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ON A SURFACE OF GENUS THREE 
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Introduction. A considerable volume of research on the theory of regular 
maps is now in existence. Systematic enumerations of regular maps on the 
surfaces of genus 1 and 2 were begun by Brahana (1; 2) and completed by 
Coxeter (6; 7, p. 141). In addition Coxeter enumerated the regular maps on 
the simplest non-orientable surfaces (7, pp. 116, 139), and constructed tables 
of some interesting families of regular maps (3; 7, p. 140). 

Most of the regular maps on a surface of genus 3 have appeared in these 
papers, but no systematic enumeration of them seems to have been attempted. 
The ultimate goal of this paper is a complete list of these regular maps. How­
ever, the families of maps {j-p, q] and {j-p,j-q} which are defined in § 4 and 
listed in Tables I and II are of considerable interest in themselves. Also of 
some importance is the complete list of regular maps of type {£,3} with six 
or fewer faces (§ 5 and Table III). 

A method of deriving regular maps by identification of faces in a regular 
tessellation is introduced in § 2 and used in §§ 5 and 7. Although cumbersome 
in some cases, it is the only reliable tool which has yet been developed for 
completing a list of regular maps of genus p > 1 (Brahana's method (2, pp. 
281-4) is dependent upon the completeness and accuracy of permutation 
group tables). 

1. Elementary concepts and results. A map is a partitioning of an 
unbounded surface into N2 simply-connected, non-overlapping regions called 
faces by means of Ni lines called edges. The N0 intersections of the edges are 
called vertices. 

The Euler-Poincaré characteristic 

1.1 x = ^o - Ni + N2 

has the same value for every map drawn on this surface. If the surface is 
orientable, then 

1.2 x = 2 - 2p, 

where p is the genus of the surface. 
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To every map there corresponds a dual map having No faces, one sur­
rounding each vertex or the original map, Ni edges, one crossing each edge 
of the original map, and N2 vertices, one contained in the interior of each 
face of the original map (5, p. 6). 

With any map there is associated a group of transformations which leave 
the map invariant and preserve incidences, that is, a group of automorphisms 
(7, p. 100). An automorphism is determined by its effect on any one face. 
Suppose that the group contains, in particular, two automorphisms R and 5, 
the first of which cyclically permutes the edges bounding a face F, while 
the other cyclically permutes the edges which meet at a vertex V of F. A 
map containing these two automorphisms is said to be regular. 

It is immediately evident that if the face F is ^-sided, and if a edges meet 
at the vertex V, then every face of the regular map is ^>-sided and exactly q 
edges meet at every vertex. Thus the regular map is composed of p-gons, q 
meeting at each vertex. Such a map is said to be a "map of type {p, #}," in 
analogy with Schlâfli's notation for a regular polyhedron (5, p. 14). The dual 
map is of type {<?, p\ and is, of course, also regular. It also follows from the 
definition of a regular map that the group of the map is transitive on its 
vertices, edges, and faces. 

Suppose that we divide the surface of the regular map of type {p, q] into 
pN2 triangles by adding to the map the lines which join the vertices of each 
face to the corresponding vertex of the dual map (cf. Figure 1 for the case 
of a map of type {6, 3}). Thus each face of the map is made up of p triangles, 
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FIGURE 1 
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each edge borders on 2 triangles, and each vertex is surrounded by 2g triangles. 
I t follows that 
1.3 pN2 = 2Ni = qNo. 

Accordingly if the map has Ni edges it has 2Ni/p faces and 2Ni/q vertices. 
Substituting in formula 1.1, we have for the surface of the regular map: 

1.4 X = 2 ^(I + I_ I ) . 

We define the group of a regular map to be the group which is generated 
by the automorphisms R and S. Examining Figure 1, we note that the auto­
morphism* RS interchanges the triangles OAB and PAB. Thus RS is of 
period 2. It is easy to see that this result is true for any regular map; the 
group of a regular map of type {p, q] must satisfy the relations 

1.5 R? = S< = (RS)2 = E, 

where'£ denotes the identity element. These relations are sufficient to define 
the group if the surface is simply-connected, but in any other case at least 
one extra relation is needed. 

Looking again at Figure 1, we note that the edge AB is carried into itself 
by two automorphisms in the group, namely E and RS. When the surface 
on which the map lies is non-orientable, the group contains two other auto­
morphisms which carry AB into itself. One of these will leave A and B in­
variant, interchanging 0 and P , while the other leaves 0 and P invariant and 
interchanges A and B. These automorphisms are called reflections since they 
operate in a manner analogous to the reflections of the Euclidean plane 
(5, p. 75). Since the group is transitive on the edges of the map it must be 
of order 47^1. 

Any regular map whose automorphisms include reflections is said to be 
reflexible (7, p. 101). Certain non-reflexible regular maps do exist. Coxeter 
(6, p. 26; 7, pp. 103, 107) exhibited the non-reflexible regular maps on a 
surface of genus 1 and stated that no others were known (7, p. 102). However, 
Frucht (9) discovered a non-reflexible regular map on a surface of genus 55 
which is the embedding in that surface of a one-regular graph of degree 
three. Any non-reflexible regular map must lie on an orientable surface, since 
the group of a regular map on a non-orientable surface must contain reflections 
(7, p. 101). 

If the map is on a non-orientable surface, or if it is non-reflexible, the 
group of the map is the complete group of automorphisms. Every map which 
is reflexible and lies on an orientable surface has a larger group of automor­
phisms which we shall call the extended group of the map (4, p. 125). The 
extended group includes reflections and is therefore of order 4.¥i. It contains 
"the group of the map" as a subgroup of index 2. 

*By RS, the product of R and S, we mean the automorphism which is achieved by per­
forming R first and then performing S. 
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The automorphisms that comprise the group of an orientable regular map 
are called rotations. By 1.3 the order of the group may be expressed in the 
forms pN2 or qN0 as well as in the form 2Ni. 

In virtue of relations 1.4 and 1.2, any regular map of type \p, q\ which 
has TVi edges and is on an orientable surface is on a surface of genus 

1.6 p . i - ^ + I - l ) . 

The expressions "regular map on a surface of genus p" will now be shortened 
to ''regular map of genus p." 

The regular maps of genus zero are simply the projections on concentric 
spheres of the 5 convex regular polyhedra, {3,3}, {4,3}, {3,4}, {5,3}, and 
{3,5}. together with the "dihedral" maps {p, 2} (p > 1) and their duals 
{2,p}. The groups of the regular maps of genus zero are the well-known 
polyhedral rotation groups (11, pp. 10-20; 5, pp. 45-7), denoted by the 
symbols [p, g]+ (7, p. 38), whose abstract definitions are given by 1.5 with 
appropriate values for p and q. Thus in the case of the regular maps of genus 
zero, the relations 1.5 are sufficient, as well as necessary, to define the group. 

