsed laser
(Litron LDY300 PIV). The beams from the laser heads are combined and directed by
mirrors to pass through a set of volume optics which expand the beams slowly in both
directions to create a laser slice. These optics change the cross-section of the beam from
an ellipse to a rectangle. The rectangular expanding beam is then focused on a scanning
mirror attached to a galvanometer, which can rotate horizontally in precise steps about its
vertical axis. Hence, the step-wise rotation of the galvanometer causes the pulsed laser
slices to span the measurement volume centred in the jet’s far-field at z/D = 50. Each
slice is approximately 25 mm wide, and, using a slight overlap, the final volume spans
approximately 100 mm. Figure 1 shows the case where each rotation cycle consists of
five steps and thereby creates five sub-volumes within the total measurement region. Note
that only one sub-volume is illuminated at any given time. The galvanometer’s rotation is
precisely controlled by a signal generator using three different protocols: triple pulse (TP),
fast scan (FS) and double pulse (DP). The different protocols are based on the number
of laser pulses flashed in each step. One, two or three pulses are flashed per step of
the scanning mirror in the FS, DP and TP protocols, respectively. The scanning signal
consists of 5, 5 and 9 steps for FS, DP and TP. This forms either 5 or 9 planes in the depth
direction with a volume thickness of 25 or 17 mm each. The cameras and the laser are
synchronised such that the frequency of the laser flashes (1/δt) is matched to the image
acquisition frequency, so that every laser flash is recorded in one frame. Hence, FS, DP
and TP protocols will have one, two and three frame(s) recorded in each sub-volume. Each
volume corresponding to the complete sweep of the mirror will consist of 6, 18 and 15 laser
flashes or frames for FS, DP and TP protocols. The timing details of the galvanometer and
the camera frame with timing charts can be found from Casey et al. (2013). Due to different
image acquisition rates, pulse protocols and number of sub-volumes, the total length of the
time series varies between the three Reynolds numbers. We thereby get 209, 524 and 174
volumes for Re2K, Re5K and Re10K, which are separated by different flow times 	t .

We use four 2016 × 2016 pixel CMOS high-speed cameras (PCO, Dimax) for image
acquisition. The maximum acquisition rate is 1279 frames per second (fps) at full
resolution, and the cameras can store 3153 images in its built-in memory and has a pixel
size of 11 µm. The arrangement of the cameras is shown in figure 1 and in a photo in
figure 20 in Appendix A. Cameras 1 and 3 look down on, and cameras 2 and 4 look
up at the measurement region, making their effective overlap ellipsoidal. Each camera
looks through a water-filled angled prism to minimise optical distortions. The cameras
form an angle of approximately 30◦ with respect to a horizontal plane passing through
the measurement volume centre. Identical lenses with an aperture f/32 are used with
Scheimpflug attachments to ensure sufficient depth of focus for the full scanned volume.
The calibration process establishes the spatial relation between the physical coordinates
in the measurement region and the image coordinates. The optical system has a nominal
image magnification of M = 0.16 and the diffraction-limited spot size is calculated to
be 48 µm (approximately 4 pixels). This is performed using 11 planes by traversing
a dual-plane, double-sided calibration plate (Type 22 from LaVision) over a depth of
90 mm. Subsequently, the volume self-calibration step (introduced by Wieneke 2008)
is performed using the 10 000 brightest reconstructed particles to push the error in the
calibration to levels below 0.1 to 0.2 pixels. This step corrects for any changes to the optical
set-up during the experiments. For seeding, we use 20 to 50 µm PMMA-encapsulated
Rhodamine-B fluorescent particles, which are slightly heavier than water. More details of
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the scanning protocols and the experiments can be found from Casey et al. (2013). The
particle concentration lies in the range of 0.015−0.025 particles-per-pixel with a source
density of 0.1−0.3.

2.3. Tomographic reconstruction and velocity deduction
We use the Tomo-PIV correlation method to deduce velocities from the particle images,
which is performed in two main steps in DaVis 8.2 from LaVision. In the first step,
the three-dimensional voxel intensities at the particle locations are reconstructed using
the images from the four cameras to form a volume of intensities for each time step.
Following this step, a correlation of reconstructed particles over two subsequent times
is determined to obtain the corresponding three-dimensional velocity field. Even though
the illuminated volume is a cuboid, velocity vectors are restricted to an ellipsoidal region
contained within the cuboid due to the overlap in the angled views of all the cameras.
Thus, all 5 or 9 sub-volumes do not contain the same number of reconstructed particles.
As a consequence, our analysis is mostly restricted to only the central three of the five sub-
volumes, where the particle density and reconstruction intensities are sufficiently high.
The acquired raw particle images are preprocessed to normalise the particle intensities and
to remove any constant background. The reconstruction of each sub-volume is performed
separately using the corresponding self-calibration that is obtained with particles from
the same sub-volume. The MART algorithm built into the DaVis software is employed
for this step, forming a stack of planar intensity sections. To remove the ghost intensities,
reconstruction in each sub-volume is performed over a depth greater than the illumination
depth. Reconstruction in depth, where the signal-to-noise ratio (SNR) ≥ 2.5, is only
considered for subsequent steps. The reconstructed intensity-planes in these sub-volumes
are then ‘stitched’ together, using in-house MATLAB routines, to form the total volume,
which now counts up to 1500 planes in depth. Note that there is a small time lag
between each sub-volume within this total volume. The direct correlation method is used
for the three-dimensional velocity eduction. The correlation is performed iteratively in
three to four steps by reducing the interrogation window size from 128 × 128 × 128 to
48 × 48 × 48, with a constant overlap of 75 %. For the Re10K case, which uses nine
planes, velocities are deduced with a final interrogation window size of 40 × 40 × 40
and 75 % overlap. This set-up yields instantaneous velocities (U, V, W ) on a Cartesian
grid with a uniform grid spacing δ = δI /4 (see table 2), where δI is the interrogation
window size. The instantaneous vorticity field (ω̃x , ω̃y, ω̃z) is then calculated using fourth-
order finite-difference schemes. The accuracy of the resulting velocity and its gradients is
quantified by calculating the residual in the continuity equation. One approach consists
of obtaining the correlation coefficient of the terms of the continuity equation, 	U/	x
and −(	V/	y + 	W/	z). These terms are calculated over cuboidal volumes with size
WCV = δI . The correlation coefficient computed with volumes of size WCV , 2WCV and
4WCV for Re10K are 0.79, 0.91 and 0.96, respectively. The values are comparable to 0.82
in stereo measurements following Ganapathisubramani, Lakshminarasimhan & Clemens
(2007). The accuracy has been reported in great detail by Casey et al. (2013).

For the Fourier analysis in the current study, we require the Cartesian velocity and
vorticity on a Cartesian grid C to be mapped onto a cylindrical grid P, centred on the
jet axis. For this, we first determine the axis of symmetry of the jet by tracing the
vertical locus of the maximum mean axial velocity over many acquired realisations.
The Cartesian velocity components (U, V, W ) are then transformed to polar velocity
components (Ur , Uθ , Uz) with respect to our identified axis. Similarly, the vorticity
components (ω̃x , ω̃y, ω̃z), from the Cartesian grid, are transformed to their corresponding
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F
lo

w

(a) (b)

Figure 2. Coherent structures visualised using iso-surfaces of vorticity magnitude |ω̃| = 32 (s−1) in (a) the
actual Cartesian grid C and (b) the interpolated polar grid P for the case R5K. The rectangular domain in
panel (a) measures 99 × 99 × 72 mm3, from which a cylindrical domain of radius R = 30 mm and height
H = 99 mm, indicated by the blue cylindrical surface, is extracted. The purple vertical line in panel (a)
indicates the jet axis used for our coordinate transformation. Note that the Cartesian components in C are
first transformed to polar components in C and then interpolated onto P.

polar components (ω̃r , ω̃θ , ω̃z). The polar component values on the Cartesian grid are then
interpolated onto the P grid from their values on the C grid using a cubic interpolation
implemented in the griddata function (MATLAB). Figure 2 shows the actual coherent
structures on the C grid and after interpolation onto the cylindrical P grid. The grid
spacing of the polar grid P shown in figure 2(b) is 	r = 0.5 mm, 	θ = 2π/256 and
	z = δ, where δ is the original Cartesian axial spacing. The radius R and height H of
the cylindrical volume grid, used for analysing the different Reynolds number cases, are
summarised in table 2.

