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Abstract. We study relations between subsets of integers that are large, where large can be
interpreted in terms of size (such as a set of positive upper density or a set with bounded
gaps) or in terms of additive structure (such as a Bohr set). Bohr sets are fundamentally
abelian in nature and are linked to Fourier analysis. Recently it has become apparent that a
higher order, non-abelian, Fourier analysis plays a role both in additive combinatorics and
in ergodic theory. Here we introduce a higher-order version of Bohr sets and give various
properties of these objects, generalizing results of Bergelson, Furstenberg, and Weiss.

1. Introduction
1.1. Additive combinatorics and Bohr sets. Additive combinatorics is the study of
structured subsets of integers, concerned with questions such as what one can say about
sets of integers that are large in terms of size or about sets that are large in terms of additive
structure. An interesting problem is finding various relations between classes of large sets.

Sets with positive upper Banach density or syndetic sets† are examples of sets that are
large in terms of size. A simple result relates these two notions: if A ⊂ Z has positive
upper Banach density, then the set of differences 1(A)= A − A = {a − b : a, b ∈ A} is
syndetic.

An example of a structured set is a Bohr set. Following a modification of the traditional
definition introduced in [2], we say that a subset A ⊆ Z is a Bohr set if there exist

† If A ⊂ Z, the upper Banach density d∗(A) is defined to be

limsup
bn−an→∞

|A ∩ [an , bn ]|

bn − an
.

A set A ⊂ Z is said to be syndetic if it intersects every sufficiently large interval.
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m ∈ N, α ∈ Tm , and an open set U ⊂ Tm such that

{n ∈ Z : nα ∈U }

is contained in A (see Definition 2.1). It is easy to check that the class of Bohr sets is
closed under translations.

Most of the notions of a large set that are defined solely in terms of size are also closed
under translation. However, we have important classes of structured sets that are not closed
under translation. One particular example is that of a Bohr0-set [2, 4]: a subset A ⊆ Z is a
Bohr0-set if it is a Bohr set such that the set U in the previous definition contains 0.

A simple application of the pigeonhole principle gives that if S is an infinite set of
integers then S − S has non-trivial intersection with every Bohr0-set. This is another
example of largeness: a set is large if it has non-trivial intersection with every member
of some class of sets. Such notions of largeness are generally referred to as dual notions
and are denoted with a star. For example, a 1∗-set is a set that has non-trivial intersection
with the set of differences 1(A) from any infinite set A.

Here we study converse results. If a set intersects every set of a given class, then our
goal is to show that it has some sort of structure. Such theorems are not, in general, exact
converses of the direct structural statements. For example, there exist 1∗-sets that are not
Bohr0-sets (see [2]). But, this statement is not far from being true. Strengthening a result
of [2], we show (Theorem 2.8) that a 1∗-set is a piecewise Bohr0-set, meaning that it
agrees with a Bohr0-set on a sequence of intervals whose lengths tend to infinity.

1.2. Nil–Bohr sets. Bohr sets are fundamentally linked to abelian groups and Fourier
analysis. In the past few years, it has become apparent in both ergodic theory and additive
combinatorics that nilpotent groups and a higher order Fourier analysis play a role (see, for
example, [6–8]). As such, we define a d-step nil-Bohr0-set, analogous to the definition of a
Bohr0-set, but with a nilmanifold replacing the role of an abelian group (see Definition 2.3).
For d = 1, the abelian case, this is exactly the object studied in [2]. Here we generalize
their results for d ≥ 1.

We obtain a generalization of Theorem 2.8 on different sets, introducing the idea of a
set of sums with gaps. For an integer d ≥ 1 and an infinite sequence P = (pi : i ≥ 1) in N,
the set of sums with gaps of length less than d of P is defined to be the set SGd(P) of all
integers of the form

ε1 p1 + ε2 p2 + · · · + εn pn,

where n ≥ 1 is an integer, εi ∈ {0, 1} for 1≤ i ≤ n, the εi are not all equal to 0, and the
blocks of consecutive 0’s between two 1’s have length less than d .

We remark that P is considered as a sequence, and not a set of integers. We do
not assume that the pi are distinct, nor do we assume that the sequence (pi : i ≥ 1) is
increasing.

Our main result (Theorem 2.6) is that a set with non-trivial intersection with any SGd -set
is a piecewise d-step nilpotent Bohr0-set.

1.3. Acknowledgement. Hillel Furstenberg introduced us to this problem and we thank
him for his encouragement, as well as for helpful comments on a preliminary version of
this article.

https://doi.org/10.1017/S014338570900087X Published online by Cambridge University Press

https://doi.org/10.1017/S014338570900087X


Nil–Bohr sets of integers 115

2. Precise statements of definitions and results
2.1. Bohr sets and Nil–Bohr sets. We formally define the objects described in the
introduction.

Definition 2.1. A subset A ⊆ Z is a Bohr set if there exist m ∈ N, α ∈ Tm , and an open set
U ⊂ Tm such that

{n ∈ Z : nα ∈U }

is contained in A; the set A is a Bohr0-set if additionally 0 ∈U .

Note that these sets can also be defined in terms of the topology induced on Z by
embedding the integers into the Bohr compactification: a subset of Z is Bohr if it
contains a non-empty open set in the induced topology and is Bohr0 if it contains an open
neighborhood of 0 in the induced topology.

We can generalize the definition of a Bohr0-set for return times in a nilsystem, rather
than just in a torus. We first give a short definition of a nilsystem and refer to §3.2 for
further properties.

Definition 2.2. If G is a d-step nilpotent Lie group and 0 ⊂ G is a discrete and cocompact
subgroup, the compact manifold X = G/0 is a d-step nilmanifold. The Haar measure µ
of X is the unique probability measure that is invariant under the action x 7→ g · x of G
on X by left translations.

If T denotes left translation on X by a fixed element of G, then (X, µ, T ) is a d-step
nilsystem.

Using neighborhoods of a point, we define a generalization of a Bohr set.

Definition 2.3. A subset A ⊆ Z is a Nild Bohr0-set if there exist a d-step nilsystem
(X, µ, T ), x0 ∈ X , and an open set U ⊂ X containing x0 such that

{n ∈ Z : T n x0 ∈U }

is contained in A.

Similar to the Bohr compactification of Z that can be used to define the Bohr
sets, there is a d-step nilpotent compactification of Z that can be used to define the
Nild Bohr0-sets. This compactification is a non-metric compact space Ẑ , endowed with
a homeomorphism T and a particular point x̂0 with dense orbit, and is characterized by the
following properties.
(i) Given any d-step nilsystem (Z , T ) and a point x0 ∈ Z , there is a unique factor map

πZ : Ẑ→ Z with πZ (x̂0)= x0.
(ii) The topology of Ẑ is spanned by these factor maps πZ .

Remark. A Bohr0-set can be defined in terms of almost periodic sequences. In the same
way, a Nild Bohr0-set can be defined in terms of some particular sequences, the d-step
nilsequences. Since Nild Bohr0-sets are defined locally, it seems likely that they can be
defined by certain particular types of nilsequences, namely those arising from generalized
polynomials without constant terms. We do not address this issue here.
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2.2. Piecewise versions. If F denotes a class of subsets of integers, various authors, for
example Furstenberg in [5] and Bergelson et al in [2], define a subset A of integers to be a
piecewise-F set if A contains the intersection of a sequence of arbitrarily long intervals and
a member of F . For example, the notions of piecewise-Bohr set, a piecewise-Bohr0-set,
and a piecewise-Nild Bohr0-set, can be defined in this way.

However, the notion of a piecewise set is rather weak: for example, a piecewise-Bohr
set defined in this manner is not necessarily syndetic. The properties that we can prove are
stronger than the traditional piecewise statements, and in particular imply the traditional
piecewise versions. For this, we introduce a stronger definition of piecewise.

Definition 2.4. Given a class F of subsets of integers, the set A ⊂ Z is said to be strongly
piecewise-F , written PW- F , if for every sequence (Jk : k ≥ 1) of intervals whose lengths
|Jk | tend to∞, there exists a sequence (I j : j ≥ 1) of intervals satisfying the following.
(i) For each j ≥ 1, there exists some k = k( j) such that the interval I j is contained in

Jk .
(ii) The lengths |I j | tend to infinity.
(iii) There exists a set 3 ∈ F such that 3 ∩ I j ⊂ A for every j ≥ 1.

Note that 3 depends on the sequence (Jk : k ≥ 1). With this definition of strongly
piecewise, if the class F consists of syndetic sets then every PW- F -set is syndetic. In
particular, a strongly piecewise-Bohr set, denoted PW- Bohr, is syndetic. Similarly, we
denote a strongly piecewise-Bohr0-set by PW- Bohr0 and a strongly piecewise-Nild Bohr0-
set by PW- Nild Bohr0 and these sets are also syndetic.

2.3. Sumsets and difference sets.

Definition 2.5. Let E ⊂ N be a set of integers. The sumset of E is the set S(E) consisting
of all non-trivial finite sums of distinct elements of E .

A subset A of N is a S∗r -set if A ∩ S(E) 6= ∅ for every set E ⊂ N with |E | = r .

We have the following theorem.

THEOREM 2.6. Every S∗d+1-set is a PW- Nild Bohr0-set.

For clarity, we include some examples of these objects.

