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ABSTRACT. The methods to estimate the integration errors, including the 

effects of truncation, rounding off, and instability of the solutions, 

are discussed. Polynomial error accumulation depends upon numerical 

method, stepsize, orbital period and also eccentricity; it is also 

machine dependent. Comets correspond to the most difficult case of 

exponentially diverging orbits; however they can be very close to reso

nant ordered regions. 

Numerical integration is an essential tool in the study of cometary 

orbits; however the results of the integration are not always reliable. 

Integration error is a complex phenomenon; it is not a purely numerical 

effect, but the result of a complex interaction between the approxima

tions introduced in the computation and the physical instability of the 

real orbit. 

In this paper we review the possible causes of integration error, 

and try to give explicit estimates of their size, both for the local 

error (i.e. within one integration step) and for the accumulated error. 

For the sake of this discussion, we shall distinguish among the possible 

causes of error the truncation of the discretisation formula, the roun-

ding-off of the numbers in the computer arithmetic unit, the errors due 

to the use of implicit formulae, the physical model errors and the 

errors in the initial conditions. 

Truncation errors are conceptually the best understood; neverthe

less practically useful formulae to estimate the order-of - magnitude of 

both the local and the propagated truncation errors really applicable to 

the orbits of celestial bodies are not available in the standard lite

rature. In section 1 we try to fill this gap. 
215 

A. Carusiand G. B. Valsecchi (eds.j, Dynamics of Comets: Their Origin and Evolution, 215-226. 
© 1985 by D. Reidel Publishing Company. 

https://doi.org/10.1017/S0252921100083937 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100083937


216 A. MILANI AND A. M. NOBILI 

Rounding-off is difficult to study, because there is no way to 

understand the process underlying the accumulation of this kind of 

errors without a deep understanding of the way the arithmetic unit of 

the computer works and of the way a high level language code is transla

ted into machine code. In section 2 we review briefly some recent impro

vements in the understanding of the machine - dependent round - off 

errors. 

Implicit formulae are always used together with a control of their 

convergence, therefore the contribution to the integration error from 

their imperfect convergence is always minor and anyway well under the 

control of the programmer. Sometimes it is difficult to explain why the 

errors arising from this source are so small, as was discussed in this 

meeting by E. Everhart: we had the same experience with our implicit 

Runge-Kutta method. 

The physical model errors will be discussed elsewhere in these 

proceedings. We are left with the error in the initial conditions: 

strictly speaking it is not an error arising within the process of 

computing the orbit; however the way it accumulates as time goes by is 

relevant for our discussion of the integration errors, for the very 

simple reason that every error results in the displacement of the compu

ted orbit on a nearby orbit whose initial conditions were different. 

Thus the instability of the real, physical orbit does introduce a nume

rical instability as well, and the "numerical" error cannot accumulate 

slower that the rate of growth of the separation of two nearby orbits. 

This kind of instability is, unfortunately for us, specially relevant 

for cometary orbits, as it is discussed in section 2. 

1. THE TRUNCATION ERROR 

The local truncation error is the difference between the actual 

orbital motion between time t and time t + h and the solution of the 

discretized problem actually solved in the computational algorithm for 

the corresponding step; it is often estimated with a formula based only 

on the product hn (n is the mean motion); however every such formula is 

valid for circular orbits only. A more general formula valid for nonzero 

eccentricities is given here. 

Let us assume the integration is performed with a Stormer predictor: 
m 

j=o 

where y is the backward difference operator y f(t)=f(t)-f(t-h). Since 

formula (1) is obtained by truncation of the summation to order m, the 

local truncation error is: 
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and by the Lagrange formula: 

Vf(t)=hJf(;)(t*) , t - j h < t * < t (3) 

R =b hm*Vm*3> (t ) + .... (4) 

If the exact solution were a circular orbit with mean motion n, 
then for m even (m=2y): 

x«"*« =(-l)yn,mlx (5) 

and for m odd (m=2y+l): 

x(m^=(-l)ynm+3x (6) 

and the magnitude of the local error is: 

i^K^^ (7) 