2.4. Fourier-based proper orthogonal decomposition (POD)
We use the Fourier-based POD to identify and extract the dominant coherent structures
that describe the jet.

Due to the axisymmetry of the jet, the velocity field in the azimuthal direction
is statistically homogeneous. Consequently, a Fourier decomposition in this direction
naturally provides the relevant eigenfunctions, eliminating the need for POD (Lumley
1967). However, the radial and streamwise directions are inhomogeneous, requiring POD
to extract coherent structures in these directions. This allows us to analyse each azimuthal
Fourier mode independently, significantly reducing the size of the data matrix for the
overall decomposition.
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A similar analysis has recently been performed, using direct numerical simulation data,
by Mullyadzhanov et al. (2018), where POD of a few azimuthal Fourier modes was used
to describe a turbulent jet.

In what follows, we will use the following nomenclature: the instantaneous
radial velocity, denoted by Ur = 〈Ur 〉 + ur , and the instantaneous azimuthal vorticity,
represented by ω̃θ = 〈ω̃θ 〉 + ωθ . Here, the angled brackets 〈·〉 indicate the mean-flow
(averaging) operator and the lower case symbols represent fluctuating components.

We perform the Fourier decomposition of both the measured fluctuating velocity and
the fluctuating vorticity fields. However, the mathematical formulation is described later
only for fluctuating velocity, as it remains the same for other quantities. The Fourier
decomposition of the fluctuating velocity field, u = (ur , uθ , uz), results in a set of complex
vector fields in Fourier space. We have

f m(r, m, z, t) = ( f m
ur

, f m
uθ

, f m
uz

) = 1
2π

∫ 2π

0
u(r, θ, z, t)eimθ dθ, (2.1)

where f is the fluctuating velocity field in Fourier space and m stands for the azimuthal
Fourier wave number. The cylindrical grid has a uniform azimuthal step size of 2π/256
and hence, we have the wavenumber m varying from 0 to 255. We then apply the
triple decomposition of the snapshot data matrix, D, which is constructed with all the
components of the fluctuating field f . This factorisation decomposes the data series into
essential structures, their dynamics and the associated energy, and has become a common
method to extract the coherent dynamic processes from snapshot sequences, as reported by
Schmid (2022). Note that the fluctuating field, f m, for a given mode m, is only a function
of (r, z) and hence yields a compact matrix D. To account for the radial location of the data
point in the uneven grid, the velocity at a particular point is weighted by the corresponding
volume surrounding it, as

√
	V = √

r	r	z. The data matrix is constructed with all three
components such that each column corresponds to a snapshot in time. An example of
constructing the data matrix is given in Appendix B.

The matrix Dm , for a given Fourier mode m, is expressed as a triple product using the
singular value decomposition, as given by

Dm = UmΣm(Vm)H , (2.2)

where the unitary matrix Um contains the spatial modes, the diagonal matrix Σm gives
the singular values, (Vm)H is a unitary matrix and contains the dynamic information of
the spatial structures, and the superscript H represents the Hermitian (conjugate transpose)
operation. We use the svd function in MATLAB for the above-mentioned factorisation and
save the N spatial POD modes. The fluctuating velocity f m at any given instant ti can be
obtained by summing over all N POD modes according to

f m(r, z, ti ) = 1
r	r	z

N∑
n=1

am
n (ti )σ

m
n φm

n (r, z), (2.3)

where am
n (ti ) signify the time coefficients, σm

n represent the singular values and φm
n are

the spatial modes corresponding to the nth POD mode.
The product Cm =Dm(Dm)H produces the velocity correlation matrix, whose

eigenvalues obey Λm = (Σm)2. The eigenvalue of Cm represents the fluctuation energy,
km, contained in Fourier mode m. The eigenvalues of the correlation matrix constructed
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with vorticity components represents the associated enstrophy km
ω . The energy contribution

of the different Fourier modes and the constituent POD modes are discussed in the results
section.

3. Results

3.1. Mean velocity and Reynolds stresses
Before launching into extracting and identifying coherent structures, we first present some
of the important flow statistics for the jet geometry in this section. The measurement
domain is centred about the streamwise location z/D = 50. This is sufficiently far from the
inlet that the mean velocity profile can be expected to be self-similar. This has been verified
by Casey et al. (2013), by comparing the radial profile of the mean and r.m.s. velocities
with earlier hot-wire and stereo-PIV measurements in the literature (Wygnanski & Fiedler
1969; Matsuda & Sakakibara 2005) for the extreme Reynolds numbers − Re2K and
Re10K. In figure 3, we compare the radial profiles of the mean axial velocity, r.m.s. values
of the velocity components and the dominant Reynolds stress for Re5K with the hot-wire
measurements of Wygnanski & Fiedler (1969) (WF69) at Re = 105 and Panchapakesan &
Lumley (1993) (PL93) at Re = 1.1 × 104. Panchapakesan & Lumley (1993) used X-wire
probes mounted on a moving shuttle in their measurements. They state that the method
is more reliable in outer-region measurements as they eliminate errors associated with
stationary hot-wires in resolving flow-reversals. The overlap of the mean axial velocity
profiles at different z/D in figure 3(a) confirms that the current measurement is in the
self-similar region. There is a good agreement with the hot-wire measurements in the
mean profile, but the r.m.s. values (figure 3b−d) are lower than the hot-wire measurements
similar to the observations made by Casey et al. (2013). The decay of the centreline
velocity 〈Uzc〉 follows 1/z with a decay constant Bu = 6.01 and has a spreading rate
of S = 0.097, which matches the values reported by PL93 (Bu = 6.06 and S = 0.096).
The values of these parameters for Re2K and Re10K are (5.25, 0.077) and (5.10, 0.105),

respectively. The axial variation of the centreline velocity and the jet half-radius for Re5K
is shown in figure 22. The r.m.s. values are closer to PL93, which has a similar order
of magnitude for the Reynolds number. The current measurements also capture the off-
axis peak (at z/D = 55) of the axial fluctuation, highlighted by Panchapakesan & Lumley
(1993). This peak is attributed to the production of kinetic energy which has its maximum
around this location. The current measurement of the Reynolds stress 〈ur uz〉 matches well
with PL93 up to r/r1/2 ≈ 0.5, but falls below PL93 after that. Lower r.m.s. values and
〈ur uz〉 are primarily due to smoothing inherent in the correlation technique.

Figure 4(a) shows the normalised time-averaged mean velocity contour 〈Uz〉/〈Uzc〉 in
the r–z-plane, after averaging in the θ -direction, for different Reynolds numbers Re. The
coordinates are normalised by the nozzle diameter D. It is clear that the jet width increases
with Re. Note that the radial extents of the three cases are not the same due to the different
scanning protocols employed. The largest cylindrical measurement domain, for Re10K,
shows zero-velocity regions in the right corners which fall outside the reconstruction
region. These corners are included for completeness of the grid; their inclusion, as we
will see, does not affect the dominant POD modes.