Example. (An S∗2-set) Let r ∈ (1/3, 1/2) be real, α ∈ T := R/Z be irrational, and

A = {n ∈ N : nα ∈ (−r, r) mod 1}.

Then we claim that A is a S∗2-set. Any S2-set is a set of the form {m, n, m + n} for some
distinct, positive integers m and n. If m /∈ A and m + n /∈ A, then

nα mod 1 ∈ (T\(−r, r))− (T\(−r, r))= [2r − 1, 1− 2r ] ⊂ (−r, r)

and so n ∈ A.

Example. (A Nil2 Bohr0-set which is not an S∗2-set) Let r ∈ (0, 1/2) be real, α ∈ T :=
R/Z be irrational, and

B = {n ∈ N : n2α ∈ (−r, r) mod 1}.

Then B is a Nil2 Bohr0-set, as can be checked by considering the transformation on T2

defined by (x, y) 7→ (x + α, y + x). On the other hand, by the Weyl equidistribution
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theorem, the set
{(m2α, n2α, (m + n)2α) : 1≤ m < n}

is dense in T3 and so there exist distinct m, n ∈ N such that m2α /∈ (−r, r), n2α /∈ (−r, r),
and (m + n)2α /∈ (−r, r). Therefore B is not an S∗2-set.

Example. (An S∗3-set which is not an S∗2-set) We claim that for r ∈ (3/7, 1/2), the set B
defined above is an S∗3-set. Indeed, if the integers m, n, p, m + n, m + p, and n + p do
not belong to B, then (m + n)2α − n2α, (n + p)2α − p2α, and (m + p)2α − m2α belong
to [2r − 1, 1− 2r ]. Using the identity

(m + n + p)2 = ((m + n)2 − n2)+ ((n + p)2 − p2)+ ((m + p)2 − m2),

we have that (m + n + p)2α ∈ [3(2r − 1), 3(1− 2r)] ⊂ (−r, r) and m + n + p ∈ B.

We can iterate Theorem 2.6, leading to the following definitions from [2, 5].

Definition 2.7. If S is a non-empty subset of N, define the difference set 1(S) by

1(S)= (S − S) ∩ N= {b − a : a ∈ S, b ∈ S, b > a}.

If A is a subset of N, A is a 1∗r -set if A ∩1(S) 6= ∅ for every subset S of N with |S| = r ;
A is a 1∗-set if A ∩1(S) 6= ∅ for every infinite subset S of N.

THEOREM 2.8. Every 1∗-set is a PW- Bohr0-set.

Every1∗r set is obviously a1∗-set and Theorem 2.8 generalizes [2, Theorem II], where
it is shown that every 1∗r set is a PW- Bohr0-set. The class of sets of the form 1(S)
with |S| = 3 coincides with the class of sets of the form S(E) with |E | = 2 and thus the
classes 1∗3 and S∗2 are the same. Theorem 2.8 generalizes the case d = 1 of Theorem 2.6.

The converse statement of Theorem 2.8 does not hold. However, it is easy to check that
every Bohr0-set is a 1∗-set (see [2]).

Definition 2.9. Let d ≥ 0 be an integer and let P = (pi ) be a (finite or infinite) sequence
in N. The set of sums with gaps of length less than d of P is the set SGd(P) of all integers
of the form

ε1 p1 + ε2 p2 + · · · + εn pn,

where n ≥ 1 is an integer, εi ∈ {0, 1} for 1≤ i ≤ n, the εi are not all equal to 0, and the
blocks of consecutive 0’s between two 1’s have length less than d .

A subset A ⊆ N is an SG∗d -set if A ∩ SGd(P) 6= ∅ for every infinite sequence P in N.

Note that in this definition, P is a sequence and not a subset of N.
For example, if P = {p1, p2, . . .}, then SG1(P) is the set of all sums pm + · · · + pn

of consecutive elements of P , and thus it coincides with the set 1(S) where S = {s, s +
p1, s + p1 + p2, . . .}. Therefore SG∗1-sets are the same as 1∗-sets.

For a sequence P , SG2(P) consists of all sums of the form

m1∑
i=m0

pi +

m2∑
i=m1+2

pi + · · · +

mk∑
i=mk−1+2

pi +

mk+1∑
i=mk+2

pi ,

where k ∈ N and m0, m1, . . . , mk+1 are positive integers satisfying mi+1 ≥ mi + 2 for
i = 0, . . . , k.
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THEOREM 2.10. Every SG∗d -set is a PW- Nild Bohr0-set.

Since SG∗1-sets are the same as 1∗-sets, Theorem 2.10 generalizes Theorem 2.8. If
|P| = d + 1, then SGd(P)= S(P) and thus Theorem 2.10 generalizes Theorem 2.6.

In general, a Nild Bohr0-set is not a1∗-set. To construct an example, take an irrational α
and let B be the set of n ∈ Z such that n2α is close to 0 (mod 1). Then B is a Nil2 Bohr0-
set. On the other hand, by induction we can build an increasing sequence n j of integers
such that n2

jα is close to 1/3 mod 1, while ni n jα mod 1 is close to 0 for i < j . Taking S
to be the set of such n j , we have that 1(S) does not intersect B.

This leads to the following question.

Question 2.11. Is every Nild Bohr0-set an SG∗d -set?

As already noted, the answer to this question is positive for d = 1 and we conjecture
that it is positive in general.

As our characterizations of the sets SGd and the class SG∗d are complicated, we ask the
following.

Question 2.12. Find an alternate description of the sets SGd and of the class SG∗d .

2.4. The method. The first ingredient in the proof is a modification and extension of
the Furstenberg correspondence principle. The classical correspondence principle gives
a relation between sets of integers and measure-preserving systems, relating the size of
the sets of integers to the measure of some sets of the system. It does not give relations
between structures in the set of integers under consideration and ergodic properties of the
corresponding system. Some information of this type is provided by our modification
(originally introduced in [9]).

We then are left with studying certain properties of the systems that arise from this
correspondence. As in several related problems, the properties of the system that we need
are linked to certain factors of the system, which are nilsystems. This method and these
factors were introduced in the study of convergence of some multiple ergodic averages
in [8].

Working within these factor systems, we conclude by making use of techniques for the
analysis of nilsystems that have been developed over the last few years. In the abelian
setting, a fundamental tool is the Fourier transform, but no analog exists for higher order
nilsystems†. Another classical tool available in the abelian case is the convolution product,
but this too is not defined for general nilsystems. Instead, in §5 we build some spaces and
measures that take on the role of the convolution. As an example, if G is a compact abelian
group we can consider the subgroup

{(g1, g2, g3, g4) ∈ G4
: g1 + g2 = g3 + g4}

of G4, and we take integrals with respect to its Haar measure. This replaces the role of the
convolution product.

† The theory of representations does not help us, as the interesting representations of a nilpotent Lie group are
infinite-dimensional.
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These constructions are then used to prove the key convergence result (Proposition 6.4).
By studying the limit, Theorem 2.6 is deduced in §7. By further iterations, Theorems 2.8
and 2.10 are proved in §8.

The strategy used in the proofs of our main results (Theorems 2.6 and 2.10) requires
the use of substantial technical machinery. Although Theorem 2.8 is a particular case of
Theorem 2.10, to help the reader to understand the main ideas of the paper we include a
short proof of this result in §4. As well, we use this to point out the differences between
this simpler setting and the general context. This proof is almost self-contained, as it only
relies on the ‘modified correspondence principle’ of §3.4.

3. Preliminaries
3.1. Notation. We introduce notation that we use throughout the remainder of the
article.

If X is a set and d ≥ 1 is an integer, we write X [d] = X2d
and we index the 2d copies

of X by {0, 1}d . Elements of X [d] are written as

x= (xε : ε ∈ {0, 1}d).

We write elements of {0, 1}d without commas or parentheses.
We also often identify {0, 1}d with the family P([d]) of subsets of [d] = {1, 2, . . . , d}.

In this identification, εi = 1 is the same as i ∈ ε and ∅ = 00 . . . 0.
For ε ∈ {0, 1}d and n ∈ Zd , we write |ε| = ε1 + · · · + εd and ε · n = ε1n1 + · · · +

εdnd .
If p : X→ Y is a map, then we write p[d] : X [d]→ Y [d] for the map (p, p, . . . , p)

taken 2d times. In particular, if T is a transformation on the space X , we define
T [d] : X [d]→ X [d] as T × T × · · · × T taken 2d times and we call T [d] the diagonal
transformation. We define the face transformations T [d]i for 1≤ i ≤ d by

(T [d]i x)ε =

{
T (xε) if εi = 1,

xε otherwise.

Thus, for d = 2, the diagonal transformation is T × T × T × T and the face
transformations are Id×T × Id×T and Id× Id×T × T .

In a slight abuse of notation, we denote all transformations, even in different systems,
by the letter T (unless the system is naturally a Cartesian product).

For convenience, we assume that all functions are real valued.

3.2. Review of nilsystems.

Definition 3.1. If G is a d-step nilpotent Lie group and 0 ⊂ G is a discrete and cocompact
subgroup, the compact manifold X = G/0 is a d-step nilmanifold. The Haar measure µ
of X is the unique probability measure that is invariant under the action x 7→ g · x of G
on X by left translations.

If T denotes left translation on X by a fixed element of G, then (X, µ, T ) is a d-step
nilsystem.
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(We generally omit the σ -algebra from the notation, writing (X, µ, T ) for a measure-
preserving system rather than (X, B, µ, T ), where B denotes the Borel σ -algebra.)