(a the semimajor axis). However we are mainly interested in the propaga
tion of this local error; this phenomenon can be studied in different 
ways (Kinoshita, 1968; Henrici, 1962) but the most natural way for 
astronomers is to use Gauss perturbation equations: the local error (4) 
can be interpreted as the effect of a constant perturbing force F : 

F = ^h^x'" 1*') (t*) + ... (8) 

The resulting perturbations on the orbital elements will depend on the 
direction as well as the magnitude of the force F: the main effect, the 
one growing quadratically with the time, will be the perturbation in 
longitude arising from a secular perturbation in the semimajor axis. All 
the other perturbative effects will result in much smaller accumulated 
errors; the short term perturbations will produce errors of the order of 

F/nl~ bM+<(hn)
m+<a (9) 

The Gauss equation for the semimajor axis is: 

a = 2<F,x>/n a + terms of order }1 in e. (10) 

For m even (m=2y) we will have for a circular orbit: 
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a ( t ) = 2 b w ^ ( - l ) y ( h n ) W + < x ( t ) , x ( t * ) > / n a + . . . (11) 

where t* is a few steps before t, by (3); the angle between x(t) and 
x(t^ is thus of the order of mhn/2 and: 

<x(t),x(t*)> = n*a* (1 + 0(n*h2m1/4)) (12) 

We can assume the 0(...) term in (12) to be of higher order, and by 
substituting in (11): 

a/a = 2blr|+f(-l)
y(hn)m+1n +.... (13) 

the corresponding coefficient of the quadratic error accumulation in 
longitude is then: 

n/2 =-1.5bM(-l)
y(hn)"lt<n1+... (14) 

It is worth remarking that a different formula holds for m odd 
(m=2y+l): because of (6) the direction of the "truncation perturbing 
acceleration" F is more radial than along track, and from a formula 
analogous to (12): 

<x(t),x(t*")> = na* 0( n h m/2) (15) 

we find that (13), (14) are modified by a factor 0(nhm/2): the secular 
effect appears to be of higher order; however in most integrations nh is 
not much smaller than 2/m. The results given by formulae (9) and (14) do 
not change if another integration method is used; only the constant bm<.^ 
does change. 

It is intuitively obvious that the error estimates given by (9), 
(13) and (14) give a grossly underestimated error for eccentric orbits; 
however how fast the error grows with eccentricity is somewhat surpri
sing. There is a way to compute an estimate of the truncation error in 
the integration of an eccentric orbit just by recomputing formulae (5), 
(6). For an eccentric orbit the exact solution, in an appropriate coor
dinate system xyz, can be expanded in a Fourier series in the mean 
anomaly M with coefficients formed by Bessel functions (Wintner, 1941; 
Kovalevski, 1963): 

+«o 

x/a = -3e/2 + y 1/p-j J.., (pe) - J_^ (pe)fcos pM 

j£? L (16) 

y/a = (1-e ) 2_ 1/p i Jf-j (pe) + JfH (pe)jsin pM 
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These series have the D'Alembert property, that is the lowest order 

term of the coefficient of the cosine (or sine) of pM is 0(e^~ ); 

however, when the derivatives of order m+3 are computed, e is multi

plied by an high power of p: 

R«M= V < a O™)"1*3 y g(e,p) trig (pM) (17) 

with trig (pM) a trygonometric vector function of length 1; the coeffi

cients g is: 

g(e,p) = -. ' +0(ef+ ). (18) 

The truncation error (17) is then the sum of different harmonic 

components; at the perihelion all the error harmonics are in phase, and 

the size of the local error can be estimated by the sum of the series 

S1=£g(e,p)~Z1 =2l \MF
p\ (19> 

The accumulated along-track error however is not the result of the 

error at a specific point but rather of the average error in energy; for 

the purpose of an estimate of the along-track quadratic error one should 

consider the different error harmonics as independently acting, thus use 

the root mean square sum of their size: 

V2_gi(e,p)"z- "ZiV* pi I (20) 

and substitute the resulting "average" energy error in the same formulae 

used to obtain (14): 

n/2 = - 1 . 5 b M ( - l ) (hn) Z% n + (21) 

In table 1 the prediction given by formula (21) is compared with 

the results of a test performed by Cohen et al. (1973) with m=12, h=40 

days, n = mean motion of Jupiter. The error is an along track accelera

tion in arcsec/year . 

