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Introduction

In the first paper of this series [4] I gave a brief summary of the
properties of symmetrisable operators in Hilbert Space. A detailed discussion
of these properties will be given now, but the properties of operators sym-
metrisable by bounded operators will be dealt with further in Part III.

6. Definitions and preliminary discussion

It was mentioned in the first paper that we intended to use the term
symmetrisable for an operator A provided HA was self-adjoint and H
was a non-negative definite self-adjoint operator. However, it is clearly
of some interest to see what happens when H, say, is merely essentially
self-ad joint or HA closed symmetric. Some light will be thrown on the
more general case. As was mentioned before, the domain of A will be as-
sumed such that %HA = %A- The conditions governing the null-space of
H were given as

(2.1) {Hx, x) ^ 0 all x e 2>H

(2-2) ftiOHW.

Remark 6.1. In condition (2.2) it was necessary to use 9JX in place of
91A • since 3iH is necessarily closed whereas 3tA could be otherwise. However,
this condition is not altogether satisfactory since it admits some highly
pathological cases. It follows from the fact that HA is closed and that
3lHA 2 9lA that A must be defined on 3tA. Hence if x e MA and Ax = y =£ 0
then ye%lH. Such an A cannot have a closed, single-valued extension.
Since $lA r> 3lH need not be closed it is therefore possible to have Ay = Xy
for any complex X without affecting symmetrisability. It is natural,
therefore, that whenever the spectrum of A is being discussed condition
(2.2) will be replaced by

is
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16 J. P. O. Silberstein [2]

(2.3) R^DKj,.

Definition 6.1. It will be convenient to use von Neumann's notation [2]
A for the "closure" of A, i.e. A is the closed linear extension of A whose
graph is the closure of the graph of A.

Note 6.1. We always require that linear operators be single valued.
Von Neumann [2] does admit more general operators so that some of the
results stated by him would not be true in our convention, this applies most
particularly to adjoints.

It was seen in Part I that it is advantageous to use a symmetrising
operator whose null-space is as small as possible. The best we can achieve
is given by

LEMMA 6.1. Let H be a non-negative essentially self-adjoint operator
which symmetrises A. Then a symmetrising operator can always be found
which is self-adjoint and has as null-space the intersection of the closure of
the range of A with the closure of the null-space of A.

PROOF. Let Ht = H+P where P is the orthogonal projector onto SRj;,
the orthogonal complement of 3? .̂

Clearly H1 is self-adjoint and HXA — HA since HA = HA because
$ H D mA. Also for all / e 2)# (= 5)Hj)

so that Ht is non-negative and satisfies the conditions of the lemma.
It will be assumed in the future that the symmetrising operators H

satisfy lemma 6.1.
As foreshadowed in section 4 of our first paper [4] we shall have

occasion to embed $, the domain and range space of our operators in a
larger space § + § ' where §' is an exact replica of § but the elements of §'
are orthogonal to the elements of §. $ + $ ' is isometrically isomorphic
with §X§ , i.e. the points [x, y] of § x § are mapped onto x+y where
x e !Q, y e fy' and the isometry is established by defining the inner product
in §x|> by fla^, j/x], [xt, y2]) = (x1, xj + fa, y2) which is clearly equal to
(*i+yi, *2+y8) since {xu y,) = 0 (*, / = 1, 2).

It is convenient to add the definition of two terms used in reference
[1] and again extensively here.

Definition 6.2. A subspace 2JI of $ is a Julia manifold (/-manifold for
short) if there exists a closed vector subspace SB in § + § ' such that3K = P§25.

Definition 6.3. Let 9$ be a closed subspace of § X §' and S3' its orthogonal
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[3] Symmetrisable operators II 17

complement. Then 2H = P§SS and W = P§SB' are complementary / -
manifolds. I t can be shown that there exist two closed mutually orthogonal
vector subspaces % and %' and two /-manifolds 31 and 31' such that JR = fj,
W = W and Tl = 2f+SR'( W = g'+Stt (Cf. [1] Prop. 2.5).