A d-step nilsystem is an example of a topological distal dynamical system. For a
d-step nilsystem, the following properties are equivalent: transitivity, minimality, unique
ergodicity, and ergodicity. (Note that the first three of these properties refer to the
topological system, while the last refers to the measure-preserving system.) Also, the
closed orbit of a point in a d-step nilsystem, endowed with the restriction of the original
transformation, is a d-step nilsystem, and it follows that this closed orbit is minimal and
uniquely ergodic. See [1] for proofs and general references on nilsystems.

We also speak of a nilsystem (X = G/0, T1, . . . , Td), where T1, . . . , Td are
translations by commuting elements of G. All the above properties hold for such systems.
In particular, every closed orbit is uniquely ergodic under the induced transformations.

We also make use of inverse limits of systems, both in the topological and measure-
theoretic senses. All inverse limits are implicitly assumed to be taken along sequences.
Inverse limits for a sequence of ergodic nilsystems are the same in both the topological and
measure-theoretic senses: this follows because a measure-theoretic factor map between
two ergodic nilsystems is necessarily continuous (see for example [10, Appendix A]).

Many properties of the nilsystems also pass to the inverse limit. In particular, in
a topological inverse limit of d-step nilsystems, every closed orbit is minimal and
uniquely ergodic.

3.3. Structure theorem. Assume now that (X, µ, T ) is an ergodic system.
We recall a construction and definitions from [8], but for consistency we make some

small changes in the notation. For an integer d ≥ 0, a measure µ[d] on X [d] was built
in [8]. Here we denote this measure by µ(d).

The measure µ(d) is invariant under T [d] and under all the face transformations T [d]i ,
1≤ i ≤ d. Each of the projections of the measure µ(d) on X is equal to the measure µ.

If f is a bounded measurable function on X , then∫ ∏
ε⊂[d]

f (xε) dµ(d)(x)≥ 0

and we define ||| f |||d to be this expression raised to the power 1/2d . Then ||| · |||d is a
seminorm on L∞(µ). A main result from [8] is that this is a norm if and only if the
system is an inverse limit of (d − 1)-step nilsystems. More precisely, a summary of the
[8, Structure theorem] is the following.

THEOREM 3.2. Assume that (X, µ, T ) is an ergodic system. Then for each d ≥ 2, there
exist a system (Zd , µd , T ) and a factor map πd : X→ Zd satisfying the following.
(i) (Zd , µd , T ) is the inverse limit of a sequence of (d − 1)-step nilsystems.
(ii) For each f ∈ L∞(µ), ||| f − E( f : Zd) ◦ πd |||d = 0.

For each d ≥ 1, we call (Zd , µd , T ) the HK-factor of order d of (X, µ, T ). The factor
map πd : X→ Zd is measurable, and a priori has no reason to be continuous. For `≤ d ,
Z` is a factor of Zd , with a continuous factor map.
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3.3.1. The case of an inverse limit of nilsystems. If (X, µ, T ) is an inverse limit of
(d − 1)-step ergodic nilsystems, we define† X (d) to be the closed orbit in X [d] of a point
x0 = (x0, . . . , x0) (for some arbitrary x0 ∈ X ) under the transformations T [d] and T [d]i for
1≤ i ≤ d .

When (X, µ, T ) is an ergodic (d − 1)-step nilsystem, then (X (d), T [d], T [d]1 , . . . , T [d]d )

is an ergodic (d − 1) nilsystem and the measure µ(d) described above is its Haar
measure [8, §11].

When (X, µ, T ) is an inverse limit of (d − 1)-step ergodic nilsystems, then system
(X (d), T [d], T [d]1 , . . . , T [d]d ) is an inverse limit of ergodic nilsystems. It is minimal,
uniquely ergodic and its unique invariant measure is the measure µ(d).

3.4. Furstenberg correspondence principle revisited. By `∞(Z), we mean the algebra
of bounded real valued sequences indexed by Z.

Let A be a subalgebra of `∞(Z), containing the constants, invariant under the shift,
closed and separable with respect to the norm ‖ · ‖∞ of uniform convergence. We refer to
this simply as ‘an algebra’. In applications, finitely many subsets of Z are given and A is
the shift-invariant algebra spanned by indicator functions of these subsets.

Given an algebra, we associate various objects to it: a dynamical system, an ergodic
measure on this system, a sequence of intervals, etc. We give a summary of these objects
without proof, referring to [9] for further details.

3.4.1. A system associated to A. By Gelfand’s representation, there exist a topological
dynamical system (X, T ) and a point x0 ∈ X such that the map

φ ∈ C(X) 7→ (φ(T n x0) : n ∈ Z) ∈ `∞(Z)
is an isometric isomorphism of algebras from C(X) onto A. (We use C(X) to denote the
collection of continuous functions on X .)

In particular, if S is a subset of Z with 1S ∈A, then there exists a subset S̃ of X that is
open and closed in X such that

for every n ∈ Z, T n x0 ∈ S̃ if and only if n ∈ S. (1)

3.4.2. Some averages and some measures associated to A. There also exist a sequence
I= (I j : j ≥ 1) of intervals of Z, whose lengths tend to infinity, and an invariant ergodic
probability measure µ on X such that

for every φ ∈ C(X),
1
|I j |

∑
n∈I j

φ(T n x0)→

∫
φ dµ as j→+∞. (2)

Given a subset S of Z, we can chose the intervals I j such that

|S ∩ I j |

|I j |
→ d∗(S) as j→+∞,

where d∗(S) denotes the upper Banach density of S.
In particular, we can assume that the intervals I j are contained in N.

† We are forced to use different notation from that in [8], as otherwise the proliferation of indices would be
uncontrollable.
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3.4.3. Notation. In what follows, when a = (an : n ∈ Z) is a bounded sequence, we
write

lim Avn,I an = lim
j→+∞

1
|I j |

∑
n∈I j

an

if this limit exists, and set

limsup |Avn,I an| = limsup
j→+∞

∣∣∣∣ 1
|I j |

∑
n∈I j

an

∣∣∣∣.
We omit the subscripts n and I if they are clear from the context.

3.4.4. Averages and factors of order k. Recall that Zk denotes the HK-factor of order k
of (X, µ, T ) and that πk : X→ Zk denotes the factor map.

The sequence of intervals I= (I j : j ≥ 1) can be chosen such that the following
proposition holds.

PROPOSITION 3.3. For every k ≥ 1, there exists a point ek ∈ Zk such that π`,k(ek)= e`
for ` < k and such that, for every φ ∈ C(X) and every f ∈ C(Zk),

lim AvI φ(T
n x0) f (T nek)=

∫
φ · f ◦ πk dµ=

∫
E(φ : Zk) f dµk .

This formula extends (2).
The next corollary is an example of the relation between integrals on the factors Zk and

PW- Nil Bohr-sets. More precise results are proved and used in what follows.

COROLLARY 3.4. Let S be a subset of Z such that 1S belongs to the algebra A and let S̃
be the corresponding subset of X. Let f be a non-negative continuous function on Zk with
f (ek) > 0, where ek is as in Proposition 3.3. If∫

1S̃(x) · f ◦ πk(x) dµ(x)= 0

then Z\S is a PW- Nilk Bohr0-set.

Proof. Let 3= {n ∈ Z : f (T nek) > f (ek)/2}. Then 3 is a Nilk Bohr0-set. Indeed, the
function f can be approximated uniformly by a function of the form f ′ ◦ p, where f ′

is a continuous function on a k-step nilsystem Z ′ and p : Zk→ Z ′ is a factor map. By
Proposition 3.3 and definition (1) of S̃, the averages on I j of 1S(n) f (T nek) converge to
zero. Thus

lim
j→+∞

|I j ∩ S ∩3|

|I j |
= 0.

Therefore, the subset E =
⋃

j I j\(S ∩3) contains arbitrarily long intervals J`, `≥ 1. For
every `, J` ∩ (Z\S)⊃ J` ∩3. 2

3.4.5. Choice of intervals. It is easy to check that given a sequence of intervals
(Jk : k ≥ 1) whose lengths tend to infinity, we can choose the intervals (I j : j ≥ 1)
satisfying all of the above properties, and such that each interval I j is a subinterval of some
Jk . To see this, we first reduce to the case that the intervals Jk are disjoint and separated by
sufficiently large gaps. We set S to be the union of these intervals. We have d∗(S)= 1 and
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we can choose intervals I ′j with |S ∩ I ′j |/|I
′

j | → 1. For every j ∈ N, there exists k j such
that |I ′j ∩ Jk j |/|I

′

j | → 1 as j→+∞. We set I j = I ′j ∩ Jk j and the sequence (I j : j ≥ 1)
satisfies all the requested properties.

3.5. Definition of the uniformity seminorms. We recall definitions and results of [9]
adapted to the present context. We keep notation as in the previous sections; in
particular, Zk and ek are as in Proposition 3.3.

Let I be as in §3.4 and let B be the algebra spanned by A and sequences of the form
( f (T nek) : n ∈ Z), where f is a continuous function on Zk for some k. By Proposition 3.3,
for every sequence a = (an : n ∈ Z) belonging to the algebra B, the limit lim AvI,n an

exists.
Given a sequence a ∈ B, for h = (h1, . . . , hd) ∈ Zd , let

ch = lim AvI,n
∏
ε⊂[d]

an+ε·h.