The comparison shows that our formula gives the right value of the 

along track error for low eccentricities, and a good order - of - magni

tude estimate for moderate values of e. Of course the use of Zz instead 

of Si results in inaccuracies for large e because the neglected higher 

order (in e) terms are not much smaller. The Cohen et al. (1973) test 

were performed as a preparation for a long integration of planetary 

orbits; the effect on cometary orbits of the same phenomenon is stri

king. In table 2 we have listed the predicted increase of the error with 

respect to a circular orbit as a function of e, both for the local error 
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TABLE 1 

error predicted 

by (21) 

error found in the 

test integration 

0 

.01 

.02 

.03 

.04 

.05 

.06 

-<i 

-it 

-0.4x10 

-1.8x10 

-5.3x10 

-12.7x10' 

-26.5xl0"1? 

-52. xlO"fi 

-97. xlO"fi 

, -a-

-1.6x10" 

-5.7x10"' 

-12, 

-24, 

-43, 

-68, 

.1x10 

.3x10 

. xlO 

. xlO 

-II 

-11 

-fi

at perihelion and for the accumulated along-track quadratic error. It 

can be appreciated that the error grows very fast with e, much faster 

than the cubic growth hypothesized by Cohen et al.; for cometary orbits, 

this implies that the use of a fixed stepsize algorithm is not recommen

ded and the use of a short stepsize is not a good solution. 

TABLE 2 

increase of local 

error at perihelion 
increase in 

accumulated error 

.05 

.1 

.15 

.2 

.25 

.3 

.35 

.4 

3x10 

5x10' 

6x10' 

6x10 ' 

6x10* 

6x10 ' 

7x10 ' 

9x10 ' 

1x10 

2x10* 

2x10* 

2x10 5 

2x10* 

2x10* 

2x10* 

2x10° 

Of course a solution to the problem of the increase of the error 

with eccentricity is the use of a time element s such that ds/dt is 

proportional to 1/r (r=distance from the Sun); then the time element is 

essentially the eccentric anomaly E and formulae like (16) are substi

tuted by x=a(cos E-e), y=a(l-e>) sin E that do not contain the higher 

harmonics. With a time element proportional to the eccentric anomaly, 

the local and the accumulated along track error are still given by (9) 

and (14) respectively, for every eccentricity e. 
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2. THE ROUNDING-OFF ERROR 

The rounding-off error is usually discussed with reference to the 

treatment by Brouwer (1937). However that celebrated paper was written 

before the era of the electronic computers, and thus was based on assum

ptions which are not necessarily applicable to the process of orbit 

computation as it is usually performed today. 

The hypotheses under which Brouwer theorem applies are as follows: 

A) the error (or at least the significant part of it) is done in summing 

up the values of the previous second derivatives, or their differences, 

multiplied by h , to the previous step to get the new value, as in (1). 

The round-off errors done within the computation of the acceleration at 

each step are of lesser importance, because h is small. B) the local 

round off error can be modelled as a random variable, uniformly distri

buted between -d/2 and d/2, where d is the "machine precision", i.e. the 

value of the last bit, or 1 in the last recorded digit; in particular 

its mean, or expected, value is exactly zero. C) the orbit is in itself 

orbitally stable, e.g. because the perturbations are negligible. D) 

other errors are uninfluent, e.g. the truncation error is smaller (in 

the manual variable order computation algorithms used at the time, this 

was checked at each step anyway). 