Remark 6.2. Let A be an operator with dense domain then A* the adjoint
of A can be defined by means of the orthogonal complement of the graph
of A (cf. [2] p. 62). I t follows immediately that when A is a one-one operator
(i.e. 3)^ and 9?^ dense in §) then %A and $tA. are complementary /-manifolds.

7. Some general properties

The excellent paper by Dixmier [1] referred to previously throws a
lot of light on the nature of products of operators. It is well known that
closed operators do not form a group under multiplication. On the other
hand operators whose graphs are Julia-manifolds in § X § do form a group.
Such operators are called /-operators. Closed operators are, of course, / -
operators and Dixmier is able to prove a number of interesting conditions
which ensure that the product of two operators is closed. We can use these
to prove properties of symmetrisable operators.

We commence by proving that for /-operators (2.2) and (2.3) are
equivalent.

THEOREM 7.1. If A is a J'-operator and HA closed then 3lA is closed.

PROOF. By Dixmier (Prop. 3.2) HA closed implies

zn -> 0, HAzn -+ 0 => Azn -* 0.

As was mentioned in Remark 6.1., any xe3tA is in the domain of
A. Now suppose 9lA not closed, then for some x efflA Ax = y =£ 0, but
Hy = 0 since HA closed. Now there exists a sequence (zB), xn e 3lA, such
that xn -*• x. Hence (x—xn) = (zB) is a sequence such that zn -*• 0, HAzn -*• 0
but Azn = y ^= 0 for all n, which is not possible.

Another easy result is

PROPOSITION T.I. If A is unbounded and closed it cannot be symmetrised
by a compact H.

PROOF. By Dixmier [1] proposition 3.4. the product HA is not closed
under the hypotheses.

It will be shown later that the theory of operators symmetrisable by
operators with bounded inverses is much simpler than the general theory.
It is therefore interesting to consider

THEOREM 7.2. / / A~l is compact and if H symmetrises A then H must
have a bounded inverse.
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PROOF. Since 2)^ and $lA are dense, $lA = [0] and the ranges of H and
HA are dense; thus HA is a one-one operator. Since A'1 is closed and
compact, JR^-i = 1S)A contains no closed, infinite dimensional vector sub-
space.

By Remark 6.2. I$)A and $lHA are complementary /-manifolds since HA
is self-adjoint and one-one. By Dixmier's [1] proposition 2.5. this implies
that 1)A and <SiHA contain closed vector subspaces that are orthogonal
complements in |>. Hence 3lHA can have at most finite deficiency in § (i.e.
the quotient space !QI$IBA is finite dimensional) and is therefore closed. But
as we have observed fRHA is dense and hence 9tHX = §. Also 9t# D ^RBA

so that 8ftff = § and since H~x is closed this implies H*1 bounded.

8. On adjoints and on closure of A

For most of the subsequent work it is necessary to assume some
relationship between 2>H and 55^. This is obvious if we observe that for
spectral theory we shall be dealing with the operator A— U. Without
further conditions we can state

LEMMA 8.1. If x e $ a and Hxe3>x. then xe'S)A and A*Hx = HAx.

PROOF. For any y e%A, x e3)H

(HAy, x)=(Ay, Hx)=(y, A*Hx)

provided Hx e S)A.
To obtain a more satisfactory result we have to impose the condition

(8-1) ®

It can, of course, be re-interpreted as meaning that we concern ourselves
with the restrictions of operators A to domain contained in 3)a . However,
there is no a priori reason to suppose that in general ®H n <S>A is dense and
this matter will not be pursued here.

LEMMA 8.2.If (8.1) is satisfiedxe%Aimj>liesHxe'$)A, andA*Hx = HAx.
For all x, ye^ (HAy, x) = (Ay, Hx) = (y, HAx). Hence A*(Hx) =HAx
as required.