Then

lim
H→∞

1
Hd

H−1∑
h1,...,hd=0

ch

exists and is non-negative. We define ‖a‖I,d to be this limit raised to the power 1/2d .

PROPOSITION 3.5. Let (Z , T ) be an inverse limit of k-step nilsystems and f be a
continuous function on Z. Then for every δ > 0 there exists C = C(δ) > 0 such that for
every sequence a = (an : n ∈ Z) belonging to the algebra B and for every z ∈ Z,

limsup |AvI an f (T nz)| ≤ δ‖a‖∞ + C‖a‖I,k+1.

Proof. By density, we can reduce to the case that (Z , T ) is a k-step nilsystem and that the
function f is smooth.

In this case, the result is contained in [9] under the hypothesis that the system is ergodic.
Indeed, by Proposition 5.6 of this paper, f is a ‘dual function’ on X . By the ‘modified
direct theorem’ of §5.4 in [9], there exists a constant ||| f |||∗k ≥ 0 with

limsup |AvI an f (T nz)| ≤ ||| f |||∗k · ‖a‖I,k+1.

This gives the announced inequality with C = ||| f |||∗k .
In the proofs of [9] we can check that the hypothesis of ergodicity is not used. 2

The next proposition was proved in [9, §3] and follows from the structure theorem
(Theorem 3.2).

PROPOSITION 3.6. Let φ be a continuous function on X with |φ| ≤ 1, k ≥ 1 an integer,
and f a continuous function on Zk with | f | ≤ 1. Then

‖(φ(T n x0)− f (T nek) : n ∈ Z)‖I,k+1 ≤ 2‖ f − E(φ : Zk)‖
1/2k+1

L1(µk )
.

4. The case d = 1
4.1. The context. To help the reader understand the main ideas, and as a warm up, we
start with a proof of Theorem 2.8. Throughout, we include comments on the differences
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between the case d = 1 and the general settings of Theorems 2.6 and 2.10. The proof does
not make use of the machinery developed in the rest of the paper other than the modified
correspondence principle of §3.4.

Let A be a subset of Z and assume that A is not a PW- Bohr0-set. We show that A is not
a 1∗-set. Since the families of 1∗-sets and of SG∗1-sets are the same, it suffices to show
that A is not a SG∗1-set.

4.2. A system associated to the set A. We recall the construction of §3.4. Let A be an
algebra, in the sense of §3.4, containing 1A. Let (X, T ), x0 ∈ X , I, and µ be associated
to this algebra as in §3.4 and assume that the intervals I j are included in N. Let f be the
continuous function on X associated to the sequence 1− 1A:

f (T n x0)= 1 if n /∈ A, f (T n x0)= 0 if n ∈ A.

Since A does not contain arbitrarily long intervals, the density of Z\A in the intervals I j

does not tend to zero. Thus
∫

f dµ > 0.
Let (Z , ν, T ) be the Kronecker factor of (X, µ, T ) and let π : X→ Z be the factor

map. We recall that Z is a compact abelian group and that ν is its Haar measure. We use
additive notation for Z and the transformation T : Z→ Z is given by T z = z + α for some
α ∈ Z . For every bounded measurable function φ on X , write φ̃ = E(φ : Z).

The element e1 ∈ Z1 = Z in Proposition 3.3 can be chosen to be the unit element 0 of Z ,
and this proposition states that

for every continuous function φ on X and every continuous function h on Z,

lim AvI φ(T
n x0)h(nα)=

∫
φ · h ◦ π dµ=

∫
φ̃ · h dν. (3)

4.3. Two positivity results. We prove a positivity result (this is a reformulation of
Lemma 7.1 in the present context).

CLAIM 4.1. Let h be a bounded, non-negative measurable function on the Kronecker
(Z , ν) with

∫
h dν > 0. Then∫

f̃ (s)h(t)h(s + t) dν(s) dν(t) > 0. (4)

Proof of Claim 4.1. For s ∈ Z , define

H(s)=
∫

h(s + t)h(t) dν(t).

Then H(0) > 0 and H is a continuous function on Z . The subset 3 of Z defined by

3= {n ∈ Z : H(nα) > H(0)/2}

is a Bohr0-set.
By definition of the functions f and H , we have that∫

f̃ (s)h(t)h(s + t) dν(s) dν(t) =
∫

f̃ (s)H(s) dν(s)= lim AvI f (T n x0)H(nα)

≥
H(0)

2
limsup
j→+∞

|(Z\A) ∩3 ∩ I j |

|I j |
,
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where the middle equality follows from (3). This limsup is not equal to zero, as otherwise
the set A ∪ (Z\3) would contain arbitrarily long intervals Ji , meaning that A would
contain 3 ∩ Ji and would be a PW- Bohr-set. 2

In the general case, the functions f̃ and h are defined on an inverse limit of nilsystems.
Since convolution products are not defined in this context, the corresponding result is more
difficult to state. The integral in (4) is replaced by an integral with respect to the Haar
measure of some submanifold of a Cartesian power of Zk defined in §5.2. The integral
defining H(s) is replaced by the integral with respect to the Haar measure of some other
submanifold, depending on s, defined in §5.3. In the general case, the positivity of H(0)
is shown in Proposition 5.3 and the continuity of the function H in Proposition 5.2.

CLAIM 4.2. Let h be a continuous non-negative function on X with
∫

h dµ > 0. There
exists an integer n, belonging to some interval Ii , with

h(T n x0) > 0 and
∫

T nh · f dµ > 0.

Proof of Claim 4.2. Since
∫

h̃ dν =
∫

h dµ > 0, by Claim 4.1,∫
h̃(t) · ( f̃ (s )̃h(s + t) dν(s)) dν(t) > 0. (5)

The function defined by the inner integral in this formula is continuous on Z and thus
using (3) as above, we have that

lim Avn,I h(T n x0)

∫
f̃ (s )̃h(s + nα) dν(s) > 0.

Since f̃ and h̃ are the conditional expectations of the functions f and h, respectively, on
the Kronecker factor Z of X , we have that

lim Avn,I

∣∣∣∣∫ f̃ (s )̃h(s + nα) dν(s)−
∫

f (x)h(T n x) dµ(x)

∣∣∣∣= 0. (6)

Thus

lim Avn,I h(T n x0)

∫
f (x)h(T n x) dµ(x) > 0

and the existence of the integer n with the announced properties follows. 2

The convergence result (3) used in this case does not suffice for the general case and is
replaced by the deeper Proposition 6.4. The proof of this proposition occupies most of §6
and uses the ‘uniformity seminorms’ introduced in [9] and whose properties are recalled
in §3.5. Proposition 6.1 generalizes (6).

4.4. End of the proof. By induction, using Claim 4.2 at each step, we define a sequence
of positive integers (n j : j ≥ 1) such that the functions h( j) on X , defined inductively by

h(0) = f and h( j)
= T n j h( j−1)

· f for j ≥ 1,

satisfy

h j−1(T n j x0) > 0 and
∫

T n j h( j−1)
· f dµ > 0 for every j ≥ 1.
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By descending induction on i with j fixed, for 1≤ i ≤ j we have that
h(i−1)(T ni+ni+1+···+n j x0) > 0. Thus f (T ni+ni+1+···+n j x0) > 0 and so ni + ni+1 + · · · +

n j /∈ A. Setting E = (n j : j ≥ 1)we have that A ∩ SG1(E)= ∅ and A is not an SG∗1-set. 2
The proof of Theorem 2.10 uses a similar, but more intricate, induction.

5. Some measures associated to inverse limits of nilsystems
5.1. Standing assumptions. We assume that every topological system (Z , T ) is
implicitly endowed with a particular point, called the base point. Every topological factor
map is implicitly assumed to map base point to base point. For every k ≥ 1, we take the
base point of Zk to be the point ek introduced in §3.4.4.

If (Z , T ) is a nilsystem with Z = G/0, then by changing the group 0 if needed, we
can assume that the base point of Z is the image in Z of the unit element of G.

5.2. The measures µ(m)e .

PROPOSITION 5.1. Let (X, µ, T ) be an ergodic inverse limit of ergodic k-step nilsystems,
endowed with the base point e ∈ X, and let m ≥ 1 be an integer.
(a) The closed orbit of the point e[m] = (e, e, . . . , e) of X (m) under the transformations

T [m]i , 1≤ i ≤ m, is
X (m)e = {x ∈ X (m) : x∅ = e}.

(b) Let µ(m)e be the unique measure on this set invariant under these transformations.
Then the image of µ(m)e under each of the natural projections x 7→ xε : X [m]→ X,
∅ 6= ε ⊂ [d], is equal to µ.

(c) Let (Y, ν, T ) be an inverse limit of k-step nilsystems and let p : X→ Y be a factor
map. Then ν(m)e is the image of µ(m)e under p[m] : X [m]→ Y [m].

(d) Let (Y, ν, T ) be the HK-factor of order (m − 1) of X and p : X→ Y be the factor
map. Then the measure µ(m)e is relatively independent with respect to ν(m)e , meaning
that when fε , ∅ 6= ε ⊂ [d], are 2m

− 1 bounded measurable functions on X,∫ ∏
∅6=ε⊂[d]

fε(xε) dµ(m)e (x)=
∫ ∏
∅6=ε⊂[d]

E( fε : Y )(yε) dν(m)e (y).