Under these assumptions, Brouwer proved that the error in the 

orbital elements will be distributed as a gaussian random variable, with 

zero mean and root mean square value growing with the number N of 

integration steps as N for the anomaly (i.e. along track) and as N 

for the other five (i.e. cross track). The problem is now to assess how 

valid are the assumptions A, B, C and D: In particular B requires that 

the rounding off is performed by computing the sum in (1) with all the 

significant digits conserved, and then rounded: this is not at all the 

way the arithmetic operations are performed in modern computers, or 

better: not at all the way in which the compilers instruct the arithme

tic unit of the CPU to operate. In reality, numbers are usually trunca

ted, just forgetting the significant digits that are on the right of the 

maximum allowable mantissa length. As a result, the "rounf-off" error 

has an average not equal to zero but to -d/2; the latter formula being 

exactly true only for fixed point arithmetic and provided the negative 

numbers are represented in complement: the sign of the coordinates 

modifies the expected error if the negative numbers are represented as 

modulus plus sign. As a result, the same "random walk" argument used by 

Brouwer gives an expected secular error in semimajor axis; the expected 

error along track grows as N , for the fixed point, modulus plus sign 

arithmetic (Fabri and Penco, 1984). Different results are obtained for 

different arithmetics; floating point arithmetics generates a "quantum 
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What about the errors in the numerical orbit propagation when the 

real orbit Ices in such a chaotic region? A very simple, and often 

overlooked, result says that ho numerical method can be more stable than 

the exact solution the method is used to compute. Because does not 

matter how small is the local integration error: since it is anyway 

nonzero, after the first step the numerical method will really integrate 

an orbit starting from different initial conditions: if the latter 

diverges exponentially from the exact solution, so will the numerical 

solution (if it is "convergent", i.e. unless it really solves an other 

equation). 

>-
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, 40_ 6> o o 
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* * * * 

Ft 

* 

* * 
•% * 

SK* „ * 
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— i r 

7.20 7. 80 ' 81.40 

X10-1 

SEHINAJOR AXIS 

Figure \\ Numbered asteroids (stars) from the TRIAD file and periodic 

comets (circles) from the catalogue of perihelion passages by Marsden 

and Roemer, 1982. Semimajor axis (as a fraction of Jupiter's) and eccen

tricity are plotted for the region 3.2AU<a<4.3AU, 0<e<0.48. The region 

that appears void in this plot, between the Hildas and the 2/1 gap and 

for moderate eccentricities is indeed occupied occasionally by comets on 

temporary "transfer" orbits. 

https://doi.org/10.1017/S0252921100083937 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100083937


224 A. MILANI AND A. M. NOBILI 

Cometary orbits have the special feature of (almost) always lying 

in chaotic regions. This is in reality an observational selection ef

fect: a comet can exibit a spectacular coma only provided that its 

orbit "recently" underwent a change resulting in a large decrease of its 

perihelion distance; this change results from some strong perturbation, 

and the strong perturbation in turn generates chaotic behaviour. Because 

of the very complex structure of the resonances with the major planets, 

the regions of the phase space where both chaotic behaviour and abrupt 

orbital elements changes can occur are intermingled with "ordered" 

regions of dominant quasi-periodic behaviour. This is best illustrated 

by the boundary region between the outer asteroid belt and the belt of 

the comets of the Jupiter family (Figure 1). 

In between there is a "gray" belt of orbits that are neither 

obviously cometary nor asteroidal: the best criterion to predict wether 

a given set of initial conditions will give rise to an ejection from the 

region plotted in Figure 1 (hence is "cometary" even if in a transient 

almost quiescent state) is to compute the divergence ratio as described 

above (Milani and Nobili, 1984b). 

e 

Figure 2: The divergence, i.e. the ratio between the very small initial 

distance d0and the distance d after 50 synodic periods, is plotted for 

the orbit of a comet with initial conditions a=0.68 a. , e=0.226 (i.e. 

in the depleted region of figure 1) as a function of the initial angle 

between the comet's and Jupiter's perihelion, in radians. Not only the 

values change dramatically, but no smooth curve can be fitted to the 

points of this plot: the chaotic behaviour can appear and disappear with 

very small changes in the initial conditions. 
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But even the chaotic behaviour is not a stable prediction: because 

in between a chaotic region there are islands of ordered behaviour, 

where resonant asteroidal orbits can survive the perturbations by the 

planets; this can be seen by computing the divergence ratio for many 

nearby orbits (Figure 2) or by plotting the orbital elements and looking 

for resonant behaviour (Milani and Nobili, 1984a). 