The most contributing Reynolds stress, 〈ur uz〉 , is presented in figure 4(b). Due to the
self-similar mean profiles and our normalisation with the local centreline velocity, the
peak of 〈ur uz〉 occurs at r/D ≈ 3 in all cases, which is approximately 70 % of the jet half-
radius. The contours of 〈ur uz〉 also show a slight inclination with z which is due to an
increase in the jet width.
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Figure 3. Comparison of the present radial-profile measurements of (a) mean axial velocity 〈Uz〉, (b) r.m.s.
radial velocity ur,rms , (c) r.m.s. azimuthal velocity uθ,rms ,(d) r.m.s. axial velocity uz,rms and (e) Reynolds
stress 〈ur uz〉 for the Re5K case, with hot-wire measurements. For normalisation, the local centreline velocity
〈Uzc〉(z) is chosen as the velocity scale, and the jet half-radius r1/2 is chosen as the length scale. The symbols
in red correspond to the current measurements obtained at z/D = 45 (©), 50 (�) and 55 (�); and symbols in
blue correspond to hot-wire measurements of WF69 at z/D = 50 (�) and 60 (�). The black line represents
the least-squares spline obtained by PL93 for hot-wire measurements in the self-similar region. The hot-wire
measurements were obtained by digitising the plots in the references.
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Figure 4. Contours of the (a) normalised mean axial velocity 〈Uz〉/〈Uzc〉 and the (b) dominant Reynolds stress
〈ur uz〉/〈Uzc〉2 for ReD = 2640 (left), 5280 (middle) and 10700 (right). The mean quantities are obtained by
averaging over the azimuthal direction. Here, 〈Uzc〉(z) is the local centreline axial velocity.

(a) (b) (c)

Figure 5. Instantaneous coherent structures visualised using iso-surfaces of vorticity magnitude for (a) Re2K
with |ω̃|= 14 s−1, (b) Re5K with |ω̃|= 32 s−1 and (c) Re10K with |ω̃|= 75 s−1. The most prominent tubular
structure and the C-shaped loop are indicated by blue and red arrows, respectively.

3.2. Coherent vortical structures
The coherent structures are visualised using iso-surfaces of vorticity magnitude |ω̃|. Of the
different criteria available to visualise coherent structures such as the Δ-, Q-, λ2-criterion,
in this study, we use the vorticity magnitude to visualise vortical structures in the jet.
This choice is motivated by the superior accuracy with our measurement methodology,
compared with other higher-order quantities such as the Q-method or the λ2-criterion.
For similar reasons, we have used the vorticity-magnitude criterion to visualise coherent
structures in our previous studies on strained turbulence in contractions (Mugundhan
et al. 2020; Mugundhan & Thoroddsen 2023; Alhareth et al. 2024a,b). Instantaneous
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structures are shown in figures 2 and 5. At the lowest Reynolds number, we see long
tubular structures inclined with respect to the axial direction (figure 5a). In contrast,
shorter and finer structures emerge at higher Reynolds numbers, with prominent C-shaped
structures around the axis. For a smooth inlet with a large contraction ratio, the near-field
consists of vortex rings that arise due to Kelvin–Helmholtz instabilities in the laminar
shear layer (Crow & Champagne 1971; Liepmann & Gharib 1992). These vortex rings are
broken down into an assembly of C-shaped horseshoe vortices or long tubular structures,
as they are advected downstream. Such horseshoe-shaped structures have been observed
both in stereoscopic PIV measurements (Hori & Sakakibara 2004; Matsuda & Sakakibara
2005) and in direct numerical simulations (Suto et al. 2004; Samie et al. 2022). Samie
et al. (2022) analysed the coherent structures in the near- and intermediate-fields up to
z/D = 25 and identified horseshoe eddies, using conditional averaging based on their
relative orientation. They defined an ‘upright’ eddy when its head is positioned away
from the jet axis and its legs point upwards towards the axis. The opposite orientation,
with the head positioned closer to the axis with legs pointing downwards away from the
axis, was labelled an ‘inverted’ eddy. In our case, the inlet condition is a fully developed
turbulent pipe flow and, hence, regular azimuthal vortex rings will not form. However, our
three-dimensional measurements show that both the upright and inverted structures are
observed even further downstream up to z/D = 55.

3.3. Distribution of energy over Fourier modes
Figure 6(a) shows the distribution of Λm for the first 51 azimuthal Fourier modes for the
velocity and vorticity fields. We use the first 51 modes, since the value of Λm falls below
∼2 % to 4 % of its initial value at m = 50, for the highest Re case. The decay of Λm is
even faster for the lower Re cases. These plots are obtained after removing the mean of the
different independent realisations, for each Reynolds number Re. We have ten independent
runs each for Re2K and Re5K, and 15 runs for the largest Re10K. The spectra of Λm =
diag[λm

n ]; n = [1, N ] for the second mode m = 1, for all runs, are shown in figure 21.
The overlap of the curves confirms the convergence and repeatability of the experiments.
Figure 6(a) shows an increase in the value of Λm with an increase in the Reynolds number
Re, as one would expect, due to stronger fluctuations at higher Re. The corresponding
cumulative distribution, normalised by the sum over the 51 modes

∑50
m=0 Λm is shown in

figure 6(b). For velocity as the processed state vector, this ratio reaches a threshold fraction
of 0.7 at m = 4, 4 and 5 for Re2K, Re5K and Re10K, respectively. The corresponding
values of m for the same threshold for vorticity are m = 8, 8 and 11. We conclude
that to express the vorticity field in a modal decomposition, it requires a larger number
of azimuthal modes, when compared with the velocity field. Figure 6(c) shows the
contribution of the first eleven m-modes to the total fluctuating energy and enstrophy
of the flow. The first mode, m = 1, dominates the other modes, followed by m = 0 and
m = 2 modes, and this behaviour is consistent across all included Reynolds numbers.
The contributions of the higher modes decrease approximately as 1/m. The percentage
contributions of the different values of m for the intermediate case Re5K are summarised
in table 3. Mullyadzhanov et al. (2018) report the contributions of the first ten Fourier
modes in the far-field for a fully turbulent jet at Re = 5940, which is of the same order as
our intermediate Re case. Their percentage contributions (km( %)) of the first ten modes
are 11.5 %, 16.7 %, 13.1 %, 9.2 %, 6.7 %, 4.8 %, 3.7 %, 2.9 %, 2.4 %, 1.9 % and 1.6 %,

respectively. Our observed contributions of the first four modes are 65 %, 35 %, 25 % and
16 % for Re5K, which are significantly higher than those reported by Mullyadzhanov et al.
(2018). However, the contributions of the higher modes are similar to the earlier study.
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Figure 6. (a) Distribution of Λm , the eigenvalues of the correlation matrix, for the velocity fluctuations (left)
and vorticity fluctuations (right), over the first 51 azimuthal Fourier modes, from m = 0 to m = 50. All three
components of velocity (or vorticity) are included. The eigenvalues represent the fluctuation energy km (for
velocity) and enstrophy km

ω (for vorticity). (b) Cumulative distribution of Λm shown in panel (a) taking the sum
of the first 51 modes. (c) Percentage contribution of the different Fourier modes to the total energy (left) and
total enstrophy (right). The black line in panel (c) is given by the equation 25/m.