The above lemma defines a restriction of A* which we shall call A+,
thus

Definition 8.1. A+ is the linear operator defined on HCS>A) such that
A+Hx = HAx for all x e %A. A+ is a specialisation of A*.

If HC$)A) is dense in £ — which incidentally implies that the null-
space of H, 3lH, is [0] — then A+ is defined with a dense domain. Hence
A+* is a closed linear extension of A, A say. (These remarks are true even
if HA is merely symmetric).
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[5] Symmetrisable operators II 19

It is evidently of interest to know under what conditions H(%A) might
be dense. A sufficient condition is given in

LEMMA 8.3. / / H is positive (3lH = [0]) and (8.1) satisfied (in particular
if H bounded) and !$}A is everywhere dense, then H(35^) is everywhere dense.

PROOF. We suppose H{%A) not dense. Then for some y =fc 0 in § and
all a; e %A

{Hx, y) = 0.

Since %A is dense we can find a sequence (yn) such that yn -> y, yn e %A.
By the continuity of the linear functional

lim (Hx, yn) = lim (Hx, (y-yn)) = 0.

Also (Hx, yn) — (x, Hyn) and in particular putting x = yn the above gives

i.e. Hyn -> 0. But since H is closed and yn -> y, Hyn -> 0 implies Hy = 0
contrary to assumption.

COROLLARY. If the hypotheses of the lemma are satisfied, A is closed or
has a closed linear extension A+*.

Remark 6.1. suggested that when 3lB =£ [0] certain pathological cases
could arise which would make it impossible to find closed extensions for A.
To avoid the elaboration of this case we shall, for the remainder of section 8
assume that 3tH = [0] or — what amounts to the same thing — that all
our operators are specialised to the space -K#.

Let B be a closed linear extension of A — which we have seen always
exists when H(^)A) is dense. If A is symmetrisable in the strict sense then
HA is maximal and HB cannot be symmetric if it is a proper extension
of HA. (It would be possible for B to be symmetrisable not by H but by
some other operator Hlt say.)

On the other hand if A is only essentially symmetrisable, or HA
merely symmetric, then it is sensible to enquire whether HB is symmetric.
It is found that if H has a sufficiently large domain HB is certainly symmetric.
We have in fact »

THEOREM 8.1. / / A is an operator with domain %A and H is positive
self-adjoint and such that H(%A) is dense in |> and HA is symmetric then A
has closed linear extensions A, A. If the domain and range of A is in the
domain of H then HA is also symmetric. (A is defined in Definition 6.1.).

The existence of the closed extension A was established earlier, when
it was defined as A+*. The extension A must therefore exist (Stone [5]
Theorem 2.10). Let x be an element of %j[ not belonging to %A. (If there
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is no such element there is nothing to prove.) Let (a;B) be a sequence of
elements of S)x such that xn^*x and let Ax = y. Then for all z

{HAxn, z)=(xn, HAz)=(xn, A*Hz) = (Axn, Hz)
so that

(*„, HAz) = (Axn, Hz).
Letting n -> oo

(*, HAz) = (Ax, Hz)
= (HAx, Z)

provided Ax is in the domain of H. If further x e %B

(HAxn, x) = (xn, HAx) = (Axn, Hx)

and letting n -*• oo in the last two expressions

(x, HAx) = (Ax, Hx)
= (HAx, x).

Hence HA is symmetric on the subspace <S)A+{x} it both x and Ax belong
to 2)H. The above argument can now be repeated for an element x' of %A
not belonging to 3)^+{a;}, if it exists. The process can clearly be continued
until 3)j- is exhausted.

For symmetrisable operators we have

THEOREM 8.2. / / A is symmetrised by a strictly positive definite
operator H which is such that HCS)A) is dense and $ H D SR.1 then A is closed;
A+*(=sA)=A if <S)HDmA, i.e. A+* = A** = A.