2. The regular tessellations. The above description of a regular map 
can be extended to include regular maps on an infinite surface. Thus, for 
example, we have in the Euclidean plane the regular maps {4, 4}, {6, 3}, and 
{3, 6}, more commonly called regular tessellations (5, pp. 58, 59). There are 
also regular tessellations in the hyperbolic plane (7, p. 53); they are of type 
{p, q} for all p and q such that (p — 2) (q — 2) > 4. The regular tessellations 
on the sphere are just the regular maps of genus zero. All regular tessellations 
are simply-connected maps. 

As in the case of the regular maps on a sphere, the relations 1.5 are sufficient 
to define the group of a regular tessellation. It follows that the group of a 
regular map of type {p, q} on an orientable surface is a factor group of the 
group of the regular tessellation {p, q). It is also true that the plane of the 
tessellation is a universal covering surface for the surface in question (7, 
pp. 25, 26). These facts suggest a method of discovering regular maps. Begin­
ning with a regular tessellation {p, q] we add further relations to those of 
1.5 by abstractly identifying certain faces of the tessellation (the exact 
procedure in this step will be outlined in the proof of Theorem 3). If the 
added relations do not effect the periods of R, S, and RS, and if they are 
sufficient to make the resulting group finite, let us say of order g, a regular 
map of type {p, q} has been discovered. It has gjq vertices, g/2 edges, and 
g/p faces. It lies on a surface of genus 

(cf. 1.6). 
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Furthermore, the above method will establish the existence or non-existence 
of all regular maps of type [p, q] with given group order. 

3. Some general lemmas. The following lemmas form the essential 
groundwork for all our results. 

LEMMA 1. For any map of type {p, q) on a surface of Euler-Poincarê charac­
teristic x < 1> m i n (P, q) > 3. 

Proof. Consider a map of type {p, q} which has k faces. It follows from 
1.3 and 1.1 that 

X q 2^*' 

Rearranging this equation, we obtain 

k - X = pk(q- 2)/2q. 

If q < 2, then k - x < 0 and x > k > L Thus if x < 1, g > 3. A similar 
argument holds for p when one considers the dual map, of type {q, p). 

LEMMA 2. If two edges belonging to the same face of a regular map are identified, 
the map has only one face. 

Proof. We noted earlier that the group of a regular map is transitive on 
the edges of that map. Thus if two edges of a face are identified, then all 
the other edges of that face are also identified in pairs; the result is a one-
faced map. 

LEMMA 3. If exactly two distinct faces come together at a vertex of a regular 
map of type {p, q], the map is 2-faced, q is even, and the faces alternate around 
the vertex. 

Proof. If a face is contiguous to itself around a vertex, then by Lemma 2 
the map is one-faced, contrary to our hypothesis. Thus q is even and the 
faces, a and £ say, which surround a vertex alternate around that vertex 
(cf. Figure 2, where a and p surround the vertex V). Now consider any edge 
VV (Figure 2). This edge borders on a and /?, and hence a and /5 alternate 
around V as well as around V. This happens at every vertex since the group 
of the map is transitive on its edges. Therefore a and fi are the only faces. 

LEMMA 4. A one-faced map of type {p, q} is regular if, and only if, one of the 
following two conditions is satisfied: 

(i) \p is an even integer and q = p; 
(ii) \p is an odd integer and q = \p. 

Proof. The single face of a one-faced map must have an even number of 
edges since these edges are identified in pairs to form the edges of the map. 
Thus p — 2n, where n is some integer, and the group of the one-faced regular 
map {2n, q] is the cyclic group of order 2n generated by the rotation R of 
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FIGURE 2 

§ 1. Now the group of any regular map may be expressed in terms of the 
generators R and T = RS instead of the R and S used earlier (2, p.269). The 
three relations of 1.5 are then equivalent to 

3.1 Rp = T2 = (RT)9 = E. 

In the present case, T must be expressible in terms of R, and since T2 = E, 
T = Rn. The existence of a regular map of type \2n, q) depends upon the 
period of RT, which must be q. But RT = Rn+1. Hence if the map is regular 

(RT)' = R'W> = E = R2n, 

and therefore 2n\q(n + 1). Now (n, n + 1) = 1, so that if n is even, 2n | q, 
while if n is odd, n \ q. Since the map has only n edges, q < 2n. Thus if n is 
even, q = 2n, while if n is odd, 

(RT)n — R(n+vn = ( i ^ n ^ + n _ ^ 

and thus g | n. But w | q, therefore q = n. Conversely, any one-faced map 
of type {4p, 4p} or {4p + 2, 2p + 1} (p = 0, 1, 2, . . .) is regular. 

It is easily seen from 1.6 that the above two one-faced regular maps lie 
on a surface of genus p. 

LEMMA 5. If the rotation Rh(l < h < p, where p is the period of R) carries a 
vertex, edge, or face of a regular map into itself, while any rotation R*(0 < i < h) 
does not do so, then p = 0 (mod h). 

Proof. The integer p may be put into the form 

p = mh + n 

where m and n are integers and 0 < n < h. Since both Rh and RP ( = E) 
carry the vertex, edge, or face into itself, so also must Rn. Therefore n = 0. 
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LEMMA 6. The abstract definition* 

3.2 Ri* = S* = (i?S)2 = £ , 2P<=>S (0 < (p - 2)(g - 2) < 4) 

w significant only if j \ Q, where Q = 4g/[4 — (p — 2) (g — 2)], and /Ae» defines 
a group of order jpQ. 

Proof. If we exclude the first relation in 3.2 we have 

3.3 SQ = (i?S)2 = E, i?*4^S. 

If SR = J1, this becomes 

r2 = s« = £, (Tsy = (sry. 
These relations define the group ((2, a \ p)) of order PQ2, which was intro­
duced by Coxeter and Moser (7, p. 79). The period of R ( = TS'1) is pQ 
(7, p. 71) and therefore the abstract definition 3.2 is significant only if this 
period is a multiple of jp. If we add to 3.3 the relation Rjp = E, where j \ Q, 
the only effect is to change the period of R to jp ; the periods of 5 and RS will 
remain unchanged. Now it is easily shown that the number of cosets of {R} 
in 3.2 remains the same, no matter what the particular choice of j is. When 
j = 1, the group is [p, g]+, the group of the regular map {p, q) and {R) has 
Q cosets (7, p. 38). Thus the group defined by 3.2 has order jpQ. 

To the group defined by 3.2 or 

(TS)P = (STY = Z, T2 = S* = Zj = E, 

we assign the symbol ((2, g | p)j)). In particular, ((2, q\p\l)) = [p, g]+. 

4. Two new families of regular maps. Coxeter and Moser (7, § 8.8) 
introduced the regular map {p + p, q] (0 < (p — 2)(g — 2) < 4) and its dual 
{g, p + p}, whose group has the abstract definition. 