(The existence of these integrals follows from (b).)

The uniqueness of the measure µ(m)e in (b) follows from the fact that X (m)e is a
closed orbit in the system (X (m), T [m]1 , . . . , T [m]m ), which is an inverse limit of nilsystems
(§3.3.1). Following our convention, we assume in (c) and (d) that Y is endowed with a
base point and that p maps the base point to the base point.

Proof. We first prove (a) and (d) assuming that X is a nilsystem. (While the proof is
contained in [9], we sketch it here in order to introduce some objects and some notation.)

5.2.1. The nilmanifold and cubes. Write X = G/0 and let τ be the element of G
defining the transformation T of X . We can assume that the base point e of X is the image
in X of the unit element of G. Since (X, µ, T ) is ergodic, we can also assume that G is
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spanned by the connected component Gc of the identity and τ (see for example [3, §4]).
This implies that the commutator subgroups G j , j ≥ 2, are also connected.

As explained in §3.3.1, X (m) is a nilmanifold: X (m) = G(m)/0(m), where G(m) is a
subgroup of G[m] and 0(m) = 0[m] ∩ G(m). We recall a convenient presentation of G(m)

(see [9, Appendix B] or [7, Appendix E]).
For g ∈ G and F ⊂ P([m]), we write gF for the element of G[m] given by

for every ε ⊂ [m], (gF )ε =

{
g if ε ∈ F,

1 otherwise.

Let α1, . . . , α2m be an enumeration of all subsets of [d] such that |αi | is non-decreasing.
In particular, α1 = ∅. For 1≤ i ≤ 2m , let Fi = {ε : αi ⊂ ε ⊂ [m]}. For every i , Fi is an
upper face of the cube P([m]), meaning a face containing the vertex [d]; its codimension
is |αi |. Then F1, . . . , F2m is an enumeration of all the upper faces, in non-increasing order
with respect to codimension. In particular, F1 is the whole cube P([m]). We also assume
that αi = {i − 1} for 2≤ i ≤ m + 1.

Then the group G(m) is the subset of G[m] consisting of elements h that can be written
as

h= gF1
1 gF2

2 . . . g
F2d

2d where gi ∈ G|αi | for every i (7)

(where, by convention, G0 = G) and each element of G(m) has a unique expression of this
form.

The diagonal transformation T [m] of X (m) is the translation by the element τ F1 = τ [m]

of G(m) and, for 1≤ i ≤ m, the i th face transformation is the translation by the element
τ
[m]
i := τ Fi+1 . Recall that for ε ⊂ [m],

(τ
[m]
i )ε =

{
τ if i ∈ ε,

1 otherwise.

5.2.2. Proof of (a). We define

G(m)
e = {g ∈ G(m)

: g∅ = 1}.

This group is closed and normal in G(m) and every element of G(m) can be written in a
unique way as h[m]g with h ∈ G and g ∈ G(m)

e . Moreover, G(m)
e is the set of elements

of G(m) that are written as in (7) with g1 = 1. From this, it is easy to deduce that the
commutator subgroup of this group is equal to G(m)

e ∩ (G2)
[m].

Clearly, the subset X (m)e of X (m) is invariant under G(m)
e and it follows from the

preceding description that the action of this group on this set is transitive. Therefore,
the subgroup

0(m)e := 0(m) ∩ G(m)
e

of G(m)
e is cocompact in G(m)

e and we can identify X (m)e = G(m)
e /0

(m)
e .

Since the groups G j , j ≥ 2, are connected, the connected component of the identity

of G(m)
e contains all elements of the form (7) where g1 = 1 and gi lies in the connected

component of the identity of G for 2≤ i ≤ m + 1. Since G is spanned by the connected
component of its identity and τ , G(m)

e is spanned by the connected component of its identity
and the elements τ Fi = τ

[m]
i for 1≤ i ≤ m.
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Moreover, by using the above description of G(m)
e , it is not difficult to check that the

action induced by T [m]i , 1≤ i ≤ m, on the compact abelian group G(m)
e /(G(m)

e )20
(m)
e is

ergodic. By a classical criterion [11], the action of the transformations T [m]i on X (m)e is

ergodic and thus minimal. In particular, X (m)e is the closed orbit of the point e[m] under
these transformations. This proves (a).

5.2.3. Proof of (d). The HK-factor of order (m − 1) (Y, ν, T ) of (X = G/0, µ, T ) is
Y = G/0Gm endowed with its Haar measure.

For every ε ⊂ [m]with ε 6= ∅ and everyw ∈ Gm , we havew{ε} ∈ G(m)
e and thus the Haar

measure µ(m)e of X (m)e is invariant under translation by this element. The result follows.

5.2.4. Proof of the proposition in the general case. For (a), the generalization to inverse
limits is immediate.

(b) Let ε ∈ [d] with ε 6= ∅. Let i ∈ ε. Then for every x ∈ X (m) we have T xε = (T
[m]

i x)ε .

Since the measure µ(m)e is invariant under T (m)i , its image under the projection x 7→ xε is
invariant under T and thus is equal to µ.

Property (c) is immediate.
(d) Let the functions fε be as in the statement; without loss we can assume that | fε | ≤ 1

for every ε.
Let (X i , µi , Ti ), i ≥ 1, be an increasing sequence of k-step nilsystems with inverse limit

(X, µ, T ) and let πi : X→ X i , i ≥ 1, be the (pointed) factor maps.
For every ε, ∅ 6= ε ⊂ [d], we have that

‖ fε − E( fε ◦ X i ) ◦ πi‖L1(µ)→ 0 as i→+∞

and thus ∫ ∏
∅6=ε⊂[d]

E( fε : X i ) ◦ πi (xε) dµ(m)e (x)→
∫ ∏
∅6=ε⊂[d]

fε(xε) dµ(m)e (x) (8)

as i→+∞.
For every i , let (Wi , σi , T ) be the HK-factor of order (m − 1) of X i , qi : X i →Wi the

factor map and ri = qi ◦ πi .
We have shown that, for every i , the measure (µi )

(m)
e is relatively independent with

respect to (σi )
(m)
e .

Using (c) twice, we have that the second integral in (8) is equal to∫ ∏
∅6=ε⊂[d]

E( fε :Wi ) ◦ ri (xε) dµ(m)e (x).

As the systems X i form an increasing sequence, the systems Wi also form an increasing
sequence. Let (W, σ, T ) be the inverse limit of this sequence. This system is a factor of X ,
and writing r : X→W for the factor map, we have that E( fε :Wi ) ◦ ri → E( fε :W ) ◦ r
in L1(µ) for every ε. We get∫ ∏

∅6=ε⊂[d]

fε(xε) dµ(m)e (x)=
∫ ∏
∅6=ε⊂[d]

E( fε :W ) ◦ r(xε) dµ(m)e (x). (9)

This means that the measure µ(m)e is relatively independent with respect to σ (m)e .
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Since W is an inverse limit of (m − 1)-step nilsystems and is a factor of X , it is a factor
of the HK-factor Y of order (m − 1) of X . If for some ε we have E( fε : Y )= 0, then we
have E( fε :W )= 0 and the second integral in (9) is equal to zero. The result follows. 2

Passing to inverse limits adds technical issues to each proof. These issues are not
difficult and the passage to inverse limits uses only routine techniques, as in the preceding
proof. However, it does greatly increase the length of the arguments, and so in general we
omit this portion of the argument in what follows.

5.3. The measures µ(m)e,x . In this section, again (X, µ, T ) is an ergodic inverse limit of
k-step nilsystems, with base point e ∈ X .

For x ∈ X we write

X (m)e,x = {x ∈ X (m) : x∅ = e and x{m} = x}.

The set X (m)e,e is the image of the set X (m,1)e introduced below by a permutation of
coordinates.

PROPOSITION 5.2. For each x ∈ X, there exists a measure µ(m)e,x , concentrated on X (m)e,x ,
such that the following hold.
(i) The image of µ(m)e,x under each projection x 7→ xε : X [m]→ X, ε 6= ∅, ε 6= {m}, is

equal to µ.
(ii) If fε , ε ⊂ [m], ε 6⊂ [1], are 2m

− 2 bounded measurable functions on X, then the
function F on X given by

F(x)=
∫ ∏

ε⊂[d]
ε 6=∅, ε 6={m}

fε(xε) dµ(m)e,x (x)

is continuous.
(iii) Moreover, for every bounded measurable function f on X,∫

f (x)F(x) dµ(x)=
∫

f (x{m})
∏
ε⊂[d]
ε 6=∅,[m]

fε(xε) dµ(m)e (x).

Proof. It suffices to prove this proposition in the case that (X, µ, T ) is k-step nilsystem,
as the general case follows by standard methods.

We write X = G/0 as usual. We can assume that e is the image in X of the unit
element 1 of G. We define

G(m)
e,e = {g ∈ G(m)

: g∅ = g{m} = 1}.

This group is closed and normal in G. It is the set of elements of G(m) that can be
written as in (7) with g∅ = 1 and gi = 1 for the value of i such that αi = {m}. Recall
that e[m] = (e, e, . . . , e).