PROOF. Let xn -» x and Axn = yn-*y. Then since A is closed Ax = y.
Also for all z e 3)^

(HAxn,z) = (xn, HAz) is equivalent to (xn,HAz) = (xn, A+Hz).

Letting n -> oo in the latter

(*, HAz) = (*, A+Hz) = (Ax, Hz) = (HAx, Z).

Hence, if HA self-adjoint x e 3)^ and A is closed. In the second part of
the proof let « be any element of %A and z any element of 7£>HA then

(«, HAz) = («, A+Hz) = (Au, Hz) = (HAu, Z)

and again u e%A.

Remark 8.1. The condition A+* = .d** implies that the graph of A*
is the closure of the graph of A+. Using Definition (6.1) A+ = A*. We have
proved that if A has a closed extension then A** = A in the strict sense
of note (6.1), not merely in the sense of von Neumann [2] theorem 13.13.
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The last question we pose in this section is whether the symmetrisability
of A implies the symmetrisability of A*, as it did for operators in unitary
spaces. A partial answer is provided by

THEOREM 8.3. Let A be symmetrised by H then, if H^S>A) is dense,
H~lA+ is symmetric. If H is bounded and H~XA+ is essentially self-adjoint
then H~*A* is self-adjoint. If in particular H^A+ = H~XA* then H~1A+ is
self-adjoint.

PROOF. By definition A+ has domain H(^>A) and since HA = A+H
gt̂ +CSRff. Hence H~1A+ is defined on HC£)A) with range MA. Hence for
any x = Hu, y = Hv where u, v e 3)^ we have

, y) = (H^A+Hu, y) = {Au, y) = {Au, Hv) = (u, HAv)

= (x, H-^A+Hv) = {x, H~lA+y).

The question of a self-adjoint extension of H^A* is very difficult
when H is unbounded and hence bounded H only are considered. Now the
graph of H~lA+ is [z, H^A+z] for all z = Hx, xe%A. The orthogonal
complement of this in § x § is [—H^A+z, z] + [—w, u] where we suppose
the latter subspace distinct from the former, i.e. assume H^A* not maximal.
Then for the latter subspace and all zeH(1$)A)

(w, z) = («, H-*A+z)
or

(w, Hx) = {u, H~*A+Hx)
= («, H^HAx)

and since w e %H = §

(Hw, x) = (u, H-^

and the condition u = Hy would imply ye%A and HAy = Hw or
H~*-A+u = w and [—w, «] would not be distinct. Hence « ^ 5R# but

(Hw, x) = («, Ax)

which implies A*u = Hw. Also A*ue^RH and [—w, u] = [—H~1A*u, «].
H~*A* is closed since A* is closed and H bounded (Dixmier [1] prop.-3.3).
Also H~1A*DH-1A+ and hence since by the above (H~1A+)* = H~XA*

H~lA* = (H~1A+)* D (H-*A+)** = (H~1A*)*DH-lA+,

which is all that is required.

COROLLARY. If A = BH where B and H are self-adjoint and H is positive
and bounded, then H~*A+ = H~lA* = B is self adjoint.

Clearly A+ = HB and H~1A+ = B which is self-adjoint; the theorem
then proves H~XA+ =
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Remark 8.2. The statement "H~1A* is self-adjoint" does not imply
A* symmetrisable since in general %H-i $ 9?^. as would be required by our
definition of symmetrisability.

9. Operators symmetrisable by operators H
with positive lower bound

Before dealing with the general spectral theory we shall deal with a
special case which exemplifies all the properties one would like to find
in the general case.