R2v = T2 = (RT)q = (RPT)2 = E, 

or, in terms of R and S = RT, 

R2P = sq = (RS)2 = £ , i?p <=> 5. 

We generalize this notion by considering the regular map of type {jp, q) 
(0 < (p — 2)(g — 2) < 4) and its dual, of type {q,jp}, whose group G has 
the following property: the centre of G is a cyclic group, generated by Rp, 
where R has its usual meaning as a generator of the group. Such a group G 
will satisfy the following four relations: 

4.1 Rjp = SQ = (RS)2 = E, Rp<=> S. 

By Lemma 6, these relations are significant only if j | Q} where Q — 4g/[4 — 
(p — 2)(q — 2), and then they define the group ((2, q \ p',j)) of order jpQ. 

*The notation A <=± B means that A and B commute. 
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Now the central quotient group of G is the group [p, q]+ of order pQ. Thus G 
is of order jpQ, which is precisely the order of the group ((2, q | p;j)). There­
fore the relations 4.1 define G. 

To the above map of type {jp, q} we assign the symbol {j-p, q}, and denote 
its dual by {q,j-p}. The map occurs for all integer values p > 2, q ^ 2 and 
j > 0 satisfying the two conditions 0 < (p — 2) (q — 2) < 4 and j \ Q. Its 
group is ((2,q\p;j)). 

In particular, the maps {2-p,q) and {q,2-p\ are the \p + p, q) and 
{q, p + p) respectively of Coxeter and Moser (7, § 8.8) who pointed out 
that these maps may be drawn on a two-sheeted Riemann surface of the 
proper genus in a remarkably symmetrical manner. This construction is 
capable of generalization to the case of the regular maps {j.p, q) and {q,j.p} 
(j * 2). 

In the proof of Lemma 6 it was shown that when j = Q, the groups 3.2 
are the groups ((2, q \ p)) of order pQ2. They were shown by Coxeter and 
Moser (7, pp. 79-80) to be the groups of the regular complex polygons 2{2p}qy 

discovered by Shephard (12, p. 92). When these complex polygons are com­
pared with the corresponding regular maps {pQ-q,p}, it can be shown by 
the proper interpretation of the group generators in each case that the vertices 
and edges of the polygon form the same graph as the vertices and edges of 
the map. Thus the map may be regarded as a real representation of the 
complex polygon. 

Generalizing in another direction, we consider the regular map of type 
[jpijç] (0 < (P — 2) (q — 2) < 4) and its dual, of type {jq,jp}, whose 
group G has the following properties: the centre of Gf is a cyclic group 
generated by Rp\ and Rp = Sg, where R and 5 have their usual meanings as 
generators of G'. Such a group will have among its defining relations the 
following : 

4.2 jR? = S* = Z, (RS)2 = Zj = E. 

These relations are significant only if 

where Q = 4g/[4 — (p — 2) (q — 2)], and then they define the group 
(p, q | 2;j) of order jpQ (7, pp. 71-3). This is a factor group of Miller's group 
(p, q | 2) which is defined by the relations 

Rp = S*, (RS)" = E. 

Now the centre {RP} of G is of order j , and the central quotient group of G 
is [p} g]+, of order pQ. Thus G is of order jpQ, which is precisely the order 
of the group (p, q \ 2; j). Therefore G is defined by 4.2. 

To the above type of map whose group is (p, q | 2; j) we assign the symbol 
{j'p>j'<l}, a n d denote its dual by {j-q,j-p}. The map occurs for all integer 
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values p < 2, q > 2 and j > 0 satisfying the two conditions 0 < (p — 2) 
(g - 2) < 4 and 

£ + <Z 
J 

The members {(r + 1) • (r — 1), (r + 1) -2} of this family were noted by 
Coxeter and Moser (7, p. 114). 

The regular maps {p, q} of genus zero are members of the family {j-p, q} 
as well as of the family {j-p,j-q}. With these exceptions, all the regular maps 
{j'py q} anQl U'pyj'Q.} (p > Q) are listed in Tables I and II respectively. The 
sixth column in both tables exhibits some interesting isomorphisms between 
the group of the map and certain well-known groups. The information for 
the sixth column of Table I was kindly supplied by W. O. J. Moser; in the 
case of Table II the source is 7, § 6.6. 

TABLE I 

T H E REGULAR M A P S U'P,q] ( i > 2 ) 

Map No NI N2 Genus Group Order 

{j-2,g} (j\q) 2j k a i ( j - D ( f l - -2) « 2 , < z | 2 ; j » 2jq 

k- 2,3) 2<Z f q ifa-Dfa- -2) «2 , q | 2 » If 
{2 £,2} 2p 2P 2 0 «2 , 2 | p)) ^ ®2p 4p 
(2 3,3) 8 12 4 l « 2 , 3 | 3 ; 2 » ^ 9 l 4 X £ 2 24 

14 3,3) 16 24 4 3 «2 , 3 | 3 » 48 

{2 4,3) 16 24 6 2 « 2 , 3 | 4 ; 2 » 48 

13 4,3) 24 36 6 4 « 2 , 3 | 4 ; 3 » 72 

16 4,3) 48 72 6 10 «2 , 3 | 4 » 144 
(2 5,3) 40 60 12 5 «2 , 3 | 5 ; 2 » Ê Ë § l 5 X e 2 120 
(3 5,3) 60 90 12 10 ((2, 3 | 5 ; 3 » ^ § I 5 X S 3 180 
(4 5,3) 80 120 12 15 «2, 3 ( 5; 4 » 240 

{6 5,3) 120 180 12 25 « 2 , 3 | 5 ; 6 » ^ 2 l 5 X e 6 360 
(12 5,3) 240 360 12 55 ((2, 3 | 5 » 720 

(2 3,4) 12 24 8 3 ((2, 4 | 3 ; 2 ) > ^ @ 4 X e 2 48 

{4 3,4) 24 48 8 9 < ( 2 , 4 | 3 ; 4 » ^ © 4 X e 4 96 

(8 3,4} 48 96 . 8 21 ((2, 4 | 3 » 192 

(2 3,5) 24 60 *20 9 «2, 5 | 3 ; 2 » ^ a . 5 X S 2 120 
{4 3,5} 48 120 20 27 « 2 , 5 | 3 ; 4 » 240 
{5 3,5} 60 150 20 36 ((2,5 | 3 ; 5 » ^ 2 I 5 X £ 6 300 

|10 •3,5} 120 300 20 81 ((2, 5 | 3 ; 1 0 » ^ 3 I 5 X S i o 600 
(20-3,5) 240 600 20 171 «2, 5 | 3 » 1200 

5. Regular maps of type [p, 3). In some respects the most interesting 
regular maps are those which have 3 faces at a vertex. We shall now proceed 
to enumerate these maps when the number of faces is small. 

