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ABSTRACT. Observational constraints on the galactic potential and modelling 
aspects are reviewed. The following conclusions come out. The mass distribution 
generating the galactic gravitational potential should include a bulge to account 
for the innermost features of the rotation curve, an extensive massive corona re-
sponsible for a flat rotation at large radius, and a disc able to produce a rotation 
curve as given by Rohlfs and Kreitschmann (1988) and a vertical force law Kz as 
from Bienaymé et al. (1987). We still know very little about the potential more 
than 1500 pc above the galactic plane. 

1. WHAT ARE POTENTIALS GOOD FOR, HOW CAN WE GET THEM 

This talk is not meant to address in great detail the complex mathematical prob-
lem of modelling the galactic potential. I would like to focus on more practical 
questions: How much do we actually know about the galactic potential? What are 
the most stringent observational constraints so far available? Within which limits 
is the galactic potential bound? 

Gravitational potentials are of practical importance in two respects. First, they 
follow the trend of the total mass distribution, given by the Poisson equation 

ν 2 Φ = 4πθρ. (1) 

Second, they govern the motions of particles and gas on large scales. The relevant 
equation is then the Boltzmann equation, which we write here in its collisionless 
form 

df ΘΦ df 

where / ( u x , x , . . . ) is the phase space distribution of the particles. 
One possible approach would be to observe the mass distribution />, then to 

integrate (1) to get the force law V<£ and then study the behaviour in this force 
field of any specific population, for instance the interstellar matter away from 

313 

H. Bloemen (ed.), The Interstellar Disk-Halo Connection in Galaxies, 313-321. 
© 1991 IAU. Printed in the Netherlands. 

https://doi.org/10.1017/S0074180900089245 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900089245


314 

the galactic plane, which is the subject of this symposium. Unfortunately ρ is 
usually not observable since some of the mass happens to be dark. So investigators 
would rather search for tracer populations which have a distribution function in 
the phase space / that can be observed in situations simple enough to recover V<£ 
through equation (2). Then equation (1) would provide an estimate of the total 
dynamical mass. One major difficulty in this process follows from equation (2). 
The Boltzmann equation sets a local dependence between the components of the 
force and the derivatives of the tracer distribution function with respect to space 
and velocity. This means that wherever the tracer sample is too small or too noisy 
to estimate the derivatives of the phase space distribution, we get no information 
about the force field at this place, neither do we get any information about the 
local density from (1). 

The general trend of ideas initiated by J. Oort (1932) has been to collect pieces 
of evidence that might help choosing a realistic mathematical formula describing 
either / or Φ with a small number of free parameters, then to use tracer samples 
to constrain the free parameters. 

2. ROTATION CURVES AND OVERALL MASS DISTRIBUTION 

The first piece of evidence is provided by the galactic rotation. There is a number 
of indications that in our galaxy, as well as in others of similar type, the bulk of the 
mass is roughly axisymmetric. Then, whatever tracer which follows the circular 
velocity provides one direct evidence for the radial force law through 

V c

2 = Rd$/dR. (3) 

In the spherical approximation, the total mass within radius R follows directly 
from 

M(R) = G^RV^R). (4) 

Even in this oversimplified approximation, what we get is just the total mass 
inside a sphere, with very little information about the distribution inside. 

In order to determine what happens at distance iî, one should face equation (5), 
which again requires the estimation of a local derivative, dV/dR: 

dM/dR = (AKG)-1V2IR*(1 + 2(R/V)dV/dR). (5) 

Looking into the details of rotation velocity data (for instance in Rohlfs et al., 
1986), it is clear that the large scale features of the rotation curve are reason-
ably well constrained, but existing data are far from tracing accurately velocity 
gradients at any radius. Therefore, most investigations in this field start with con-
structing mass models. An extensive review of this topic can be found in Binney 
and Tremaine (1988). 