Figure 7 shows the relative contribution of the dominant five POD modes for each
Fourier mode, for all three Reynolds numbers, for both velocity and vorticity. The
contributions of the m modes for velocity decline faster compared with those based on
vorticity, as displayed in figure 6. The first two POD modes contribute to 5 % to 10 % of
the total fluctuation energy, with the most dominant m = 1 mode, as expected. However,
they only contribute to 0.7 % to 1.5 % of the total enstrophy. We summarise the number
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Mode m = 0 1 2 3 4 5 6 7 8 9 10

km(%) 19.1 22.5 16.3 10.7 7.1 5.1 3.9 3.0 2.4 1.9 1.5
km
ω (%) 11.5 12.0 10.7 9.2 7.8 6.7 5.8 5.1 4.4 3.8 3.3

Table 3. Contribution of the first eleven azimuthal m modes to the total fluctuation energy km( %) and
enstrophy km

ω (%) for the intermediate Reynolds number Re.
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Figure 7. Contribution of the first five POD modes, for each azimuthal mode m, to the fluctuation energy km

(left) and enstrophy km
ω (right) for cases (a) Re2K, (b) Re5K and (c) Re10K.
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Case Re2K Re5K Re10K Re2K Re5K Re10K

Mode m = 0 m = 1
Velocity 19 13 25 14 9 16
Vorticity 57 40 74 54 37 70

Mode m = 2 m = 3
Velocity 17 10 18 20 13 24
Vorticity 53 36 69 53 37 70

Table 4. Number of POD modes which contribute to 70 % of the energy or enstrophy in each Fourier mode.

of POD modes needed to contribute 70 % of the total energy in table 4. The minimum
number of POD modes for a particular azimuthal mode m is 13 (for velocity fields) and
40 (for vorticity fields) for the intermediate case Re5K, which has the largest number of
snapshots in time (see table 2). With a longer time series, there is a higher likelihood of
capturing the dominant structures. Such structures could possibly be missed in the other
two Re cases that have fewer experimental snapshots.

3.4. Shapes of the POD modes
In this section, we further investigate the two dominant velocity POD modes, for
the azimuthal modes m = 0, 1, 2. These modes are presented in figures 8 to 11; the
corresponding vorticity POD modes are displayed in figure 12. In either case, the modal
shapes are shown after averaging over the many experimental runs for each Re selection.
The POD of velocity fields for m = 1 and n = 1 for the Re10K experimental realisations,
i.e. for the fifteen independent runs C1 to C15, is shown in figure 8(a). The spatial modes
from all experimental runs show a helical structure around the axis, but are different in
their azimuthal phase. This difference in phase could be due to a difference in starting
phase between runs. As mentioned earlier, in our case, the time series length is limited
by the camera memory. Hence, for better convergence, we average over many realisations
after phase-rotating the modes with respect to a common basis. For Re10K, we choose C1
as the reference for a rotation, and the modes of other runs C2 to C15 are suitably rotated.
The rotation operation is performed by minimising the following difference:

‖ Ui − U j R ‖, (3.1)

where, Ui , U j are the full POD matrices (from (2.2)) for runs Ci and C j, respectively,
while R stands for a rotation matrix, which is obtained as

R = PQSH , (3.2)

where P, S are the factors of the triple decomposition of the matrix M = UH
2 U1. The

actual singular value, Q, in the factorisation M = PQSH , should be an identity matrix
I . To ensure orthogonality of the rotation matrix R, i.e. satisfies RRT = I , matrix Q is
replaced by a modified matrix Q, which is given by

Q=

⎡
⎢⎢⎢⎣

1 0 0 . . . . . . 0
0 1 0 . . . . . . 0

. . . . . . . . . . . . . . . 0
0 0 0 . . . 1 0
0 0 0 . . . . . . det(PQH )

⎤
⎥⎥⎥⎦ (3.3)

with det as the determinant.
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(a)
C1 C2 C3 C4 C5 C6

C9 C10 C11 C12 C13 C14 C15

C7 C8

(b)
C1 C2 C3 C4 C5 C6

C9 C10 C11 C12 C13 C14 C15
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Figure 8. (a) Actual POD modes (m = 1, n = 1) extracted using velocity fluctuations from the fifteen
independent experimental runs for the Re10K case. The POD is represented by iso-surfaces of velocity
magnitude, |U | = 0.01, coloured by the axial velocity. The colours represent the opposite directions of the
axial velocity. (b) Modes corresponding to panel (a) after rotation in modal space with respect to the base case
(C1).

The n = 1 POD modes, applying this rotation, are shown in figure 8(b). After this
rotation, the modes for all experimental runs are phase-synchronised in the azimuthal
direction and hence can be averaged. The primary and secondary POD modes, for m = 1,
averaged in the above way, are shown in figure 9, for all three Reynolds number cases.
All Re numbers show the helical structures in both modes, but there is a difference
in the helix direction. Similar helical POD structures for m = 1 have been reported by
Mullyadzhanov et al. (2018), based on the DNS of a turbulent jet issued from a fully
developed pipe with a co-flow. The POD modes have been visualised at Re = 5940 and
in the region z/D = 30 to 40, i.e. slightly upstream of our current measurement locations.
Tso & Hussain (1989) identified axisymmetric, helical and double-helical structures in the
far-field of a jet, measured by a rake of X-wires in combination with invoking Taylor’s
hypothesis. They report that, among the three classes of structures, the helical structures
were dominant, which corroborates the emergence of the same structures as primary
POD modes. Yoda et al. (1994), based on their three-dimensional (3-D) concentration
measurement of a turbulent round jet (natural, excited and buoyant at Re = 1000−4000),
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(a) (b)

Re2K Re5K

n = 1 n = 2

Re10K

–0.010 –0.008 –0.006 –0.004 –0.002 0 0.002 0.004 0.006 0.008 0.010

Re2K Re5K Re10K

Figure 9. Top and isometric views of POD modes represented by iso-surfaces of the velocity magnitude,
|U | = 0.01, coloured by the axial velocity for the most dominant azimuthal mode m = 1 and (a) n = 1 and (b)
n = 2. The geometry is not to scale. The regions with no vectors at the top and bottom edges are trimmed.

concluded that the far-field consisted of a pair of counter-rotating helices and did not
consist of expanding spiral proposed by Dimotakis et al. (1983). They corroborated the
3-D concentration structures obtained by the scanning-planar laser-induced fluorescence
(PLIF) technique, with sectional views. This conclusion is inline with the linear stability
theory which predicts the helical mode to be the most unstable mode in the far-field.
Also, the counter-rotating helical modes together can alone result in symmetric and anti-
symmetric images on two-dimensional (2-D) slices of the jet. They also proposed that
these helices could be due to the vortex reconnection of tilted-vortex rings of the near-
field. Note that for m = 1, the velocity PODs change sign across the axis. It is also
interesting to note that the instantaneous coherent structures, visualised by isosurfaces
of vorticity magnitude in our measurements, show helical patterns of structure ejections
into the measurement domain, together with their subsequent advection downstream. In
contrast, the instantaneous structures we see in our study are dominated by tubular or
C-shaped structures. It is notable that the Re2K and Re10K cases have smoother POD
structures compared with the intermediate Re5K case, which we attribute to the shorter
	t between the volumes (snapshots) with Re5K, which results in samples with a higher
temporal dependency. Cases Re2K and Re10K have a temporal snapshot spacing 	t
of approximately 9 to 12 times larger than that of Re5K. Hence, the snapshots used
to construct the data matrix D are statistically less dependent. The m = 0 mode has
no azimuthal wavelength and is therefore a structure of revolution about the axis, see
figures 10(a) and 10(b). The m = 2 mode shows streamwise helices with a weaker twist
compared with the corresponding m = 1 mode, see figure 9. The first and second modes
for m = 2, in figures 10(c) and 10(d), demonstrate that the secondary mode has smaller
structures compared with the first one.