To facilitate reference to it, a map of type [p, q] having k faces will be 
denoted by the symbol k{p, q}. In particular we shall now study the regular 
maps k{p, 3} for small values of fe. 
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TABLE II 

T H E REGULAR M A P S {j-p,j-q} (p > q;j > 2) 

Map No JVi N2 Genus Group Order 

U'PJ'2] U\P+Z) P JP 2 hU-VP <P,2\2;j) 2jp 
{(p+2).p,(P+2)-2] P P(P+2) 2 iP(P+V (P, 2 | 2) 2p(p+2) 

{2-3,2-3} 4 12 4 3 < 3 , 3 | 2 ; 2 > Ê Ë 2 1 4 X Ê 2 24 
{4-3,4-3} 4 24 4 9 < 3 , 3 | 2 ; 4 ) ^ 2 l 4 X ® 4 48 
(8-3,8-3} 4 48 4 21 (3, 3 | 2> 96 
{2-4,2-3} 8 24 6 6 (4 ,3 | 2 ; 2 ) 48 
{7-4,7-3} 8 84 6 36 <4, 3 | 2; 7> 168 

{14-4,14-3} 8 168 6 78 (4, 3 | 2) 336 
{2-5,2-3} 20 60 12 15 <5, 3 | 2 ; 2 > ^ 3 l 5 X S 2 120 
{4-5,4-3} 20 120 12 45 < 5 , 3 | 2 ; 4 > ^ 2 l 5 X S 4 240 
{8-5,8-3} 20 240 12 105 < 5 , 3 | 2 ; 8 > ^ 2 Ï 5 X S 8 480 

{16-5, 16-3} 20 480 12 225 ( 5 , 3 | 2 ; 1 6 ) ^ 2 t 5 X S i 6 960 
{32-5,32-3} 20 960 12 465 (5, 3 | 2) 1920 

From Lemma 4 we deduce 

THEOREM 1. The only regular map l{p, 3} is the map {6, 3}i,o of genus 1 
(6, p. 25). 

Lemmas 2 and 3 imply 

THEOREM 2. There is no regular map 2{p, 3}. 

Turning now to the case k = 3, we exhibit in Figure 3 a part of the regular 
tessellation {p, 3}. In virtue of Lemmas 2 and 3 the three faces of a regular 

FIGURE 3 
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map z{p, 3} are situated in the manner of the faces a, /3, and 7. Since the 
map is 3-faced, ô must be identified with /3. Thus, representing faces by right 
cosets* of {R}, where the automorphisms R and S act in the indicated manner, 
we have 

{R}SR2 = {R\S. 

In particular, there is an integer / such that 

SR2 = RlS. 

Thus the generators of the group of z{p, 3} must satisfy this relation as well 
as 

B? = S3 = (RS)2 = E. 
It follows that 

Rl = SIPS'1 = S~2R2S2 = S-iRSR'S-'R-'S 

= S-'RRtR-'S = S-WS = R\ 

and the extra relation reduces to 

R2 <± S. 

Moreover, Lemma 5 shows that p is even. Thus the abstract definition 

5.1 X? = S* = (RS)2 = E, R2^±S 

is a special case of 3.2, and Lemma 6 shows that p = 2 or 6. Thus we have 

THEOREM 3. There are exactly two regular maps s{p, 3}, namely {2,3} of 
genus zero and {3-2, 3} of genus 1. 

In the notation of Coxeter (6, p. 25), {3-2, 3} is the map {6, 3}i,i. 
Lemma 6 also shows that the identification of faces carried out in the 

above case can yield only a 3-faced regular map (of type {p, 3}). Thus the 
four faces of any map A{p, 3} are situated in the manner of a, /3, 7, and 5 
in Figure 3, and e must be identical with ,5. By similar reasoning to that 
used in proving Theorem 3, we now have 

THEOREM 4. There are exactly three regular maps 4{p, 3}, namely {3,3} of 
genus zero, {2-3, 3} of genus 1, and {4-3, 3} of genus 3. 

In the notation of Coxeter (6, p. 25; cf. 7, p. 116), {2-3,3} is the map 
{6,3}2> 

Turning now to the case b{p, 3}, we prove 

THEOREM 5. There is no regular map 5{p, 3}. 

*Since the rotation R carries a into itself, « may be represented in the group by the sub­
group {R} while the other faces are represented by right cosets of {R} (2, p. 270). Thus there 
is a (1,1) correspondence between the faces of a regular map and the right cosets of {R} in 
its group. 

The reader is requested to insert the letter /3 in the face to the right of a (Figure 3). 
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Proof. Suppose that a regular map b{p, 3} exists. Then in view of the 
results of the two previous theorems, its faces must be situated in the manner 
of a, /3, 7, 8, and e in Figure 3, and f must be identical with /3. The group of 
the map must therefore satisfy the relations 

5.2 Rp = Sz = (RS)2 = £ , R* <± S, 

where p = 0 (mod 4). But by Lemma 6, 5.2 defines a group of order 6p, 
while a regular map b{p, 3} must have a group of order 5£. The group defined 
by 5.2 cannot have a factor group of order 5p; hence there is no regular 
map '{£,3}. 

It was noted in the above proof that 5.2 defines a group of order 6p. Hence 
the identification of f with (3 in Figure 3 yields regular maps 6{p, 3}. We ask 
if any other identification of faces in the tessellation {p, 3} will yield 6-faced 
regular maps. The only other possible arrangement is to let a, j3} y, 5, e, and 
f be the 6 faces and identify rj with /3. This gives rise to a group satisfying 
the relations 

5.3 Rp = S3 = (RS)2 = £ , Rb <=± S 

where p = 0 (mod 5). By Lemma 6 this defines a group of order 12^, while 
a regular map 6{p, 3} must have a group of order 6p. Thus relations 5.3 are 
insufficient to define the group which we seek, and we must add a further 
relation. Since the regular map we seek is 6-faced, the face 6 of Figure 3 
must be identified with a, /3, y, ô, e, or f. Each face is surrounded by 5 different 
faces, and therefore 6 can only be identified with (3; in symbols 

{R}SR~1SR2 = {R}S. 

In particular, there is an integer / such that SR^SR2 = RlS. However, if we 
add this relation to those of 5.3 and enumerate right cosets of {R} by the 
Todd-Coxeter method (7, p. 12), a collapse occurs in the tables which reduces 
the number of cosets of {R} to one. Thus we eliminate the possibility of a 
group of order Qp. 