There are two separate questions involved in this dynamical modelling: one 
is the mathematical aspect, which we will adress briefly in the chapter dealing 
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with Stäckel potentials, the other is the link between model parameter estimation 
and the constraints given by observations. Regarding the second question, recent 
models, such as the ones by Rohlfs and Kreitschmann (1988) or Haud and Einasto 
(1989), do improve the situation because they are based on improved knowledge 
of the rotation curve and improved rotation parameters, but there is no guarantee 
for the validity of the mathematical representation for other purposes than fitting 
the rotation curve. A striking illustration of this fact has been given by Bahcall, 
Soneira and Schmidt (1982), who show that a simplified analysis, based on single 
spherical component models, may overestimate the dynamical mass by a factor 2.6 
within 10 kpc and still 1.2 within 20 kpc, irrespective of the quality of the fit of 
the rotation curve. 

The link between model parameters and observational constraints has been in-
vestigated in great detail by Caldwell and Ostriker (1981). These authors include 
as observational constraints not only the rotation curve and the local rotation gra-
dient, as defined by the Oort's constants A and B, but also the surface density of 
our galaxy at RQ. They also introduce remote constraints, such as the velocity 
distribution of distant globular clusters which requires an extended halo of very 
low luminosity matter. 

In Bienaymé et al. (1987), we include both the rotation curve constraints and 
others derived from the vertical distribution of disc stars in a single iterative solu-
tion. Details of this solution are discussed in chapter 3. 

From this very raw and partial survey of the rotation constraints I conclude that 

a) remote constraints require an extended corona. 
b) the innermost parts of the rotation curve require a massive central bulge. 
c) the mass between bulge and corona should be distributed such that it produces 

a flat rotation curve at about 200 km s - 1 , from 5 kpc outwards. 
d) more details about how the mass involved in producing this rotation curve splits 

into different components should be derived from studies of the vertical structure 
of the galaxy. 

e) a drastic improvement of the determination of the Oort's constant would be very 
important. 

3. THE VERTICAL STRUCTURE 

Here, again, a quick look at formulae that are valid in a simplified situation does 
illustrate the main problems. As long as the mass distribution can be represented 
by a series of infinite parallel layers, the potential can be separated in radial and 
vertical components 

Φ = ΦΚ + ΦΖ. (6) 

This is a good approximation at moderate distances from the galactic plane in the 
neighbourhood of the sun. Moderate means ζ <C RQ, which we will consider as 
satisfied below 1 kpc. The collisionless Boltzmann equation (2) can then be written 
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separately for the ζ component of the phase space distribution (the index i refers 
to the chosen tracer population) 

vz - dfi(vz,z)/dz + ΘΦζ/θζ . dfi(vz, z)/dvz = 0. (7) 

This means that observing the phase space distribution fi of a tracer population 
in the direction of the galactic poles will give sufficient information on the vertical 
force law. 

In case isothermal tracers can be identified (iosthermal means in this case 
da{vz/dz = 0, where σινζ is the rms velocity), then there is a straightforward 
solution of equation (7) for the vertical component of the force law, known as Kz 

Kz = ΟΦζ/θζ = -alJpidpi/dz. (8) 

The phase space distribution is specified by the velocity dispersion σ\νζ and the 
trend of the volume density pi(z). 

Assuming that we do have a good (presumably spectral) criterion to identify the 
members of such an isothermal population, observations of the nearby members will 
give the velocity dispersion and the luminosity function. A spectral survey together 
with photometric observations towards the polar directions will give the apparent 
magnitude distribution a,(m). The observational effort required to produce the 
necessary spectral survey is so heavy that the work of Upgren (1962) has been 
the basis of most investigations over more than twenty years. From a,(ro) and 
the luminosity function, the inversion of an integral equation will lead to Pi(z). 
Here, again, the resulting Kz is just as reliable as the density derivative is. An 
important by-product of the Kz estimate is the dynamical estimate of the local 
volume density p 0 , which follows from the Poisson equation in its simplified form: 

dKz/dz = AnGpo. (9) 

Clearly, p0, which depends on the local derivative of Kz, is even more sensitive 
to the scarcity of most density tracers near the galactic plane. 