The structure corresponding to the radial velocities ur are also helical but appear flatter,
with a smaller helix angle, compared with the absolute velocity structures, visualised in
figure 11, for m = 1. The radial velocity structures extend all the way to the axis. The radial
gap we observe is due to the interpolated cylindrical domain which has a finite radius εr at
the axis for ease of interpolation. The helix angles for the ur structures, with respect to the
horizontal, are measured to be 34◦, 27◦ and 31◦ for Re2K, Re5K and Re10K, respectively.
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(a) (b)

(c) (d )

Re2K Re5K

n = 1 n = 2

Re10K
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r

z

Figure 10. POD modes represented by iso-surfaces of the velocity magnitude, |U | = 0.01, coloured by the
axial velocity for the most dominant azimuthal mode (a,b) m = 0 and n = 1, 2, and (c,d) m = 2 and n = 1, 2.
The r–z projection of the (m = 0) modes is also included in panels (a) and (b).

The corresponding values for absolute velocity structures are larger at 46◦, 31◦ and 35◦,
respectively. Hence, by virtue of their smaller helix angles, the ur -structures complete
one full revolution about the axis in the measurement domain. The corresponding axial
distance between the positive and negative peaks of the ur -modes in the r–z-plane are
approximately 55 mm, 40 mm and 40 mm, respectively. However, for the uz-modes, they
are approximately 65 mm, 45 mm and 50 mm, respectively.
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(a) (b)
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Figure 11. POD modes represented by iso-surfaces of the radial velocity, Ur = ±0.0025, coloured by the
axial velocity for the most dominant azimuthal mode m = 1 and (a) n = 1 and (b) n = 2.
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Re2K Re5K

n = 1 n = 2

Re10K Re2K Re5K Re10Km = 0
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z

Figure 12. For caption see next page.

3.5. POD of vorticity
We continue by performing the POD analysis on the vorticity field and the m = 0, 1, 2
modes, which contribute to approximately 30 % of the total enstrophy, are presented in
figure 12. The axisymmetric m = 0 mode consists of rings of different radii around the
axis, populating the entire radial extent of the domain. The choice of the iso-surface
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–0.010 –0.008 –0.006 –0.004 –0.002 0 0.002 0.004 0.006 0.008 0.010

m =1

(e) ( f )
m = 2
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Figure 12. (cntd). POD modes represented by iso-surfaces of the azimuthal vorticity, ωθ , coloured by the same
quantity for the modes (a,b) m = 0 and n = 1, 2, (c,d) m = 1 and n = 1, 2, and (e,f ) m = 2 and n = 1, 2. The
threshold values of ωθ for Re2K, Re5K and Re10K are 0.0065, 0.0075 and 0.0055 m3/2 s−1, respectively. The
r–z-projections of the (m = 0)-modes are also included in the bottom row of panels (a) and (b). To highlight
the cylindrical axial structures in panel (d), we use lower threshold values of 0.0055, 0.0065 and 0.0045 m3/2

s−1 for Re2K, Re5K and Re10K, respectively, in this panel.

values for the three different Reynolds numbers is distinct, owing to the difference in
the m = 0 mode contribution to the enstrophy, as shown in figure 7. The higher Fourier
modes are characterised by azimuthal C-shaped structures around the axis, representative
of the horseshoe vortices reported in the far-downstream region of a turbulent jet by Suto
et al. (2004), Matsuda & Sakakibara (2005), Casey et al. (2013) and Samie et al. (2022).
Tinney et al. (2008b) showed that the m = 0 mode consisted of circular rings in the
near-field (z/D = 3) when visualised by Q-iso-surfaces (i.e. the second invariant of the
velocity gradient tensor); the authors labelled these modes as the jet column mode. Note
that they constructed these structures from three-dimensional velocity measurements in a
transverse plane while using Taylor’s hypothesis with a constant axial convection velocity,
thereby intertwining space and time coordinates without an explicit downstream evolution.
The addition of the helical m = 1 mode broke down the rings into spiralling compact
vortex tubes, which became more compact with a further addition of the m = 2 mode.
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(a) (b)

Re2K Re5K

n = 1 n = 2

Re10K Re2K Re5K Re10K

Figure 13. Cropped images of the POD modes from figure 12(c, d), to show the inner structures of ωθ close
to the axis of symmetry, for mode m = 1 and (a) n = 1 and (b) n = 2. The streamwise-oriented POD structures
are shown in a cropped cylinder with radius of 30 % to 35 % of the original radius of the full domain. For
thresholds of the iso-surfaces, refer to the caption of figure 12.

These structures become more disorganised further downstream, as expected considering
the rather large Reynolds number of Re = 106. In a previous analysis of our scanning data,
Casey et al. (2013) identified instantaneous tubular and loop structures, using vorticity
magnitude as the state vector, and tracked and characterised their evolution. Violato &
Scarano (2013) performed a POD analysis on the vorticity field obtained in the near-field
(z < 10D) of a turbulent jet using the Tomo-PIV technique. The primary POD mode
pairs of azimuthal vorticity, contributing to 11 % of the total enstrophy, describe the
travelling ring vortices and had a characteristic Strouhal number of St = 0.36. Note that
the analysis was performed using 500 independent snapshots with velocity fields obtained
by correlation with interrogation size of 0.5 mm. Recent DNS work of Samie et al. (2022),
based on conditional averaging, verified the existence of two different horseshoe structures
with different orientations – eddies with heads close to the jet axis and heads pointing
away from the jet axis. Another feature observed for the m = 1 and m = 2 vorticity modes
is a pair of axially oriented, tubular structures of opposite signs, twisting around the jet
axis. These structures are displayed more prominently in the cropped images shown in
figure 13.

The iso-surfaces of the PODs representing the axial vorticity ωz for m = 1 is shown in
figure 14. The modes are characterised by conical structures with a moderate twist about
the jet axis. These manifest themselves as inclined long streaks in the r–z-plane, with
alternate signs. The primary n = 1 POD mode consists of a larger cone twisted around
the axis, while the n = 2 structure contains at least two smaller conical components. The
structures appear smoother and more continuous for the Re2K and Re10K cases, when
compared with those for Re5K. The n = 2 mode for Re5K appears more disconnected,
which could be attributed to the smaller 	t for that data set, compared with the data for
the other Reynolds numbers.

3.6. Dynamics of the POD modes
After investigating the spatial composition of the POD modes across different modal
numbers and azimuthal wave numbers, we now turn our attention towards the evolution
of the time coefficients am

n to characterise the dynamics of the POD modes. We restrict
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Figure 14. POD modes of axial vorticity ωz for the m = 1 azimuthal Fourier mode, presented by iso-surfaces
on the top row and as r–z-projections in the bottom row. The cross-sections are coloured by the same quantity,
for the modes (a) n = 1 and (b) n = 2. The threshold values of the iso-surfaces for Re2K, Re5K and Re10K are
0.0065, 0.0075 and 0.0055 m3/2s−1, respectively.