Since the Todd-Coxeter method will be employed many times in similar 
situations, it is perhaps advisable to exhibit the tables in this case. They are 

RRRRR. . .R SSS. RSRS R5 S S R5 

1 1 1 1 1 1 1 1 1 2 3 1 1 1 2 3 1 1 1 2 1 2 2 
2 3 4 5 6 2 6 2 4 6 5 4 3 4 6 2 3 2 2 3 2 3 3 

4 5 4 5 4 
5 6 5 6 5 

3 3 1 3 1 1 

SR-'SR2 RlS 
1 2 6 5 2 1 1 2 
2 3 2 3 5 2 6 5 
3 1 1 2 4 3 5 4 

The table for the fifth relation indicates that Rl carries coset 2 into coset 6 
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and at the same time carries coset 3 into coset 5. Transferring this informa­
tion to the table for the first relation, we see that cosets 2, 3, 4, 5, and 6 are 
identical. But the table for the second relation then indicates that coset 2 
= coset 1 and the collapse is complete. It is important to notice that the 
enumeration of cosets is carried out without knowing the specific values of 
p and /. This time-saving fact should be kept in mind and applied to any 
particular case when an enumeration of cosets is desired in the following 
pages. 

Collecting the above results, and taking Lemma 6 into account, we have 

THEOREM 6. The only regular maps 6{p, 3} are {4, 3} of genus zero, {2-4, 3} 
of genus 2, {3-4, 3} of genus 4, and {6-4, 3} of genus 10. 

It is not difficult to classify completely the regular maps k{p, 3} for other 
small values of k by using the above methods. For example, it can be shown 
quite easily that there is only one regular map 7{p, 3}, namely (6, p. 25) the 
map {6, 3}2,1 of genus 1. For the present, however, we shall confine ourselves 
to the following result, obtained by an examination of the proofs of Theorems 
3-6. 

THEOREM 7. The faces of any regular map, k{p, 3} (k > 6) are surrounded 
by at least five other distinct faces. 

The regular maps k{p, 3) (k < 6) are listed in Table III . 

TABLE III 

T H E REGULAR M A P S OF T Y P E {p, 3} WITH SIX OR F E W E R FACES 

Symbol No tfi N2 Genus Group 

{6,3} l f 0 2 3 1 1 e8 
(2,31 2 3 3 0 [2, 3 ] + ^ ®» 
{3-2,3} 6 9 3 1 «2 , 3 | 2 » 
{3,3} 4 6 4 0 [3, 3]+^ 3I4 
{2-3,3} 8 12 4 1 «2, 3 | 3; 2» ^ S I U X Ê Î 
{4-3,3} 16 24 4 3 «2 , 3 | 3 » 
{4,3} 8 12 6 0 [4, 3 ] + ^ ©4 
{2-4,3} 16 24 6 2 « 2 , 3 | 4 ; 2 » 
{3-4,3} 24 36 6 4 « 2 , 3 | 4 ; 3 » 
{6-4,3} 48 72 6 10 «2 , 3 | 4 » 

6. The arithmetically possible maps of genus 3. The first step in 
determining the regular maps of genus 3 is to list all the maps of type {p, q] 
whose vertices, edges, and faces satisfy 1.1 with % = — 4. We call them the 
arithmetically possible maps of genus 3. 

To facilitate the enumeration of these maps we prove the following theorem, 
due to Coxeter: 
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THEOREM 8. For any map of type {p, q] on a surface of characteristic x < 0, 
if P > Q> then q < 2 (2 — %)• 

Proof. In terms of p, q, and k (the number of faces of {p} q}), formula 1.1 is 
kp kp 

that is, 
6.1 2kp - kpq + 2kq - 2xq = 0. 

Now p > q, k > 1, and x < 0; hence 

(l - x)P - q > xq, 
k[(l - x)P - q] > - xq, 

(l - x)kp > kq - Xq, 

2(1 - x)kp >2kq-2xq. 

But by 6.1, 2kq - 2xq = kpq - 2kp. Therefore 
2(1 - x)kp > kpq - 2kp, 
[2(2 - x) -q]kp>0, 

q<2(2- x ) . 

In particular, when the map of type {p, q} lies on a surface of genus 3, 
X = — 4, and q < 12. Now 6.1 with x = ~~ 4 may be written in the form 

kp(q - 2) = Sq + 2kq. 

6.2 p = (Sq/k + 2q)/(q-2). 

We tabulate the solutions of 6.2 for specified values of q. Since 3 < q < 12 
(cf. Lemma 1 of § 3) when p > q, we have only 10 diophantine equations to 
consider in order to list all the arithmetically possible maps of type {p, q] 
(p > q) and genus 3. The maps omitted (those for which p < q) are simply 
the duals of maps already listed. 

From 1.3 we see that pk must be even; hence any solution of 6.2 for which 
pk is odd does not yield an arithmetically possible map. With this in mind, a 
complete list of the arithmetically possible maps of type {p, q) (p > q) on 
a surface of genus 3 is given by Table IV. The final column of the table 
indicates the order which the group of the map must have if it happens to 
be regular. The rows are numbered for easier reference. 

7. The regular maps of genus 3. The problem now is to isolate the 
regular maps which lie among the arithmetically possible maps in Table IV. 
We determine first the regular maps 1{p,q\. Then, using the method of 
Brahana (2, p. 280) we determine the regular maps 2{p, q}. We then note the 
regular maps of genus 3 which occur in the tables of Coxeter mentioned 
previously. Finally, the remaining possibilities in Table IV will be tested by 
recourse to the results of §§ 3, 4, and 5, and by methods not unlike those 
used there. 
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TABLE IV 

THE ARITHMETICALLY POSSIBLE MAPS OF TYPE {p, q] (p > g) AND GENUS 3 

Type NQ Nt N2 g 

1. {12,12} 1 6 1 12 
2. {14,7} 2 7 1 14 
3. {20, 4} 5 10 1 20 
4. {30, 3} 10 15 1 30 
5. {8,8} 2 8 2 16 
6. {9,6} 3 9 2 18 
7. {10,5} 4 10 2 20 
8. {12,4} 6 12 2 24 
9. {18,3} 12 18 2 36 
10. {14,3} 14 14 3 42 
11. {6,6} 4 12 4 24 
12. {8,4} 8 16 4 32 
13. {12,3} 16 24 4 48 
14. {6,5} 6 15 5 30 
15. {10,3} 20 30 6 60 
16. {5,5} 8 20 8 40 
17. {6,4} 12 24 8 48 
18. {9,3} 24 36 8 72 
19. {8,3} 32 48 12 96 
20. {5,4} 20 40 16 80 
21. {7,3} 56 84 24 168 

Applying Theorem 1, we discover two 1-faced regular maps of genus 3, 
namely l{\2, 12} and 1{ 14, 7}, and exclude possibilities 3 and 4 in Table IV. 
The regular maps x{12, 12} and ^14, 7} may be denoted by the symbols 
{12, 12} i)0 and {14, 7} 2, in analogy with the corresponding cases of regular 
maps of genus 2 (7, p. 141). The group of {12, 12}it0 is the cyclic group of 
order 12, while the group of {14, 7}2 is the cyclic group of order 14. 