It is easy to check that G(m)
e,e · e[m] = X (m)e,e . It follows that

0(m)e,e := 0
[m]
∩ G(m)

e,e

is cocompact in G(m)
e,e and that X (m)e,e can be identified with the nilmanifold G(m)

e,e /0
(m)
e,e . We

write µ(m)e,e for the Haar measure of this nilmanifold.
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Let F = {ε ⊂ [m] : m ∈ ε}. We recall that for g ∈ G, gF
∈ G(m) is defined by

(gF )ε =

{
g if m ∈ ε,

1 otherwise.

By definition of the sets X (m)e,x , the image of X (m)e,e under translation by g[m]m is equal to
X (m)e,g·e. Since G(m)

e,e is normal in G(m), the image of the measure µ(m)e,e under gF is invariant

under G(m)
e,e . Moreover, if g, h ∈ G satisfy g · e = h · e, then we have that g = hγ for

some γ ∈ 0. Since γ F
· e[m] = e[m] and by normality of G(m)

e,e again, the measure µ(m)e,e is
invariant under γ F and thus the images of µ(m)e,e under gF and hF are the same.

Therefore, for every x ∈ X we can define a measure µ(m)e,x on X (m)e,x by

µ(m)e,x = gF
· µ(m)e,e for every g ∈ G such that g · e = x . (10)

In particular, for every h ∈ G and every x ∈ X ,

µ
(m)
e,h·x = hF

· µ(m)e,x . (11)

If T is the translation by τ ∈ G, then T [m]m is the translation by τ F and so, for every integer
n,

µ
(m)
e,T n x = T [m]m

n
· µ(m)e,x . (12)

For 1≤ i < m, τ [m]i ∈ G(m)
e,e and thus, for every x ∈ X , µ(m)e,x is invariant under T [m]i . As

above, it follows that this measure satisfies the first property of the proposition.
To prove the other properties, the first statement of the proposition implies that we can

reduce to the case that the functions fε are continuous. By (10), the map x 7→ µ
(m)
e,x is

weakly continuous and the function F is continuous. We are left with showing that

µ(m)e =

∫
µ(m)e,x dµ(x).

For 1≤ i < m, since for every x the measure µ(m)e,x is invariant under T [m]i , the measure

defined by this integral is invariant under this transformation. By (11), µ(m)e,T x = T [m]m · µ
(m)
e,x

for every x and it follows that the measure defined by the above integral is invariant
under T [m]m . Since it is concentrated on X (m)e , it is equal to the Haar measure µ(m)e of
this nilmanifold (recall that (X (m)e , T [m]1 , . . . , T [m]m ) is uniquely ergodic). 2

5.4. A positivity result. In this section, again (X, µ, T ) is an ergodic inverse limit of
k-step nilsystems, with base point e ∈ X .

In the next proposition, the notation ε = ε1 . . . εm ∈ {0, 1}m is more convenient that ε ⊂
[m]. We recall that 00 . . . 0 ∈ {0, 1}m corresponds to ∅ ⊂ [m] and that 00 . . . 01 ∈ {0, 1}m

corresponds to {m} ⊂ [m]. For ε ∈ {0, 1}m+1, ε1 . . . εm corresponds to ε ∩ [m].

PROPOSITION 5.3. Let fε , ∅ 6= ε ∈ {0, 1}m , be 2m
− 1 bounded measurable real functions

on X. Then∫ ∏
ε∈{0,1}m+1

ε 6=00...0
ε 6=00...01

fε1...εm (xε) dµ(m+1)
e,e (x)≥

(∫ ∏
ε∈{0,1}m
ε 6=00...0

fε(xε) dµ(m)e (x)
)2

.
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Proof. We first reduce the general case to that of an ergodic k-step nilsystem. If (X, µ, T )
is an inverse limit of an increasing sequence of k-step ergodic nilsystems, then the spaces
X (m)e and X (m+1)

e,e , as well as the measures µ(m)e and µ(m+1)
e,e , are the inverse limits of the

corresponding objects associated to each of the nilsystems in the sequence of nilsystems
converging to X . Thus it suffices to prove the proposition when (X, T, µ) is an ergodic
k-step nilsystem. We write X = G/0 as usual.

The groups G(m)
e , 0(m)e , G(m+1)

e,e and 0(m+1)
e,e have been defined and studied above. We

recall that X (m)e = G(m)
e /0

(m)
e and that µ(m)e is the Haar measure of this nilmanifold. Also,

X (m+1)
e,e = G(m+1)

e,e /0
(m+1)
e,e and µ(m+1)

e,e is the Haar measure of this nilmanifold.
It is convenient to identify X [m+1] with X [m] × X [m], writing a point x ∈ X [m+1] as

x= (x′, x′′), where

x′ = (xε1...εm 0 : ε ∈ {0, 1}m) and x′′ = (xε1...εm 1 : ε ∈ {0, 1}m).

The diagonal map 1(m)X : X
[m]
→ X [m+1] is defined by 1(m)X (x)= (x, x), that is,

for x ∈ X [m] and ε ∈ {0, 1}m+1, (1
(m)
X (x))ε = xε1...εm .

We remark that 1(m)X (X (m)e )⊂ X (m+1)
e,e .

We use similar notation for elements of G[m+1] and define the diagonal map 1(m)G :

G[m]→ G[m+1]. We have that

1(m)(G(m)
e )⊂ G(m+1)

e,e

and, for every g= (g′, g′′) ∈ G(m+1)
e,e we have that g′ and g′′ belong to G(m)

e ; in other words,
G(m+1)

e,e ⊂ G(m)
e × G(m)

e . We define

G(m)
∗ = {g ∈ G(m)

e : (1[m], g) ∈ G(m+1)
e,e }

and we have that G(m)
∗ is a closed normal subgroup of G(m)

e and that

G(m+1)
e,e = {(g, hg) : g ∈ G(m)

e , h ∈ G(m)
∗ }.

It follows that
X (m+1)

e,e = {(x, h · x) : x ∈ X (m)e , h ∈ G(m+1)
∗ }.

For every x ∈ X (m), set

Vx = {y ∈ X (m) : (x, y) ∈ X (m+1)
e,e } = {h · x : h ∈ G(m+1)

∗ }.

Then Vx is a nilmanifold, quotient of the nilpotent Lie group G(m+1)
∗ by the stabilizer of x.

Let νx be the Haar measure of this nilmanifold.
For x ∈ X (m) and g ∈ G(m)

e , we have that

the image of νx under translation by g is equal to νg·x. (13)

Indeed, this image is supported on Vg·x and is invariant under G(m)
∗ , since G(m)

∗ is normal

in G(m)
e .

We claim that

µ(m+1)
e,e =

∫
δx × νx dµ(m)e (x). (14)
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The measure on X (m+1)
e,e defined by this integral is invariant under translation by elements

of the form (1[m], h) with h ∈ G(m)
∗ (note that each δx × νx is invariant under such

translations). By (13), the measure defined by this integral is also invariant under
translation by (g, g) for g ∈ G(m)

e . Therefore this measure is invariant under G(m+1)
e,e . Since

it is supported on X (m+1)
e,e , it is equal to the Haar measure µ(m+1)

e,e of this nilmanifold. The
claim is proven.

By (13) again, νh·x = νx for h ∈ G(m)
∗ . Let F denote the σ -algebra of G(m)

∗ -invariant
Borel sets. For every bounded Borel function F on X (m)e ,∫

F dνx = E(F : F)(x) µ(m)e -almost everywhere. (15)

To see this, we note that the function defined by this integral is invariant under translation
by G(m)

∗ and thus is F -measurable. Conversely, if F is F -measurable, then for µ(m)e almost
every x, it coincides νx-almost everywhere with a constant and so the integral is equal
almost everywhere to F(x).

Thus for a bounded Borel function F on X (m)e , using (14) and (15), we have that∫
F(x′)F(x′′) dµ(m+1)

e,e (x) =
∫ (

F(x′)
∫

F(x′′) dνx′(x
′′)

)
dµ(m)e (x′)

=

∫
F · E(F : F) dµ(m)e

=

∫
E(F : F)2 dµ(m)e ≥

(∫
F dµ(m)e

)2

. 2

5.5. The measures µ(m,r)e . In this section again, (X, µ, T ) is an ergodic inverse limit of
k-step nilsystems, with base point e ∈ X . Let m and r be integers with 0≤ r < m.

Let 1m,r : X [m−r ]
→ X [m] be the map given by

for x ∈ X [m−r ] and ε = ε1 . . . εm ∈ {0, 1}m, (1m,r x)ε = xεr+1...εm .

We define

X (m,r)e =1m,r (X
(m−r)
e ) and (16)

µ(m,r)e is the image of µ(m−r)
e under 1m,r . (17)

Recall that X (m−r)
e is the closed orbit of e[m−r ] under the transformations T [m−r ]

i for

1≤ i ≤ m − r and that µ(m−r)
e is the unique probability measure of this set invariant

under these transformations. We have 1m,r e[m−r ]
= e[m], and, for 1≤ i ≤ m − r , 1m,r ◦

T [m−r ]
i = T [m]r+i ◦1m,r . Therefore,

X (m,r)e is the closed orbit of the point e[m] ∈ X (m) under the transformations T [m]i for

r + 1≤ i ≤ m and µ(m,r)e is the unique probability measure on this set invariant under
these transformations.

For example, X (m,0)e = X (m)e ⊂ X (m) and µ(m,0)e = µ
(m)
e .