this analysis to the best time-resolved case, Re5K, as the time step between volumes is
larger for the remaining two cases, making it more challenging to capture the characteristic
frequencies. The complex coefficients am

n (t) are decomposed in the following manner,
β(t)eiγ t , where β(t) = |am

n (t)| denotes its absolute amplitude and γ stands for its phase
in the complex plane. The variation of the magnitude of the coefficients β(t) with time,
for the first two POD modes for m = 1, is shown in figure 15(a). Figure 15(b) shows the
cumulative phase of the coefficients. The magnitude shown in figure 15(a) is given by the
radius of the loci of the coefficients in the complex plane, which is shown in figure 15(c,
d). Both the radius and the phase of these coefficients are computed with respect to their
local centre of curvature, which can move about the coordinate centre. The cyclic motion
of the coefficients in this plane indicates the helical motion of the corresponding mode
(Davoust, Jacquin & Leclaire 2012; Mullyadzhanov et al. 2018). Davoust et al. (2012)
analysed the first two Fourier modes of velocity in the near-field of a turbulent air jet
from a wind tunnel. They used a high-speed stereo-PIV technique to measure the velocity
field in a cross-sectional plane at z/D = 2 and argued that a circular pattern of these
coefficients in the complex plane is representative of a global rotation or helical motion
of the jet. The helical motion would also give rise to linear variations in the phase of
these coefficients, which we observe in our analysis as well, see figure 15(b). Both modes
exhibit a circular pattern with varying centres of curvature and, hence, we compute the
phase of these complex numbers with respect to its local centre of curvature. The slope of
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Figure 15. (a) Magnitude of the time coefficients am
n for the first two POD modes for m = 1, and (b) the

cumulative phase of these coefficients’ variation with time. (c,d) Time coefficients represented on the real-
imaginary planes. The colour of the symbols in panels (c,d) is used to indicate the tracking direction with time.
The time series starts with red and ends with blue. The thin black line is the sixth-order polynomial parametric
fit to the coefficients.

this phase finally furnishes the frequency f = dγ /dt associated with the precession of the
modes about the jet axis. We see that the cumulative phase for the first two modes, which
are mirror images of each other, have opposite slopes, implying an opposite direction
of rotation – a feature that is consistently observed in all ten experimental realisations.
Similar variations in the time-coefficient phase have been reported in turbulent channel
flow (Sirovich, Ball & Keefe 1990), pipe flow (Duggleby et al. 2007) and jet flow with a
co-flow component (Mullyadzhanov et al. 2017, 2018).

We estimate the frequency by fitting a line to this variation in phase, from graphs shown
in figure 15(b). Once normalised by the nozzle diameter D and the jet inlet velocity Vj ,

we recover a Strouhal number (non-dimensionalised frequency) defined as St = f D/Vj .
The frequency of the first five POD modes averaged over all ten runs, for m = 0 to m = 9,

for velocity and vorticity fields, is shown in figures 16(a) and 16(b), respectively. For the
velocity field, the higher POD modes show a slightly higher frequency than the lower
Fourier modes. However, this difference tends to decrease and the frequency of n = 2, 3
modes tends to approach a constant at St ≈ 0.06 for higher Fourier modes. Amongst the
considered POD modes, the large-scale and first dominant POD mode, n = 1, precesses
with lowest frequency and shows a gain in its frequency with an increase in the azimuthal
wave number m. Mullyadzhanov et al. (2018) report St to be the same for modes m = 1
and n = 1, 2, which is approximately St = 0.05. However, in our case, the corresponding
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Figure 16. Precession frequency f of the (a) velocity POD modes, (b) vorticity POD modes for the first ten
azimuthal Fourier modes. The frequency f is calculated as the slope of the cumulative phase. The cumulative
phase for one case (Re5K) is shown in figure 15(b).

values are 0.05 and 0.06, respectively. The vorticity field shows a range of frequencies,
with an average value of approximately St = 0.07.

3.7. Flow field reconstruction using POD modes
As a final step in our analysis, we attempt to reconstruct the flow field by summing over
the most dominant modal components. This exercise is intended to reduce the original
data set to the most energetic and coherent dynamic process. In particular, we perform the
reconstruction of the fluctuating velocity for Fourier mode m = 1 using (2.3) and varying
the number of POD modes. The reconstructed field based on adding two modes n = 1, 2
(indicated as 1 + 2) contains approximately 40 % of the kinetic energy and using three
modes n = 1, 2, 3 (indicated as 1 + 2 + 3) captures approximately 50 % of the kinetic
energy. They are displayed in figure 17 for one of the realisations, for a few selected
time steps. A video of the complete time evolution, for one experimental run, is included
in the Supplementary movie 1, and reader is urged to consult the animation. We see
that the reconstruction consists of the characteristic helical POD structures, shown in
figure 9, for both n = (1 + 2) and n = (1 + 2 + 3). The coherent structures rotate about
the jet axis, as discussed in the previous section, and slowly advect in the mean flow
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(a) Time

(b)

Figure 17. Time evolution of a partial reconstruction of the fluctuating velocity vector field for m = 1 at
Re5K. The reconstruction used only two or three POD modes, (a) modes n = (1 + 2) and (b) n = (1 + 2 + 3).
Both panels (a) and (b) correspond to the same time sequence, and the images are separated by 10	t. The
reconstructed field is visualised by iso-surfaces of velocity magnitude and the two colours represent the signs
of the axial velocity. The time-evolution videos, using the sum of one up to four POD modes, are included in
the Supplementary movies 1 and 2, for Re5K and Re10K respectively.

direction. The reconstruction with three POD modes, shown in figure 17(b), are essentially
indistinguishable from the reconstruction with two POD modes. Nonetheless, higher-order
POD modes include more of the finer-scale details of these structures; the key features,
however, are well captured by the first two or three POD modes.

We next show instantaneous snapshots of the reconstructed fields in figure 18,
for Fourier modes m = 0 and m = 1. The reconstruction considers ten POD modes
contributing to 70 % of the kinetic energy for each Fourier mode. The ωθ structures
constitute rings for the m = 0 mode and C-shaped structures in the case of m = 1, with
both positive (green) and negative (indigo) azimuthal orientations. The axial velocity (uz)
structures (in red and blue) are characteristically more voluminous and appear on the inner
or outer side of the ωθ -rings, depending on their direction. We identify the prominent
uz-structures in figure 18. In figure 18(a), we first consider the m = 0 mode which shows
the spatial relation between the axial velocity uz and the underlying azimuthal vorticity ωθ .

Figure 18(b) only shows the vortex rings for the same case. The green coloured positive ωθ -
ring induces a positive axial velocity uz (in blue) on its inner side and a negative uz (in red)
on its outer side; in effect, this vorticity transports the high-speed fluid to the outer region
away from the axis. Conversely, the negative ωθ -ring induces a negative uz (in blue) on its
inner side and positive velocity uz (in red) on its outer side. This is evident for the negative
uz-structure S1, which appears on the inner side of the negative ωθ -rings V1 and V3, and
on the outer side of the positive ωθ -rings V2 and V4. However, a positive uz structure
S3 appears between the positive ring V6 and the negative ring V7. Similar positioning of
negative uz-structures S2, S6 and S7, and positive uz-structures S4 and S5 with respect to
vorticity rings can be seen in both modes. Reconstruction, considering POD modes that
contribute 60 % and 80 % of total energy/enstrophy, shows very similar correspondence
between the velocity and vorticity structures. The instantaneous reconstructed images at
two different instants for 60 %−80 % are included in figure 24. The large-scale features
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Figure 18. Instantaneous reconstructed images of uz superimposed on ωθ for (a,b) m = 0 in and (c) m = 1. The
reconstruction is shown for one instant of Re5K, and is accomplished using ten POD modes for the velocity
field and 37 modes for the vorticity field, which contribute 70 % of the energy and enstrophy, respectively. The
prominent structures corresponding to uz are labelled (S1 to S7) and their direction is indicated in the brackets:
positive for upward motion (in blue) versus negative for downward motion (in red). The reconstruction for
m = 0 is shown in 75 % of the full domain for more internal details near the axis in panels (a,b). The same
reconstruction is shown in panel (b) with only the ωθ rings. Vortex rings associated with structures S1 to S4
in panel (a) are labelled V1 to V4, and their directions are marked with arrows. Videos of the time evolution
of the reconstruction, over the full recording cycle of one experimental run, are included in the Supplementary
movie 3.

for all three cases look very similar, with the case having 80 % energy capturing more
features compared with the remaining two.