In virtue of Lemmas 2 and 3 we may immediately rule out numbers 7 
and 9 in Table IV as possibilities for regular maps. To determine whether 
the remaining 2-faced maps are regular or not, we use the method initiated 
by Brahana (2, p. 280), that is, given the 2-faced map of type {p, g}, we 
look for a group generated by R and T = RS (cf. 3.1), with the defining 
relations 

RP ,= T2 = E, TRT = Rn 

where n2 = 1 (mod p), and implying that RT is of the desired period, namely q. 
In case no. 5 we have p = 8, and hence 

7.1 n2 = 1 (mod 8). 

Solutions are n = 1, 3, 5, and 7. If n = 1, then RT = TR and RT is of 
period 8. Thus there exists a regular map of type {8, 8} and genus 3 whose 
group is defined by the relations 

R* = T2 = £ , R +± T. 
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The map is analogous to the regular map {6, 6} 2 of genus 2 (7, p. 141); accord­
ingly we denote it by the symbol {8, 8}2. The solution n = 3 of 7.1 gives no 
further regular map of type {8, 8}, nor does the solution n = 7. But when 
n — 5, RT is again of period 8 and hence there exists another regular map 
of type {8, 8} and genus, 3, whose group has the abstract definition 

RS = T2 = E, TRT = R\ 

It was shown by Coxeter and Moser (7, p. 114) that this abstract definition 
may be put in the form 

7.2 T2 = E, TST = S~3 

and that the above relations define Miller's group (2, 2 | 2). Accordingly, 
the map is denoted by the symbol {4-2, 4-2} (cf. Table II). This is the "map 
of type {8,8}" mentioned by Coxeter and Moser (7, p. 114), a member of 
the sub-family of regular maps {(r + 1) • (r — 1), (r + l)-2} on a surface of 
genus \r{r — 1). 

Proceeding in the,manner outlined above, we eliminate case 6 in Table IV, 
but discover corresponding to case 8 a regular map of type {12, 4}. Its group 
has the abstract definition 

£12 = T2 = E j TRT = RK 

This is the group (6, 2 | 2; 2) (7, p. 114), and therefore the map is denoted by 
the symbol {2-6, 2-2}. It is a member of the sub-family of maps {2-2p, 2-2}, 
to which Coxeter and Moser give the symbol {4p, 4}i,i (7, p. 115). Another 
symbol for the group (6, 2 | 2 ; 2 ) is S4 X SD3 (cf. 7, p. 10, (1.861) when 
r = 5, m = 3, n = 2). 

An important family of regular maps is the family whose members are 
characterized by specified Pétrie polygons. A Petrie polygon of a map is a 
* 'zig-zag" along its edges such that every two but no three successive edges 
of the polygon are edges of a single face. For example the path ABCDEF. . . 
of Figure 4 is a Petrie polygon. A regular map of type {p, q} characterized 
by its r-gonal Petrie polygons is denoted by the symbol \p, q]T. If the map 
is on an orientable surface, then r is even (7, p. I l l ) and the group of the 
map has the abstract definition 

7.3 Rp = Sq = (RS)2 = (R2S2)n = E 

where n = \r (4, p. 126). The dual of {p, q}r also has r-gonal Petrie polygons 
and is denoted by the symbol {q, p\T. 

The previous use of the symbols {14, 7}2 and {8,8}2 is easily shown to 
be justified. In addition to these two cases of regular maps {p, q}2n of genus 3, 
the tables of Coxeter and Moser (7, p. 140) contain {8, 3}6 and {7, 3}8, corre­
sponding to entries 19 and 21 in Table IV. We thus establish the existence 
of two more regular maps of genus 3. The map {7, 3}8 was discussed in 1879 
by Klein (10); Dyck (8) examined {8, 3}6 in 1880. 
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FIGURE 4 

The relations 7.3 form an abstract definition for the group (2, q, p\ ri) 
(4, p. 86). Thus in particular (2, 3, 8; 3) is the group of {8, 3}6 and (2, 3, 7; 4) 
is the group of {7, 3}8. The latter is the simple group LF(2, 7) (7, p. 96). 

We have not yet shown that {8, 3}6 and {7, 3} 8 are the only regular maps 
of types {8, 3} and {7, 3} on this surface. We shall postpone the proof until 
we are ready to make a systematic study of all the regular maps of type 
[p, 3} and genus 3. 

We now seek regular maps of genus 3 among the regular maps having 
specified holes. A hole is a path along the edges of a map such that at each 
vertex visited we leave two faces on (say) the left (3, p. 38). Thus, for 
example, the path ACDGHIA in Figure 4 is a hexagonal hole. A regular 
map of type {p, q} characterized by its n-gonal holes is denoted by the 
symbol {p, q | n) and its group, denoted by (p,q\2,n), has the abstract 
definition 
7.4 Rp = S« = (RS)2 = (R-'Sy = E 

(4, p. 74). If n = 2, then p and q are even (7, p. 109). Suppose that n = 2, 
p = 4, and q is any even number. Then the final relation in 7.4 is 

(R-'S)2 = E. 

Since RA = (RS)2 = E, this relation implies 

R2SR2 = RS-'R = S, 

whence 
R2<=>S. 
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Thus 

and 

(cf. Table I). Dually 

(4, q | 2, 2) ^ « 2 , q | 2; 2 » 

{4, q | 2} = |2-2, g} 

{g,4 |2} = {2 ,2.2}. 

Consulting Coxeter and Moser (7, p. 109), we discover the regular map 
{8, 4 | 2} = {8, 2-2}, of genus 3, which occurs in Table IV as case 12. 

Having found one regular map of type {8, 4} and genus 3, we ask if there 
are any others. To answer this question we exhibit in Figure 5 a diagram 
of the arrangement of the four faces a, 0, 7, and ô of any regular map 4{8, 4}, 

FIGURE 5 

this arrangement being the only one possible because of Lemmas 2 and 3 
of § 3. Again by Lemma 2 and 3 the face e of the regular tessellation {8, 4}, 
which must now be identified with one of the former 4 faces, cannot be 
identified with a or 5. Applying Lemma 5 to the face a, we see that e cannot 
be identified with 7. Thus e must be identified with /3; in symbols 

{R}SR2 = {R}S. 
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In particular for some integer /, 

SR2 = RlS. 

Since Rl is of the same period as i?2, / = ± 2 . If I = — 2. the group of the 
map must satisfy the following relations: 

7.5 Rs = S4 = (RS)2 = E, SR2 = R~2S. 

The final relation rewritten is 

S~1R(RSR)R = E, 
S~1RS-1R = E (since (RS)2 = E). 