X (r+1,r)
e = {e[r ]} ×1[r ] ⊂ X (r+1), where 1[r ] denotes the diagonal of X [r ]. The

measure µ(r+1,r)
e is the product of the Dirac mass at e[r ] by the diagonal measure of X [r ].
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Since the images of µ(m−r)
e under the projections x 7→ xε with ε 6= ∅, are equal to µ, we

have that

the images of µ(m,r)e under the projections x 7→ xε for ε ⊂ [m], ε 6⊂ [r ], are equal to µ.

Therefore, if hε , ε ⊂ [m], ε 6⊂ [r ], are 2m
− 2r measurable functions on X with |hε | ≤ 1,

we have that ∣∣∣∣∫ ∏
ε⊂[m]
ε 6⊂[r ]

hε(xε) dµ(m,r)e (x)
∣∣∣∣≤ min

ε⊂[m]
ε 6⊂[r ]

‖hε‖L1(µ). (18)

6. A convergence result
In this section, we prove the key convergence result (Proposition 6.4).

6.1. Context. We recall our context, as introduced in §§3.4 and 3.5.
The system (X, T ) is associated to the subalgebra A of `∞(Z), µ is an ergodic invariant

probability measure on X , associated to the averages on the sequence I= (I j : j ≥ 1) of
intervals.

For every k ≥ 1, let (Zk, µk, T ) be the factor of order k of (X, µ, T ). We recall that
this system is an inverse limit of (k − 1)-step nilsystems, both in the topological and the
ergodic theoretical senses. The system (Zk, T ) is distal, minimal and uniquely ergodic,
and Zk is given with a base point ek . In a futile attempt to keep the notation only mildly
disagreeable, when the base point ek is used as a subindex, we omit the subscript k.

We write πk : X→ Zk for the factor map. We recall that this map is measurable, and
has no reason for being continuous. For `≤ k, Z` is a factor of Zk , with a factor map
π`,k : Zk→ Z` which is continuous and π`,k(ek)= e`.

We use various different methods of taking limits of averages of sequences indexed
by Zr . For example, in Proposition 6.1, we average over any Følner sequence in Zr .
In what follows, we use iterated limits: if

(
an : n = (n1, . . . , nr ) ∈ Zr

)
is a bounded

sequence, we define the iterated limsup of a as

Iter limsup |AvI,n1,...,nr an1,...,nr |

= limsup
j1→∞

. . . limsup
jr→∞

1
|I j1 | . . . |I jr |

∣∣∣∣ ∑
n1∈I j1...
nr∈I jr

an1,...,nr

∣∣∣∣.
We define the Iter lim Av an analogously, assuming that all of the limits exist.

6.2. An upper bound. The next proposition is proved in [8, §13].

PROPOSITION 6.1. Let (X, µ, T ) be an ergodic system and (Zd , T, ν) be its factor
of order d. Let fε , ε ⊂ [d], be 2d bounded measurable functions on X. For n =
(n1, . . . , nd) ∈ Zd , let

an =

∫ ∏
ε⊂[d]

fε(T
n·εx) dµ(x) and

bn =

∫ ∏
ε⊂[d]

E( fε : Zd)(T
n·εz) dµd(z).
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Then an − bn converges to zero in density, meaning that the averages of |an − bn| on any
Følner sequence in Zd converge to zero.

LEMMA 6.2. Let k ≥ 1, 0≤ r ≤ d and hε , ε ⊂ [d + 1], ε 6⊂ [r ], be 2d+1
− 2r continuous

functions on Zk . Then for every δ > 0, there exists C = C(δ) > 0 with the following
property.

Let ψε , ε ⊂ [r ], be 2r sequences belonging to B (as defined in §3.5) with absolute value
less than or equal to 1. Then the iterated limsup in n1, . . . , nr of the absolute value of the
averages on I of

A(n) :=
∏
ε⊂[r ]

ψε(n · ε)
∫ ∏
ε⊂[d+1]
ε 6⊂[r ]

hε(T
n·εxε) dµ(d+1,r)

k e (x)

is bounded by
δ + C

∏
r∈ε⊂[r ]

‖ψε‖I,k+r .

Proof. We write n = (m1, . . . , mr−1, p) and m = (m1, . . . , mr−1). The expression to be
averaged can be rewritten as

A′(m, p) =
∏

ε⊂[r−1]

ψε(m · ε) ·
∏

r∈ε⊂[r ]

ψε(m · ε + p)

·

∫ ∏
ε⊂[d+1]
ε 6⊂[r ]

hε(T
m·ε+pεr xε) dµ(d+1,r)

k e (x),

where in the term m · ε, we only use the first r − 1 coordinates of ε. For m ∈ Zr−1, we
write

8m(p)=
∏

r∈ε⊂[r ]

ψε(m · ε + p)=
∏

r∈ε⊂[r ]

σm·εψε(p)

where σ is the shift on `∞(Z). For x ∈ Z (d+1,r)
k , we also write

H(x)=
∏

ε⊂[d+1]
ε 6⊂[r ]

hε(xε)

and for every δ > 0, we let C = C(δ) be associated to this continuous function on X (d+1,r)
k

as in Proposition 3.5. We have∏
r∈ε⊂[r ]

ψε(m · ε + p) ·
∏

ε⊂[d+1]
ε 6⊂[r ]

hε(T
m·ε+pεr xε)

=8m(p)H((T
[d+1]

r )p((T [d+1]
1 )m1 · · · (T [d+1]

r−1 )mr−1x))

and thus ∣∣∣∣limsup
j

Avp∈I j

∏
r∈ε⊂[r ]

ψε(m · ε + p) ·
∏

ε⊂[d+1]
ε 6⊂[r ]

hε(T
m·ε+pεr xε)

∣∣∣∣
≤ δ + C‖8m‖I,k+1
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for every m and every x ∈ Z (d+1,r)
k . Taking the integral,∣∣∣∣limsup

j
Avp∈I j A′(m, p)

∣∣∣∣≤ δ + C‖8m‖I,k+1

for every m. Therefore

Iter limsup |AvI,n1,...,nr A(n)| ≤ Iter limsup AvI,n1,...,nr−1

∣∣∣∣limj Avp∈I j A′(m, p)

∣∣∣∣
≤ δ + C Iter limsup AvI,m1,...,mr−1 ‖8m‖I,k+1

≤ δ + C Iter limsup(AvI,m1,...,mr−1 ‖8m‖
2r−1

I,k+1)
1/2r−1

.

By [9, Proposition 4.3], the last limsup is actually a limit and is bounded by∏
r∈ε⊂[r ]

‖ψε‖I,k+r . 2

6.3. Iteration.

PROPOSITION 6.3. Let k ≥ 1, 0≤ r ≤ d and hε , ε ⊂ [d + 1], ε 6⊂ [r ], be 2d+1
− 2r

bounded measurable functions on Zk . Let φε , ε ⊂ [r ], be 2r continuous functions on X.
For n ∈ Zr , define

A(n)=
∏
ε⊂[r ]

φε(T
n·εx0)

∫ ∏
ε⊂[d+1]
ε 6⊂[r ]

hε(T
n·εxε) dµ(d+1,r)

k e (x)

and

B(n) =
∏

ε⊂[r−1]

φε(T
n·εx0)

·

∫ ∏
r∈ε⊂[r ]

E(φε : Zk+r−1)(xε) ·
∏

ε⊂[d+1]
ε 6⊂[r ]

hε ◦ pk+r−1,k(xε) dµ(d+1,r−1)
k+r−1 e (x).

Then the iterated limit of the averages of A(n)− B(n) is zero.

Proof. We remark that B(n) depends only on n1, . . . , nr−1.
By (18), it suffices to prove the result in the case that the functions hε are continuous.

We can also assume that |φε | ≤ 1 for every ε ⊂ [r ].
Let δ > 0 be given and let C be as in Lemma 6.2. For each ε with r ∈ ε ⊂ [d + 1], let

φ̃ε be a continuous function on Zk+r−1, with |φ̃ε | ≤ 1, such that ‖E(φε : Zk+r−1)− φ̃ε‖ is
sufficiently small. We have that

‖(φ̃ε(T
nek+r−1) : n ∈ Z)− (φε(T n x0) : n ∈ Z)‖I,k+r ≤ δ/2r−1C

for every ε. This follows from Proposition 3.6.
By Lemma 6.2 the iterated limsup of the absolute value of the averages on I of

A(n)−
∏

ε⊂[r−1]

φε(T
n·εx0) ·

∏
r∈ε⊂[r ]

φ̃ε(T
n·εek+r−1)

·

∫ ∏
ε⊂[d+1]
ε 6⊂[r ]

hε(T
n·εxε) dµ(d+1,r)

k e (x)
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is bounded by 2δ. We rewrite the second term in this difference as∏
ε⊂[r−1]

φε(T
n·εx0) ·

∏
r∈ε⊂[r ]

φ̃ε(T
n·εek+r−1)

·

∫ ∏
ε⊂[d+1]
ε 6⊂[r ]

hε ◦ pk+r−1,r (T
n·εxε) dµ(d+1,r)

k+r−1 e(x)

and remark that the first product in this last expression depends only on n1, . . . , nr−1.
By definition of the measures and continuity of the functions φ̃ε , the averages in nr on I

of the above expression converge to∏
ε⊂[r−1]

φε(T
n·εx0) ·

∫ ∏
r∈ε⊂[r ]

φ̃ε(xε) ·
∏

ε⊂[d+1]
ε 6⊂[r ]

hε ◦ pk+r−1,k(xε) dµ(d+1,r−1)
k+r−1 (x).