The continuous induction of uz-structures by the azimuthal rings occurs throughout
the run in the time evolution videos (see Supplementary movies 3–4). The videos show
that the large-scale uz-structures get propagated through the entire length of the domain
approximately four times during the full time-record.

To investigate the phase relation between the velocity and vorticity modes, we compare
the magnitude and phase of the time coefficients for the first two velocity and vorticity
modes in figure 25, for m = 1 corresponding to the case presented in figure 18(c). The
instantaneous phase of the coefficients of u and ω match reasonably well, as seen in
figure 25(b). This match is even more prominent when we consider the cumulative
phase, as shown in figure 25(c). The higher slope in the vorticity mode indicates a
larger characteristic frequency, as reported in § 3.6. It is noteworthy that the direction
of rotation of u- and ω-modes is the same, for a given n, in this experimental run.
A similar comparison with other experimental runs showed that the matching of the rota-
tion direction of u- and ω-modes, for identical n, is less conclusive. However, the n = 1,

2-modes of u always have an opposite sense of direction. This is also true with the first
two modes of ω in nine out of ten cases.

The ‘information content’ of the data matrix D can be probed by analysing the sum of
its singular values Σiσi , also referred to as its nuclear norm. This test will help establish
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Figure 19. To characterise the degree of linear independence of the snapshots in the data matrix D, the sum
of the singular values for three different data lengths, using different fractions of the full data set D, is plotted
against the number of columns used. The columns are constructed with the velocity fluctuations for m = 1 and
Re5K. The plot shown is the average over results obtained from the ten different experimental runs.

if the size of the data matrix, i.e. the number of snapshots, is sufficient to fully capture the
dynamics of the flow, as it is directly linked to a measure of dependence of the columns of
D. We perform the sum over singular values for different column numbers of the full data
matrix. The original matrix D has a total of 524 columns, which we compare with sums
over shorter segments of 131, 262 and 393 columns, thereby using 25 %, 50 %, 75 %
and 100 % of the time series. The resulting sums of the singular values are plotted in
figure 19. This sum Σiσi tends to a constant value with an increase in the number of
columns, with the difference between consecutive pairs reducing as 0.8, 0.44 and 0.27,

respectively. This monotonic reduction in the difference indicates diminishing returns
from including additional snapshots; in other words, sampling more data will increasingly
duplicate information that is already contained in the current data matrix. In addition,
using convergence acceleration techniques on the nuclear norms (from figure 19) reveals
that the curve asymptotes towards a value of 5.32, which confirms that the 524-snapshot
dataset used in this study contains an estimated 94.9 % of the full information content.
Note that the results shown in the figure have been obtained by averaging over the ten
different experimental runs. Thus, we can conclude that the 524 consecutive snapshots
used in this study are sufficient to characterise the POD modes of the flow.

4. Discussion and conclusions
In this investigation, we applied a Fourier-based POD modal analysis to the time-resolved
volumetric measurements of a fully turbulent jet. This analysis included the extraction
and interpretation of the dominant structures of velocity and vorticity in the far-field
of the jet, around an axial location of z/D � 50. The limited memory of the cameras
curtails the total duration of each recording, and hence, to produce converged POD
modes, we developed and applied a novel method of averaging over many realisations.
In this averaging procedure, the modes from different realisations have been phase-
aligned by an optimal rotation with respect to a common POD modal basis. This method
could be suitable beyond the scope of this paper, when analysing coherent structures
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in measurements wherein the time duration of recording is limited – such as in image-
based methods where, for CMOS cameras, we typically have to contend with a trade-off
among the number of voxels, the frame rates and the total duration of clips. It is worth
mentioning that many modal analyses are performed on data from numerical simulations
of turbulence under fixed flow conditions, where it is frequently intractable to generate a
sufficient number of truly independent realisations. In contrast, acquiring new realisations
by running additional experiments often comes at a minimal incremental expense.

Results for the first three Fourier modes m = 0, 1, 2 has been presented in this study.
The axial velocity PODs for the dominant m = 1 Fourier mode consist of helical structures
and appear in opposite-chirality pairs. This characteristic has been observed for all three
studied Reynolds numbers. The first two POD modes are similar in shape but have an
opposite sense of rotation, which corroborates previously observed findings in experiments
(Yoda et al. 1994; Gamard et al. 2004; Iqbal & Thomas 2007; Tinney et al. 2008a)
and direct numerical simulations (Mullyadzhanov et al. 2018) in the far-field. Our study
thus confirms the prevailing understanding that the helical mode dominates in the far-
field of a turbulent jet. The dominant helical shapes also associate well with the helical
ejections of coherent structures visualised by iso-surfaces of the vorticity magnitude.
The POD structures corresponding to the radial velocity are helical as well, but exhibit
a noticeably smaller helix angle. The current volumetric data enabled us, for the first time,
to explore the characteristic vorticity structures in the self-similar region. It revealed the
most dominant azimuthal vorticity structures as rings for m = 0 (the axisymmetric case)
and C-shaped structures for m = 1. The C-shaped structures were accompanied by twisted
tubular structures close to the jet axis for all three studied Reynolds numbers. Corrugations
that appear on the surface of the tubular structures are constituted from several connected
C-shaped loops around the axis. It is interesting to note that the helical twist, observed for
the velocity structures, also manifests in vorticity loops. This latter feature becomes clear
from the reconstruction of the data with many modes wherein these axial tubes break
down into mere C-loops around the jet axis. The conical axial vorticity structures exhibit
inclined streaks in the constant-θ -plane.

The phase analysis of the time coefficients associated with the first five POD modes
uncovered that the characteristic Strouhal number (St = f D/Vj ) of the velocity modes
varies in the range 0.04 � St � 0.07 for m = 1−9. Mullyadzhanov et al. (2018) reported
that the mirror modes (n = 1, 2) for m = 1 had the same characteristic frequency with
St = 0.05, based on a DNS of a jet with a co-flow. Their computation of St from a
temporal coefficient analysis agreed well with local linear stability results. We determine
the corresponding value to be approximately 0.05 for n = 1, 2 modes, but observe that the
n = 2 mode has a slightly higher characteristic frequency than the n = 1 mode. However,
the vorticity modes showed a characteristic Strouhal number of St = 0.05 � St � 0.08
for m = 1−9 and n = 1−5. Similar to the velocity structures, the primary and secondary
vorticity POD C-structures for m = 1 also exhibit an opposite direction of rotation. From
these phases plots, we can extract the rotation frequency of the POD modes, as they
advect with the mean flow. The rotation of these structures is very evident from the time
evolution of the reconstructed fields, as shown in the video included in the Supplementary
movie 4. Furthermore, the temporal evolution of the reduced-order reconstructions, using
only the dominant POD modes, uncovered the induction of axial velocity structures by
the azimuthal vorticity structures in the first and second Fourier modes. As one would
expect, the reconstructions showed that the strongest azimuthal vorticity induces sheets of
axial velocity fluctuations in the far-field. The relationship between velocity and vorticity
modes becomes evident from a comparison of the phase of the temporal coefficients
of the temporal modes. The corresponding dominant modes of velocity and vorticity
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are either perfectly in-phase or show a shift of π. In other words, corresponding POD
modes of velocity and vorticity can be observed with the same or an opposite direction of
rotation.