We shall deal with strictly symmetrisable operators A with sym-
metrising operator H such that %H D %A and for simplicity 3lH = [0]. Since

(HAx, y) = (*. HAy)

for all x, y in %BA = %^HA)> it is clear that if we introduce a new inner
product

(x, y)x = (Hx, y)

we should have A symmetric in the linear subspace %H of §. However,
the metric induced by this new inner product may make %H an incomplete
space § 1 ( and for our present purposes that would make it useless. We
require that

implies the existence of an x e S # such that \/Hx = g. Hence we require
<8iy/n to be closed and since H is positive this means SR̂ jy = $. We thus
require: \/H and hence H have bounded inverse, and so

ll*«-*«lli->o* ll*»-*.ll-^o
and xm -> x.

We therefore obtain the following

THEOREM 9.1. If A is symmetrisable by an operator H with bounded
inverse then we can define a Hilbert space § 1 ( consisting of all elements of
%^fH {and no others) and an inner product defined by

(*. V)i = WHx, VHy)

then A is a self-adjoint operator in §x , its eigenvalues are real, its continuous
spectrum is real and its residual spectrum empty. A has resolution of the
identity E(X), say,

The case when Jpj introduced above is incomplete will be dealt with
at the end of Part III.
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10. The spectrum of symmetrisable operators

The point spectrum of symmetrisable operator is real under very general
conditions as can be seen from

THEOREM 10.1. The eigenvalues of A (if any) are real if HA is symmetric,
'^HD'SRA and 9 ^ 3 91*.

The proof of this is the same as the proof of Theorem 3.1. statement (i)
because all eigenvectors are both in the domain and range of A.

Another easy result is

THEOREM 10.2. If B and H are symmetric and non-negative (positive)
definite and A = BH then the eigenvalues of A are non-negative (positive).

PROOF. Let xt be an eigenvector of A. Then*, e %H, Hxt e %B, Axt e %H

and
{HAxt,xl)=Xi{Hxt,xt).

Also
(HAxt,xt) = (HBHxt,Xt)

= {BHxi,Hxi).
Then unless BHx( = 0 (which cannot happen under the strictly positive
assumptions)

' (BHxt,xt)

which is clearly positive. The case BHxt = 0 satisfies the lemma trivially.

THEOREM 10.3. Eigenvectors of A belonging to different eigenvalues are
H-orthogonal. All elements y such that AyeVljj are H-orthogonal to eigen-
vectors with non-zero eigenvalues. (We have A2y = 0 if 3tA D 3ln).

Let xu Xj be any eigenvectors with eigenvalues kit Xs then since
Xt, Xj 6 %H

HAxt = XfHx^ HAXJ = XJHXJ

(HAx(, Xj) = X^HXf, Xj)

(xf, HAXJ) = Xj(xit HXJ) = X,{Hxit xs).

By the symmetry of HA one obtains on subtracting

and since A( ^ Xj, (Hxo xs) = 0.
Further

(HAxit y) = MHx,, y) = {xt. HAy) = 0

and since X{ =£ 0, (Hxit y) = 0.
To make further progress we reintroduce the condition

(8-1) S f l ^ , .
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LEMMA 10.1. / / A is symmetrisable then {H{A—U)}* = H(A—M) for
any real A. If A" has dense domain then HA' is symmetric and
{H{A-U)*}* D H{A-XI)* for p = 2, 3, • • •.

PROOF. The proof of Lemma 3.1. stands except that the elements x, y
used in the proof must now belong to 3)^, for the particular p under dis-
cussion.

We can now generalise the remainder of Theorem 3.1.

THEOREM 10.4. (i) All eigenvalues A ^ 0 of A are simple, i.e.

(A-kI)"y = 0 =*• (A-XI)y = 0 for A # 0, p > 1.

(ii) / / 0 is an eigenvalue of A it is of multiplicity 2 at most in the sense that

A'y = 0 => HAy = 0 => A2y = 0 for p = 3, 4, • • •.

PROOF. The proof of theorem 3.1. (Parts (ii) (iii)) holds by allowing y
to be any element of %A since %lA, C SR̂  C ®ff for p = 1, 2, • • •. The proof
can also be slightly modified to avoid the use of -\/H because

Hxf = 0 => (Hx,, x{) = 0

since H is non-negative (Cf. [2] p. 71).