Thus 7.5 is identical with 7.4 when p = 8, g = 4, and w = 2. We have, 
therefore, no new regular map for the case / = — 2. When 1 = 2, the group 
of the map must satisfy the relations 

R* = 54 = (RSy = Ej R*+±S, 

which define the group <(2, 4 | 2; 4)) ^ «2, 4 | 2)). Thus the above choice of 
/ yields a second regular map of type {8, 4} and genus 3, which is denoted 
by the symbol {4-2,4} (cf. Table I). 

In an extension of his concept of a hole, Coxeter (3, p. 59) introduced the 
notion of a second hole. This is a path along the edges of a map such that at 
each vertex visited we leave three faces on (say) the left. Thus, for example, 
the path A CE J . . . of Figure 4 is a second hole. A regular map of type {p, q) 
characterized by its n-gonal second holes is denoted by the symbol {p, q\,n}, 
and its group has the abstract definition 

7.6 & = S* = (RS)2 = (RS~2)n = E. 

Coxeter (3, p. 61) compiled a list of regular maps {p, q\,n}. There are three 
unfortunate omissions in this table, which were later corrected by Coxeter. 
They are 

{4,6 |,2} 12 24 8 3 ©4 X £2 48 
{5,6 | ,2} 24 60 20 9 2I5 X S2 120 
{3,11| ,4} 2024 3036 552 231 LF(2,23) 6072 

In the complete table there are three regular maps of genus 3, namely {3, 8|, 3}, 
{3, 7 |, 4}, and {4, 6 |, 2}, corresponding to entries 19, 21, and 17 in Table 
IV. The group of {3, 8 |, 3} has the abstract definition 7.6 with p = 3, q = 8, 
and n = 3 while the group of {3,7 |, 4} is 7.6 with p = 3, q = 7, and n = 4. 
It is easily seen by comparing 7.6 with 7.3 that any map {3, q \ , n) is identical 
with the map {3, q)2n. Thus {3, 8 |, 3} is {3, 8}6 and {3, 7 |, 4} is {3, 7}8. Be­
cause of the ease with which it may be dualized, the latter symbol in each 
case is used exclusively to denote the map. 

The group of the regular map {4, 6 |, 2} has the abstract definition 

R* = S4 = (RS)2 = (R~2S)2 = E. 
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It is easily shown that the above relations are equivalent to 

7.7 RQ = S4 = (RS)2 = E, i?3 <=̂  5. 

But these relations define the group ((2, 4 | 3; 2}) and therefore {4, 6 |, 2} will 
be denoted by the symbol {4, 2-3}, which dualizes more easily. 

We wish to determine whether or not there are any other regular maps 
of type {6, 4} and genus 3. To this end we exhibit in Figure 6 a part of the 

£ 

FIGURE 6 

regular tessellation {6,4} in the hyperbolic plane. There are three possible 
arrangements of the faces of a regular map around the face a, namely 

(i) only two distinct faces are contiguous with a, 
(ii) only three distinct faces are contiguous with a, 

(iii) six distinct faces are contiguous with a. 

Case (i) is easily dispensed with, for if there were such a regular map, we 
would have the relation 

{R}S = {R}SR\ 

which implies, for some integer /, the relation 

RlS = SR2. 
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When this is added to 

7.8 i?6 = S4 = (RS)2 = E 

it is not hard to show that there are only 4 right cosets of the subgroup {R}. 
This eliminates the possibility of an 8-faced map. Case (iii) is likewise easily 
dispensed with, for it is readily seen that the face 0 (Figure 6) must be one 
of the six faces which surround a. Taking into account the symmetry of the 
map, this implies 

\R}S> = {R}SR-t ( j = l o r 2 ) , 

which in turn implies either 

RlS2 = SR-1 

or 
RmS2 = SR-2 

for some integers / and m. But if we add either one of these relations to 7.8 
and enumerate cosets of {R}} we obtain a collapse which implies a breakdown 
of the proposed structure of the map. Thus case (ii) is the only possible 
arrangement of faces surrounding a that can yield a regular map. In this 
case 7 and ô must be identical; in symbols 

{R}S = {R}SR\ 

This implies in particular that 

RlS = SR" 

for some integer / . I f the period of R is to remain at 6, then I = 3 and the 
only regular map that this case yields is the map whose group has the abstract 
definition 7.7, that is, the group ((2, 4 | 3; 2» . Therefore {2-3, 4} is the only 
regular map of type {6, 4} and genus 3. 

We shall now consider the maps k[p, 3} with k > 3 in the order in which 
they appear in Table IV, applying the results of §§ 3 and 5. 

By Theorem 3, case no. 10 is eliminated; there is no regular map 3{14, 3}. 
There is, however, by the result of Theorem 4, exactly one regular map of 
type {12, 3} and genus 3. It is the regular map {4-3, 3}, and corresponds to 
case 13 in Table IV. 

Theorem 6 eliminates case 15 as a possibility for a regular map. 
Applying Theorem 7 and Lemma 5 to case 18, we see that if the number 

of faces of a regular map of type {9, 3} is > 6 it must be > 10. But the arith­
metically possible map of type {9, 3} and genus 3 has only 8 faces and therefore 
cannot be regular. 

Having already found one regular map of type {8, 3} and genus 3, namely 
{8, 3} 6, we now check the possibility of others. In view of Theorem 7 and 
Lemma 5 we know that a face a of a regular map 12{8, 3} must be surrounded 
by 8 other distinct faces. Now either the face P of the tessellation {8, 3} 
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FIGURE 7 

(cf. Figure 7) is one of these 8 faces, or else it is one of the 3 remaining faces. 
If the former alternative is true we have, taking into account the symmetry 
of the map, 

{R}SR~1S = [R}SRrj (J = 2 or 3). 

In particular, we have for some integers / and m, 

RlSB-lS = SR-2 

or else 
R^R-'S = SR~\ 

Adding each of these in turn to the relations 

7.9 R8 = S* = (RS)2 = E, 

and enumerating cosets of {R}, we prove in both cases that the structure 
of the faces surrounding a is broken down by the proposed identification 
of #. Hence 0 must be a tenth face of the map. If fi is not one of the faces 
surrounding a then neither is y. Moreover y is not identical to ft since both 
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/3 and y border on one and the same face. Thus y is an eleventh face. However, 
Lemma 5 implies that ô must be identical with /3; hence 

{R}SR~1S = {R}SR~1SR2. 

Thus, for some integer /, 

R'SR-'S = SR~lSR\ 

If we add this relation to 7.9 and enumerate cosets of {R} in the group thus 
defined, we obtain 12 cosets and the correct group structure if, and only if, 
I = 2. The relation IPSR^S = SR^SR2 rewritten is 

R'SR-'S-1 = SR-'SRRS. 