As the image-based Tomo-PIV technique produces a finite time-series length, it
is mandatory to assess the convergence of the modal structures in light of possibly
insufficient data. To this end, we used the sum of singular values Σiσi of the data matrix, a
measure of linear independence of the processed snapshots. The rapid convergence of this
statistic, for different time-series durations, showed that the statistics used in our modal
analysis is sufficiently converged.

Many tools introduced in this present analysis, such as the averaging across various
experimental realisations by phase-synchronisation and the objective assessment of the
information content in the gathered data, together with a modal decomposition of the flow
field data, carry beyond our application and are valuable procedures for gaining insight
into the essential and intrinsic physical mechanisms of turbulent flows.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2025.10786.

Funding. This study was supported by King Abdullah University of Science and Technology (KAUST) under
BAS/1/1352-01-01.
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Appendix A. Photograph of experimental set-up
Figure 20 displays the experimental set-up with the camera arrangement.

Figure 20. Photograph of the experimental set-up with the camera arrangement. The calibration plate is moved
in the measurement region inside the octagonal tank using a motorised linear traverse. The four high-speed
video cameras are focused on the measurement region with lenses mounted on Scheimpflug attachments. Two
water-filled prisms, visible on the right-hand side of the tank, are implemented to minimise optical distortions.
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Appendix B. Snapshot data matrix
Here, we show the snapshot data matrix with the fluctuating velocity field f in Fourier
space. The three components are represented by the different colours. The variables of
the cylindrical coordinates fall within the intervals r = [r1, rmx ], where r1 is positive and
nearly zero, and z = [z1, zmx ]. The contribution from each point is weighed by the square
root of its discrete control volume 	Vj = r j	r	z.

Dm(r, z, t)

=

⎡
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Appendix C. Distribution of λn for different cases
Figure 21 depicts the distributions of λ for velocity and vorticity fields for azimuthal
wavenumber m = 1 for the three different Reynolds number cases.
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Figure 21. Distribution of λ for (a,c,e) velocity and (b,d,f ) vorticity fields for m = 1 with different realisations
for (a,b) Re2K, (c,d) Re5K and (e,f ) Re10K. Here, C1–C15 refers to independent experimental realisations.
There are ten runs each for cases Re2K and Re5K, and 15 runs for the case Re10K.
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Appendix D. Decay constant and spreading rate
Figure 22 shows the axial dependence of the ratio Vj/〈Uzc〉 as well as the jet half-radius
for the Re5K case.
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Figure 22. (a) Axial variation of the ratio, Vj /〈Uzc〉 and (b) jet half-radius for Re5K. The red circles represent
the current data and the black line is the linear fit. The slope of the line in panel (a) is the decay constant Bu ;
and the slope of the line in panel (b) gives the spreading rate S = dr1/2/dz.

Appendix E. Axial variation of Kolmogorov scale
Figure 23 illustrates the variation of the Kolmogorov scale along the jet axis.
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Figure 23. Axial variation of the Kolmogorov scale along the jet axis. Here, Re10KZ corresponds to
experiments performed at 2.25× magnification with Re = 10 700.
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Appendix F. Reconstruction with different number of modes
Figure 24 presents visualisations of instantaneous reconstructed flow fields for the axial
velocity and axial vorticity components. An azimuthal wavenumber of m = 1 for the Re5K
case has been chosen.

(a)

(b)

Figure 24. Instantaneous reconstructed images of uz superimposed on ωz for m = 1 for Re5K with different
number of modes contributing to 60 % (left), 70 % (middle) and 80 % (right) of the energy and enstrophy.
Panels (a) and (b) correspond to two different time instants in the time evolution. Refer to figure 18(c) for the
contour legend.
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Appendix G. Phase of velocity and vorticity modes
Figure 25 compares the time coefficients of the first and second POD modes of velocity
and vorticity.
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Figure 25. Comparison of the (a) magnitude |am
n |, (b) phase θ(am

n ) and (c) cumulative phase of the time
coefficient am

n (t) corresponding to n = 1 and n = 2 modes of velocity and vorticity for m = 1 and Re5K. Modes
of velocity and vorticity are represented by circles (in black and red) and triangles (in magenta and blue),
respectively. The plot corresponds to the experimental run, whose reconstruction is shown in figure 18(c).
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HODŽIĆ, A., OLESEN, P.J. & VELTE, C. 2024 On the discrepancies between POD and fourier modes on
aperiodic domains. J. Engng Maths 145, 10.

HORI, T. & SAKAKIBARA, J. 2004 High-speed scanning stereoscopic PIV for 3D vorticity measurement in
liquids. Meas. Sci. Tech. 15 (6), 1067–1078.

HUSSEIN, H.J. & GEORGE, W.K. 1990 Locally axisymmetric turbulence. Turbulence Research Laboratory,
University at Buffalo, SUNY, Tech. Rep. 122.

IANIRO, A., LYNCH, K.P., VIOLATO, D., CARDONE, G. & SCARANO, F. 2018 Three-dimensional
organization and dynamics of vortices in multichannel swirling jets. J. Fluid Mech. 843, 180–210.

IQBAL, M.O. & THOMAS, F.O. 2007 Coherent structure in a turbulent jet via a vector implementation of the
proper orthogonal decomposition. J. Fluid Mech. 571, 281–326.

JORDAN, P. & COLONIUS, T. 2013 Wave packets and turbulent jet noise. Annu. Rev. Fluid Mech. 45 (2013),
173–195.

JUNG, D., GAMARD, S. & GEORGE, W.K. 2004 Downstream evolution of the most energetic modes in a
turbulent axisymmetric jet at high reynolds number. Part 1. The near-field region. J. of Fluid Mech. 514,
173–204.

LIEPMANN, D. & GHARIB, M. 1992 The role of streamwise vorticity in the near-field entrainment of round
jets. J. Fluid Mech. 245, 643–668.

LUMLEY, J.L. 1967 The structure of inhomogeneous turbulent flows. in proc. intl colloq. on fine scale structure
of the atmosphere and its influence on radio waves (ed. A.M. Yaglam & V.I. Tatarsky). Doklady Akademii
Nauk SSSR, Moscow Nauka, 166–178.

LUMLEY, J.L. 1970 Stochastic Tools in Turbulence. Academic Press.
MARUSIC, I. 2001 On the role of large-scale structures in wall turbulence. Phys. Fluids 13 (3), 735–743.

1023 A12-39

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
78

6 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10786


V. Mugundhan, T. Casey, J. Sakakibara, P.J. Schmid and S.T. Thoroddsen

MATSUDA, T. & SAKAKIBARA, J. 2005 On the vortical structure in a round jet. Phys. Fluids 17 (2), 025106.
MCKEON, B.J. & SHARMA, A.S. 2010 A critical-layer framework for turbulent pipe flow. J. Fluid Mech. 658,

336–382.
MCNUTT, M.K., CAMILLI, R., CRONE, T.J., GUTHRIE, G.D., HSIEH, P.A., RYERSON, T.B., SAVAS,

O. & SHAFFER, F. 2012 Review of flow rate estimates of the Deepwater Horizon oil spill. PNAS 109
(50), 20260–20267.

MUGUNDHAN, V., PUGAZENTHI, R.S., SPEIRS, N.B., SAMTANEY, R. & THORODDSEN, S.T. 2020 The
alignment of vortical structures in turbulent flow through a contraction. J. Fluid Mech. 884, A5.

MUGUNDHAN, V. & THORODDSEN, S.T. 2023 Circulation in turbulent flow through a contraction. J. Turbul.
24 (11-12), 577–612.
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