COROLLARY. / / H is positive definite all eigenvalues are simple. (In this
case HAy = 0 => Ay = 0.)

From the discussion in section 8 it will be seen that the relationship
between A and A * is not as convenient as it was for operators in UB. However,
we still have

THEOREM 10.5. If A is an eigenvalue of A and x the corresponding eigen-
vector then A is also an eigenvalue of A* and Hx is a corresponding eigenvector
except when x e$lH = %lA r\${A. Then as = Ay and Hy is in the null-manifold
of A*.

PROOF. By assumption Ax = kx so that HAx — XHx and hence

A+Hx = XHx.

Hence Hx is eigenvector of A+ and hence of A* unless it is the null vector.
In the latter case we can choose y such that Ay = x. For all / e 2)^

(A*Hy, f) = (y, HAf) = [HAy, /) = 0

and since %A is dense and Hy # 0 the theorem is proved.
To illustrate the difficulty of proving results about #the continuous

and residual spectrum we start with a most discouraging result.

THEOREM 10.6. The continuous spectrum of a symmetrisable operator
A need not be restricted to the real axis. (For a particular type of symmetrisable
A the continuous spectrum can be shown to be real).
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We prove this by constructing a symmetrisable A with a complex
continuous spectrum. In order to do this we first investigate a special class
of operator which can be used to construct examples of this sort. We consider
an A which is such that for some sequence of projectors Pn with n-dimensional
range and such that Pn(!Q) 3 Pn-i(&) and lim,,.,^ Pn = / the operator
An = PnAPn is symmetrisable for all n and An-+ A. (It is evident that
not all symmetrisable A are of this type.) Let x[n) be the eigenvectors of
An corresponding to eigenvalues /*$"'. Let x[n) = Tnet where (et) is a com-
plete orthonormal system. We first prove

LEMMA 10.2. / / Tn is as defined above and if Tn and T'1 are uniformly
bounded with bounds \Tn\ = a, IT""1! = ft, say, a non-real X cannot belong
to the continuous spectrum.

PROOF OF LEMMA. Let xf{n) denote the eigenvectors of A* which can
be regarded as suitably normalised so that x*in) = 3"*""1 e{. If A belongs
to the continuous spectrum there exists for are e > 0 a n x with ||a;|| = 1
such that

\\{A-XI)x\\<e.

If we take n large enough xn = Pn x will be such that | |xn| | ^ \ and

| | (^B-A/K| |<2e.
But

(An-xi)xn = z^-m**. *?(B)HB)

= y-
Now

\\x

Inserting the bounds for Tn and 7""1 we have

||y|| 2£

which is bounded below if J{\) ^ 0 and thus the Lemma is proved.
Now we return to the main theorem and observe that the boundedness

of Tn and T~x implies the following (dropping the upper bracketted index
for convenience):
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so that

Therefore for all sequences a o /?,

J. P. O. Silberstein [12]

II («,*,) I2

which is a relative measure of their linear independence. Hence unbounded-
ness of Tn and T^1 implies a loss of linear independence (asymptotically)
of (*,).

Since T* 1 T n
1 is a symmetrising operator it can be put equal to Hn

and in fact without loss of generality the following relations can be assumed:
j - i = T*-i = ^Hn W e f u r t h e r take y/Hn to be bounded by 1, say,
by multiplying the x{ by [T^ = /?. (The danger of this type of definition
is the possibility that H may not be self-adjoint in the limit. However,
Dixmier has shown that for operators so definied, which in his notation are
written ^H~x = ^~a(

e<> x(), a necessary condition for (-y/H)"1 = (-y/H)-1* =
^~t{x*'. ei) is that {^/H)-1 or y'H be bounded. We must also have (*,•)
as basis and (xf) as dual basis). Under these conditions the only way in
which the limiting operator A can have a non-real continuous spectrum is
for |7*n| = an to be unbounded, and we now show how this can be arranged
to construct our example.