The different aspects of this quest have been reviewed in a colloquium held in 
Danbury one year ago (Davis Philip and Lu, 1989). A sample of the many Kz 

curves obtained over nearly fifty years is printed on the cover of the colloquium 
proceedings. I do not like at all this picture, which conveys the impression that 
any new result in this field is definitely condemned to add to the general confusion. 
The reason for this confusion is that very little effort has been made to put mean-
ingful error bars on the results. Most investigations based on the direct numerical 
estimation of the tracer density from star counts produce Kz curves that steeply 
rise in the first 100 pc and then abruptly fall beyond. A closer look at the tracer 
sample shows that the density law responsible for the steep rise is derived from one 
or two dozen stars, which means that there is indeed no information on the slope 
at low z. This is well illustrated by the negative slopes of the Kz curves beyond 
100 pc, which are physically impossible (they would imply layers of negative mass). 
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A synthetic approach that imposes the density laws of the tracers to be realistic 
(Oort 1932, Oort 1960, Hill 1960) does avoid this difficulty, although it should not 
be forgotten that imposing realistic mathematical shapes does not create informa-
tion where there is no data to constrain them. At larger distances, the difficulties 
are to safely identify complete samples of tracer population members, and also to 
measure radial velocities of faint stars. As a result, it is uncertain whether the den-
sity tracers at large ζ belong indeed to the isothermal component they are supposed 
to belong to. In addition, halo stars sometimes are not recognized. Beyond 1.5 
kpc, the plane parallel approximation is dramatically wrong. Also, both synthetic 
and direct numerical inversions are sensitive to errors in the luminosity function 
(absolute magnitude calibration). Three recent papers have substantially improved 
the situation. 

3.1 Bahcall (1984) 

used a mass model including a double exponential disc, a de Vaucouleurs spheroid, 
and a corona. He tentatively introduced different hypothetical unseen mass discs 
to reconcile the dynamical mass required to fit the tracer distributions with the 
observed mass. 

His analysis was based on a self-consistent solution of the combined Poisson-
Boltzmann system for isothermal components in the presence of a spheroid. The 
tracer samples used were the Upgren's F-dwarfs and K-giants towards the North 
galactic pole (Upgren 1962). Furthermore, Bahcall rediscussed both the luminosity 
functions of the tracer stars and also the validity of the isothermal decomposition. 

The Κ2 curve resulting from Bahcall's best fit solution is presented in Figure 1. 
A major consequence of this result is that it implies an unseen mass disc as heavy 
as the visible one: the total local mass density is found to be about 0.2 solar mass 
per cubic parsec, which is about twice what we actually see, and requires ten times 
more local dark matter density than the corona imposed by the rotation curve. 
Two investigations by Crézé et al. (1989) and by Gould (1989) lead to the same 
conclusions: the very large amount of missing mass in the solar neighbourhood 
found by Bahcall is a result of the poor constraints imposed by the scarce tracer 
data at low z. In other words, a model with no unseen mass disc would have fitted 
the raw data as well as the one chosen. 

3.2 Bitnaymé, Robin, and Crézé (1987) 

followed a slightly different approach. Admitting that it is not easy to identify 
members of a predefined isothermal component of the galaxy, they avoided the 
difficulty by using a complete decomposition of all not-too-young disc stars in 
coeval isothermal components. 

The basic mass model is not very different from Bahcall's, only the stellar disc 
is made of a series of Einasto ellipsoids, each associated with an age range. Then 
a scenario of galaxy evolution (including star formation, stellar evolution and pro-
gressive heating of the disc) is used to predict the absolute magnitude and colour 
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Figure 1. The galactic force law perpendicular to the galactic plane. 

distribution in each coeval population (Robin and Crézé 1986). Then the whole 
disk population can be split into a series of isothermal components, each compo-
nent being associated to an age. The reasonably well known age/velocity dispersion 
relation in the solar neighbourhood (Mayor 1974) is used to assign each component 
an isothermal velocity distribution. The dynamical closure ties the characteristic 
scales of the density ellipsoids to the velocity dispersions through the potential. 