We are not stating that the orbits of comets are impossible to 

compute. For a fixed span of time, by complying with a list of cautions 

that are suggested by the discussion presented in this paper, it is 

possible to compute the orbit of a comet to a reasonable accuracy, 

unless very close approaches to a planet do occur. However the very 

long-term evolution of the single cometary orbits is not accessible to 

our computations, and this state of affairs being due to the very nature 

of the problem it is not likely to change soon; the qualitative beha

viour of cometary orbits is on the contrary amenable to study, in a 

statistical sense, and numerical integrations are an essential tool for 

this purpose. 

REFERENCES 

Arnold, V.I. (1963) Usp. Mat. Nauk. 18, 91. 

Benettin, G., Galgani, L., Giorgilli, A. and Strelcyn, J.M. (1980) 

Meccanica, March 1980, 9. 

Brouwer, D. (1937) Astr. J^ 46, 149. 

Fabri, E. and Penco, U. (1984) "Propagation of the Round-off Errors in 

Numerical Integrations", in preparation. 

Heinrici, P. (1962) Discrete Variable Methods in Ordinary Differential 

Equations, John Wily & Sons, New York-London. 

Henon, M. and Helies, C. (1964) Astron. J. 69, 73. 

Kinoshita, H. (1968) Pubbl. Astr. Soc. Japan 20, 1. 

Kovalevsky,J. (1963) Introduction a la mecanique celeste, Armand 

Colin, Paris. 

Milani, A. and Nobili, A.M. (1984a) Celestial Mechanics, in press. 

Milani, A. and Nobili, A.M. (1984b) Astron. Astrophys., in press. 

Smale, S. (1967) Bull. A.M.S. 73, 747. 

Wintner, A. (1941) The Analytical Foundations of Celestial Mechanics, 

Princeton Univ. Press. 

Cohen, C.J., Hubbard, E.C. and Oesterwinter, C. (1973) Astr. Pap. Am. 
Ephem. 22, pt.l. 

https://doi.org/10.1017/S0252921100083937 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100083937


226 A. MILANI AND A. M. NOBILI j 

Discussion 

Marsden : The inadequacy of the Brouwer error-accumulation model was not 
a problem with automatic computers until after 1960. One could always 
program the early computers to act in the same way as mechanical desk 
calculators with regard to rounding. The problem arose with the 
introduction of purely binary computers and of high-level computer 
languages. I recall that around 1961 an assistant at Yale, using one of 
the new computers, found a rather dramatic decrease in the semimajor 
axis of an orbit. This was on a friday afternoon. Brouwer then spent the 
whole weekend integrating the two-body problem over several revolutions, 4 
using a desk calculator,but truncating rather than rounding. By monday 
morning he was convinced that his 1937 paper did not apply in the case 
of truncation. 

Milani : However this was not published. 
Valsecchi : What model did you use for your integration of asteroid 
orbits? What is your expectation about the nature and number of 
protective mechanisms using more complex models? 
Milani : The elliptic restricted planar 3-body model. When the third 
dimension is taken into account, the protection mechanism based on the 
inclination can play a role; this has been shown by Froeschle and Scholl 
(Astron. Astrophys. 1979). There is at least one asteroid protected in 3 
different ways, one based on the inclination: it is 721 Tabora. 
•Zadumansky : For testing the accuracy of numerical experiments your 
methods are good. However Lyapounov's theory of stability may give 
valuable qualitative indications. 

MJLlsni : That is true as a matter of principle. However if you happen to 
find an unpredicted resonance, the theoretical predictions have to be 
changed. 
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