Let 11B be a set of ^-dimensional unitary spaces, § the Hilbert sum
of the ltM, i.e. ltn mutually orthogonal subspaces of § such that
§ = U 1 +U 2 +U 3 + • • •. Let An = PunAPyxn be an operator in UB defined
by its matrix with respect to a suitable orthonormal system, viz.

A =

0 0 0 0

n—2 n—2
n+l

n—2

A—fin
/"»

n— 1 n— 1 n—1 «—1

where the j« are real and unequal and X is complex. By theorem 3.3
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is symmetrisable. The symmetrising operator Hn is given by a matrix whose
elements hPQ are given by the recurrence relation:

, ^ ^ g + 2 , , , \ _1_ l
' <b\\ * "+2-"~nv+2,a+l) "T " ' ' T

for p> q\ also />„„ = £„,.
Also the App are real and positive but arbitrary except for the fact

that they have to decrease rapidly enough to ensure that Hn is positive
definite (e.g. hnn < An_lB_1(;Mn_1—//„)). It is easily verified that the vector
xn = {l/V», l/\/w, • • •, l/V*1} is s u c n that

, 0 ,0 , ••.,<>} so tha t

Now let ^4n be extended to the rest of § by putting An = 0 on U£. Then
4̂ = lim^^^ 2%.! An which will be bounded and closed if the /i are bounded.

By suitable choice of the hpp also Hn will be uniformly bounded and the
operator H defined by the same procedure as A will also be bounded. It
then follows that A is a symmetrisable operator for which there exists a
sequence xn with ||a;n[| = 1 such that (A — U)xn -*• 0. Hence (A— A/)-1

is unbounded. Further by theorem 10.8 to be proved presently, or by
inspection, 1 is not in the point spectrum of ^4* so that X belongs to the
continuous spectrum of A.

This completes the construction.
Before leaving the discussion of the continuous spectrum we shall show

how Stone's [5] proof for symmetric operators generalises to symmetrisable
operators, provided we introduce severe restrictions about the symmetrising
operator.

THEOREM 10.7. The operator (A —U)-1 is bounded if |./(A)| > 0 provided
•y/H and (-y/if)"1 is bounded. This theorem is actually contained in theo-
rem 9.1.).

The proof is as follows: If x belongs to the range of Ax = A— XI it
belongs to the domain of Aj1 and H (a priori if we assume S)HD3)^) then

(HAA?xA?x) = (HA?x, AA?z)
(Hx+XHA^x, A^x) = (HA^x, x+XA^x)

{X-l){HAlxx, Ax) = -(Hx, Aj1x)+{HA?x, x)
2S(X){HAj1x, A?x) ^ 2\(HAj1x, x)\
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It is clear that this only proves the stated result if •s/H has strictly positive
upper and lower bounds.

We now turn to the residual spectrum. First a lemma.

LEMMA 10.3. / / y is in the range of H then it is not orthogonal to the range
of AK if J(X) ^ 0.

PROOF. If for all x e %A and some y = Hz

(Axx, Hz) = 0
then

(HAx.z) = X(Hx,z).

If z e 2)^ then we put x = z and

(HAz, z) = X(Hz, z)

which is impossible unless A real since H and HA are symmetric. If z £ ®^
then

(HAx, z) = {x, XHz)

so that (HA)* T^HA, i.e. HA not self-adjoint.
Next we prove

THEOREM 10.8. / / A is symmetrised by a bounded positive H, or in any
case if A+ = A* and A is symmetrisdble the eigenvalues of A* are real. A
complex X cannot belong to the residual spectrum of A.