Since (RS)2 = E, this relation becomes 

R2SSR = SR-'S-'S-'R-1 

CR'S-1)8 = E (since S3 = E). 

This is the fourth defining relation of the group of the regular map {8, 3} 6 
(cf. 7.3 when p = 8, q = 3, n = 3). Hence {8, 3} 6 is the only regular map 
of type {8, 3} and genus 3. 

In a similar fashion we may prove that {7, 3} g is the only regular map 
of type {7, 3} and genus 3. The method is now apparent; we build up the 
structure of the map step by step, using the theory of §§ 3 and 5, and testing 
each step by examining its effect on the group of the regular tessellation {7, 3}. 

The only entries in Table IV which remain to be considered are 11, 14, 16, 
and 20. In case 11 we seek a 4-faced regular map of type {6, 6}. In virtue 
of Lemmas 2, 3, and 5 of § 3, and the fact that the map has only 4 faces, it 
follows that three distinct faces surround a vertex, and their arrangement 
must be like that of a, /3, and y in Figure 8. Thus we have the relation 

{R\S* = {R}. 

In particular there is an integer I such that 

.S3 = Rl. 

Since S and R are both of period 6, / = 3. Adding the relation Sz = Rz to 

Re = S« = (RS)2 = E 

we note that the relations may be put into the form 

R3 = S3 = z , (RS)2 = Z2 = E, 

which defines the group (3, 3,| 2; 2). This is the group of the regular map 
{2-3, 2-3}, isomorphic to the group 2l4 X S2 (7, p. 73). The map {2-3, 2-3} 
is the only regular map of type {6, 6} and genus 3. 

The remaining three cases, 14, 16, and 20 in Table IV, yield no regular 
maps. As in previous cases this fact may be verified by assuming in each 
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FIGURE 8 

case that such a map exists, and then attempting to find its group by identify­
ing faces of the regular tessellation from which the map would arise. Every 
identification that is possible proves to be unfruitful. With the help of the 
lemmas of § 3, this procedure is neither difficult nor unduly long. 

TABLE V 

T H E REGULAR M A P S OF GENUS 3 

Map No Nt N2 Dual Group Order Reference 

12,12}i,o 1 6 1 Self-dual £l2 12 (7, p. 61) 
14,7}2 1 7 2 {7,14), <£l4 14 (7, p. 140) 
8,8}2 2 8 2 Self-dual S8x62 16 (7, p. 140) 
4-2,4-2} 2 8 2 Self-dual (2, 2 | 2) 16 (7, p. 114) 
2-6,2-2} 2 12 6 (2-2,2-6} ( 6 , 2 | 2 ; 2 > ^ S 4 X S ) 3 24 (7, p. 115) 
2-3,2-3} 4 12 4 Self-dual (3, 3 | 2 ; 2 > ^ 2 I 4 X £ 2 24 
8,2.2} 4 16 8 {2-2,8} «2, 8 | 2; 2 » ^ (8,4 | 2, 2) 32 (7, p. 109) 
4-2,4} 4 16 8 {4,4-2} «2, 4 | 2 » 32 
4-3,3} 4 24 16 {3,4-3} «2, 3 | 3 » 48 
2-3,4} 8 24 12 {4,2-3} « 2 , 4 i 3 ; 2 » ^ @ 4 X e 2 48 (7, p. 115) 
8 ,3} 6 12 48 32 {3,8}6 (2, 3, 8; 3) 96 (7, p. 140) 
7 ,3} 8 24 84 56 {3,7}8 (2, 3, 7; 4) ^ L F ( 2 , 7) 168 (2, p. 278) 

(7, p. 140) 
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The 12 regular maps of genus 3 (a map and its dual counted as one) are 
listed in Table V. Figures 9-20 are drawings of the maps in which the 
edges are numbered. Those bordering edges which are numbered alike are 
to be identified. 

FIGURE 9: 12, 12}i,0 FIGURE 10 U4,7 | , 
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X X 
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X X 7 

FIGURE 12 x_ 
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FIGURE 13: {2-6,2-2} FIGURE 14: {2-3,2-3} 

https://doi.org/10.4153/CJM-1959-046-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1959-046-9


REGULAR MAPS 477 

l l ^ K j , . ^ ^ - ^ 5 

w 
15 

& 
16 12 

10 

%/ 9 

m 

14-

7 

10, 

15 

ir 11 3 \ ^ 
4 4 5 

FIGURE 15: {8-2, 2} 

1Ï 

FIGURE 16: (4-2,4) 

^ 5 18^ ~~~-47 20^ 

A V \ 
/ 7 \ 

£ 
V \ 

r* 

20/ S ^ \ 

/ ^ 3 

w 
9 

2l\ 
^ ^ 0 / r4 

l g / 
\ Z1 

1E \ X/ 

-^14 2T" 
V7 

FIGURE 17: {3,4-3} 

https://doi.org/10.4153/CJM-1959-046-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1959-046-9


478 F. A. SHERK 

FIGURE 18: {4,2-3} 
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FIGURE 19: {3, 8j6 
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FIGURE 20: )3, 7)8 

https://doi.org/10.4153/CJM-1959-046-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1959-046-9


480 F. A. SHERK 

REFERENCES 

1. H. R, Brahana, Regular maps on an anchor ring, Amer. J. Math., 48 (1926), 225-40. 
2. , Regular maps and their groups, Amer. J . Math., 49 (1927), 268-84. 
3. H. S. M. Coxeter, Regular skew polyhedra in three and four dimensions and their topological 

analogues, Proc. London Math. Soc. (2), 43 (1937), 33-62. 
4. , The abstract groups Gm'n'?, Trans. Amer. Math. Soc , 45 (1939), 73-150. 
5. , Regular polytopes (London, 1948). 
6# f Configurations and maps, Reports of a Math. Colloq. (2), 8 (1948), 18-38. 
7. H. S. M. Coxeter and W. 0 . J. Moser, Generators and relations for discrete groups, Ergebn. 

Math., 14 (1957). 
8. W. Dyck, Notiz ueber eine regulàre Riemann'sche Flache vom geschlechte drei und die zuge-

hbrige "normalcurve" vierter ordnung, Mat. Ann., 17 (1880), 510-16. 
9. R. Frucht, A one-regular graph of degree three, Can. J. Math., 4 (1952), 240-7. 

10. F. Klein, Ueber die transformationen siebenter ordnung der elliptischen functionen, Mat. 
Ann., 14 (1879), 428-71. 

11. , Lectures on the icosahedron and the solution of equations of the fifth deegree tran9. 
G. C. Morrice (London, 1913). 

12. G. C. Shephard, Regular complex polytopes, Proc. London Math. Soc. (3), 2 (1952), 82-97. 

University of Toronto 

https://doi.org/10.4153/CJM-1959-046-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1959-046-9