This approach is based on 
- the idea that stars born at the same epoch should have experienced the same 

dynamical history 
- the observation that in the solar neighbourhood, whenever a good age criterion 

enables selection of a good coeval sample, the velocity distribution turns out to 
be gaussian. 

The main consequence of this approach is that it makes general star counts a 
tracer of the potential, because in this global modelling we do not need to know 
which among the observed stars belong to a certain component. Only the overall 
magnitude distribution of the model predictions should fit the observed one. Also, 
the modelling being three-dimensional, samples at intermediate galactic latitudes 
can be used to set additional constraints. The samples are far larger than the 
usual tracer samples and the statistical errors are negligable. Systematic errors in 
the luminosity function for stars taken from the whole HR diagram or errors in 
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assigning velocity dispersions to subpopulations, can hardly be suspected to affect 
the resulting Kz. No selection error can be made in the observation of the tracers 
(as long as the disc dominates). 

The resulting Kz is given in Figure 1. It requires much less mass than the Kz 

distributions derived by Bahcall and by Oort. Near the galactic plane, the local 
volume density is 0.1 ±0.01 solar mass per cubic parsec, which is in good agreement 
with the observed mass. 

This result is not very well established beyond say 1500 pc, because the dy-
namical modelling is not fully three-dimensional, even though the mass model is. 
Furthermore, beyond this distance from the midplane the contribution of non-disc 
stars becomes important and the prediction of this contribution in the model is not 
very well constrained. The result has been questioned, mainly because it involves 
a lot of modelling. 

3.3 Kuijken and Gilmore (1989) 

produced a new survey of K-dwarfs towards the south galactic cap. New photo-
metric and radial velocity data have been obtained for several hundreds of stars 
over an extended range in z. Their approach involves nearly no modelling hy-
pothesis, although substantial progress has been made in the theoretical analysis. 
They adopted a simple parameterization of the potential (instead of modelling the 
densities). Then they directly derived the velocity distribution of the tracer stars 
from their space distribution in each hypothetical potential according to equation 
(7). Hence they avoided the problem of isothermal decomposition. The likelihood 
of the observed velocity distribution for a certain model is used to choose the best 
potential. 

The resulting Kz is presented in Figure 1. It is not significantly different from 
the distribution obtained by Bienaymé et al. The KG sample is again too scarce 
at low ζ to provide a good constraint on the local volume density. Above 1500 pc, 
both approaches suffer from not being fully three-dimensional. The local surface 
densities obtained are quite similar and both results do not require any hidden 
mass in the solar neighbourhood. 

Hence, two independent results, obtained by Bienaymé et al. (1987) and Kuijken 
and Gilmore (1989), based on different data and different theoretical approaches, 
are in such a good agreement that one can hardly escape the conclusion that 
substantial progress has been made in the knowledge of the vertical component of 
the galactic potential, at least below 1500 pc. 

4. STACKEL POTENTIALS 

The final step to fully understand the galactic potential requires full three-
dimensional modelling that is valid at any z. The solution may be found in the 
Stäckel potentials. One important property of these potentials is that they are 
separable in spheroidal coordinates, which means that one-dimensional solutions 
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of the Boltzmann equation can be worked out without any loss of generality for 
spheroidal systems. They are already being extensively used in the study of tri-
axial ellipticals. Their axisymmetric oblate version, which would be suitable for 
discs, has been studied by Eddington (1915), Kuzmin (1953), Hori (1962), Van de 
Hülst (1962), Dejonghe and de Zeeuw (1988). They have been shown to fit (at 
least locally) any general potential with good precision, and to provide integrals 
of motion (de Zeeuw and Lynden Bell 1985). They are suitable to address the Kz 

problem (Statler 1989), because they release the limitations imposed by the plane-
parallel approximation and they give a good formalism to analyse distributions in 
the phase space. 

There are, however, two limitations which make the final solution still steps 
ahead. An important constraint for choosing the appropriate potential out of the 
extensive Stäckel family is still missing. We should know what the velocity ellipsoid 
looks like at high z. Another limitation comes from the unfriendly mathematics 
involved. 
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