PROOF. We suppose the theorem false. Let A be an eigenvalue of A*
with J{X) T£= 0 and y be the corresponding characteristic element with
||y|| = 1, say. By Lemma 10.3 y does not belong to SRH. However, by
Theorem 8.2. and Remark 8.1., or by assumption, A+ = A* and there
exists a sequence (xn) such that each xn e 3)^ and

ny
Now for all z e §

(A*y-Xy,z) = 0

so that by the continuity of the linear functional

{(A*-U)Hxn, z) = (H(A-U)xn, z)

tends to 0 as n tends to infinity for all z e § and in particular for all z e %H.
Hence for all z e S)ff

(10.1) lim ((A-U)xn, Hz) = 0
n-»oo

and since H{$>H) is dense in § this means (A— XI)xn tends weakly to 0.
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It follows that 11 (A — U)xn\ \ ^ a for all n and some positive a (cf. S. Banach
[6]). Further

\{{A-U)xn, Hxn)\ < \((A-U)xn, H{xn-xJ)\+\({A-XI)xr, Hxm)\

^ <x\\Hxn~HxJ\+\((A-XI)xn> Hxm)\.

Since Hxn -*• y there exists for every e > 0 an na such that
a\\Hxn—Hxm\\ < \e provided only m, n ^ «0. Also by (10.1) we see that
once an m *z w0 has been chosen the term |((.4—A/)a;n, -^"m)! < i e f° r

all n ^ wx. Thus for n ^ sup (%, «„)

Taking the imaginary part of the inner product on the left hand side and
using the self-adjointness of HA we obtain

Since e is arbitrary this implies lim,,.,,,, s/Hxn = 0. But this is impossible
since \/H(\/H xn) -> y and y/H is closed single valued. We conclude that
S(k) = 0.

The last statement in the theorem is an immediate consequence of the
preceding. For, as is well known (Cf. Stone [4] Theorem 4.15), if A belongs
to the residual spectrum of A then I belongs to the point spectrum of
A*; hence S(l) = -f{\) = 0.

By making specific assumptions we can prove a stronger result

THEOREM 10.9. / / A is symmetrisable by H and A* is such that there
exists a non-negative definite self-adjoint K such that <S>K3^tA., 9 l x .D9?K
and KA* is symmetric, then the residual spectrum is confined to X = 0 at
most. If K is positive then the residual spectrum is empty and if A ts an un-
repeated eigenvalue then the corresponding eigenvectors of A* belong to t3tH..

PROOF. By theorem 10.1. since KA* is symmetric, the eigenvalues of
A* are real and hence the residual spectrum of A, if it exists, must be real.
If A is real, "A in the residual spectrum of A" implies "A in the point spectrum
of A*". Since KA* is symmetric we have for any eigenvector xx of A*.

xx = XKxx

and
KA*xx = A**Kxx

because xx e 3tA, C 2)x.
(Suppose KA*=jkA**K for some ye%A. n $ K . For all xe%A.,

(KA*x,y)= (x,KA*y) and (A*x,Ky) = (xA**Ky), so that clearly
KA* = A**K on <&A. o <$>K.)
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Hence of A** = A li.e. if IRA C %H) Kxt is an eigenvector of A and
A belongs to the point spectrum of A unless Kxx = 0.

If A is an unrepeated eigenvalue and K positive then ^ E S R ^ . For
HKx1 is an eigenvector of A * and KHKxx another characteristic element of A.
By assumption KHKxx = OLKX-^ and since K is positive HKxx = aax1 ,£ 0
by theorem 10.2.

Finally we have a very simple result, which unfortunately requires
very strong hypotheses.

THEOREM 10.10. If A is symmetrisable by H and if A+ = A*, i.e. if
%A, C 9?# then the residual spectrum is empty.

Suppose A belongs to the residual spectrum of A, then

(A*-U)x = 0
which implies

(A*-U)Hy = 0
for some y. Hence

which implies
(A-Xl)y = 0.

Hence by theorem 10.1 I is real. Hence A = X and A belongs to the point
spectrum.
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