By (18) again, for every n1, . . . , nr−1 the difference between this expression and B(n) is
bounded by δ.

The announced result follows. 2

PROPOSITION 6.4. Let k ≥ 1 and let fε , ε ⊂ [d + 1], ε 6= ∅, be 2d+1
− 1 continuous

functions on X. Then the iterated averages for n = (n1, . . . , nd , nd+1) ∈ Zd+1 on I of∏
∅6=ε⊂[d+1]

fε(T
n·εx0) (19)

converge to ∫ ∏
∅6=ε⊂[d+1]

E( fε : Zd)(xε) dµ(d+1)
d e (x). (20)

Proof. For notational convenience we define f∅ to be the constant function 1.
By (2), the averages in nd+1 of (19) converge to∏

∅6=ε⊂[d]

fε(T
n·εx0) ·

∫ ∏
ε⊂[d+1]
ε 6⊂[d]

fε(T
n·εx) dµ(x) (21)

and it remains to show that the iterated averages in (n1, . . . , nd) of this expression
converge to (20).

By Proposition 6.1, the difference between the quantity (21) and

A(n) :=
∏
ε⊂[d]

fε(T
n·εx0) ·

∫ ∏
ε⊂[d+1]
ε 6⊂[d]

E( fε : Zd)(T
n·εx) dµd(x)

converges to zero in density and we are reduced to study the iterated convergence of the
averages of A(n).

We apply Proposition 6.3 with k = d and r = d and are left with studying the iterated
limit of the averages in n1, . . . , nd−1 of∏

ε⊂[d−1]

fε(T
n·εx0) ·

∫ ∏
d∈ε⊂[d]

E( fε : Z2d−1)(xε)

·

∏
ε⊂[d+1]
ε 6⊂[d]

E( fε : Zd) ◦ p2d−1,d(xε) dµ(d+1,d−1)
2d−1 e (x).
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After d − r steps, we are left with the iterated limit of the averages in n1, . . . , nr of an
expression of the form∏

ε⊂[r ]

fε(T
n·εx0) ·

∫ ∏
ε⊂[d+1]
ε 6⊂[r ]

E( fε : Z`(ε)) ◦ pk,`(ε)(xε) dµ(d+1,r)
k e (x),

where k = k(r)≥ d is an integer and where for every ε, d ≤ `(ε)≤ k.
Finally, after d steps, we have that the iterated limit of the expression (21) exists and is

equal to ∫ ∏
∅6=ε⊂[d+1]

E( fε : Z`(ε)) ◦ pk,`(ε)(xε) dµ(d+1)
k e (x),

where k is an integer and d ≤ `(ε)≤ k for every ε.
By Proposition 5.1, the measure µ(d+1)

k e is relatively independent with respect to its

projection µ(d+1)
d e on Z (d+1)

d . For every ε,

E(E( fε : Z`(ε)) ◦ pk,`(ε) : Zd)= E( fε : Zd)

and we have that the above limit is equal to (20). 2

7. Positivity
In this section, A, X , µ, I= (I j : j ≥ 1), . . . are as in §§3.4 and 3.5. Given a sequence of
intervals (Jk : k ≥ 1) in Z whose lengths tend to infinity, we assume that for each j ≥ 1,
there exists some k = k( j) such that the interval I j is included in Jk .

We simplify the notation: we write Z instead of Zd , ν instead of µd , e instead of ed .
If f is a function on X , f̃ = E( f : Z).

7.1. Positivity.

LEMMA 7.1. Let B ⊂ Z be such that 1B ∈A and let f be the continuous function on X
associated to this set:

f (T n x0)= 1B(n).

Let m ≥ 1 be an integer and let hε , ∅ 6= ε ⊂ [m], be 2m
− 1 non-negative bounded

measurable functions on Z. Assume that∫ ∏
∅6=ε⊂[m]

hε(xε) dν(m)e (x) > 0

and that
Z\B is not a PW- Nild Bohr0 set.

Then ∫
f̃ (x{m+1}) ·

∏
ε⊂[m+1]
ε 6=∅,{m+1}

hε∩[m](xε) dν(m+1)
e (x) > 0.

Proof. By Proposition 5.3,∫ ∏
ε⊂[m+1]
ε 6=∅,{m+1}

hε∩[m](xε) dν(m+1)
e,e (x) > 0.
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For z ∈ Z , define

H(z)=
∫ ∏

ε⊂[m+1]
ε 6=∅, ε 6={m+1}

hε∩[m](xε) dν(m+1)
e,z (x).

We have that δ := H(e) > 0 and, by Proposition 5.2, H is continuous on Zd . Therefore,
the subset

3= {n ∈ Z : H(T ne) > δ/2}

is a Nild Bohr-set.
By the same proposition,∫

f̃ (x{m+1}) ·
∏

ε⊂[m+1]
ε 6=∅,{m+1}

hε∩[m](xε) dν(m+1)
e =

∫
f̃ (z)H(z) dν(z).

We complete the proof as in the proof of Corollary 3.4. By Proposition 3.3, this last
integral is equal to

lim AvI f (T n x0)H(T
ne)≥

δ

2
limsup

j

1
|I j |
|3 ∩ B ∩ I j |.

If this limsup is equal to zero, then there exist arbitrarily long intervals J` such that
3 ∩ B ∩ J` = ∅ and thus the set Z\B contains 3 ∩ J` for all `. Therefore Z\B is a
PW- Nilg Bohr-set, which contradicts the hypothesis. 2

COROLLARY 7.2. Let B ⊂ Z be such that 1B ∈A and let f be the continuous function
on X associated to this set. Assume that Z\B is not a PW- Nild Bohr0-set. Then, for
every m, ∫ ∏

∅6=ε⊂[m]

f̃ (xε) dν(m)e (x) > 0. (22)

Proof. We remark first that
∫

f dµ > 0. Indeed, if this integral is zero, then the density
of the set B in the intervals I j converges to 0 and Z\B contains arbitrarily long intervals,
which contradicts the hypothesis.

We show (22) by induction. We have that ν(1)e = δe × ν and thus∫
f̃ (x1) dν(1)d e(x)=

∫
f̃ dν =

∫
f dµ > 0.

Assume that (22) holds for some m ≥ 1. Then Lemma 7.1 applied to h = f̃ shows that it
holds for m + 1. 2

7.2. And now we gather all the pieces of the puzzle. Recall that if E is a finite subset
of N, S(E) is the set consisting in all sums of distinct elements of E (the empty sum is not
considered). A subset A of Z is a S∗m-set if A ∩ S(E) 6= ∅ for every subset E of N with m
elements.

We prove Theorem 2.6.

THEOREM. (Theorem 2.6) Let A be a S∗d+1 set. Then A is a PW- Nild Bohr-set.
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Proof. Let B = Z\A, A a subalgebra of `∞(Z) containing 1B and X, µ, I, . . . are as
above. The continuous function f on X is associated to 1B and we use the same notation
as above.

Assume that A is not a PW- Nild Bohr-set. By Corollary 7.2,∫ ∏
∅6=ε⊂[d+1]

f̃ (xε) dν(d+1)
e (x) > 0

and by Proposition 6.4, this integral is equal to the iterated limit of the averages in
n = (n1, . . . , nd+1) of ∏

∅6=ε⊂[d+1]

f (T n·εx0).

This product is non-zero if and only if S({n1, . . . , nd+1})⊂ B. But the complement A
of B in Z is a S∗d+1-set (recall that the ni belong to some of the intervals I j ), and so this
cannot happen. 2

8. Proof of Theorem 2.10
We now prove Theorem 2.10 (recall that Theorem 2.8 is a particular case of this theorem).

THEOREM. Every SG∗d -set is a PW- Nild Bohr0-set.

8.1. The method. The proof is by contradiction. In this section, d ≥ 1 is an integer
and A is a subset of the integers. We assume that A is not a PW- Nild Bohr0-set and by
induction, we build an infinite sequence P = (p j : j ≥ 1) such that A ∩ SGd(P)= ∅.

Let A be a subalgebra of `∞(Z) containing 1A and let X, µ, . . . and the sequence of
intervals I= (I j : j ≥ 1) be as in §§3.4 and 3.5. We have the same conventions as in the
preceding section for the intervals I j .

We write B = Z\A and let f be the continuous function on X associated to 1B (see
§3.4):

f (T n x0)=

{
1 if n ∈ B,

0 otherwise.

As in §7, we simplify the notation: we write Z instead of Zd , ν instead of µd , and e instead
of ed . If f is a function on X , f̃ = E( f : Z).

In this section, it is more convenient to index points of X [d] by {0, 1}d instead of by
P([d]). Thus a point x ∈ X [d] is written x= (xε : ε ∈ {0, 1}d).

By induction, for every j ≥ 0, we build 2d
− 1 continuous non-negative functions h( j)

ε ,
00 . . . 0 6= ε ∈ {0, 1}d , on X satisfying∫ ∏

ε∈{0,1}d
ε 6=00...0

h̃( j)
ε (xε) dν(d)e (x) > 0 (23)

and, for every j ≥ 1, we build an integer p j (belonging to some interval Ii ), satisfying

h( j−1)
100...0(T

p j x0) > 0. (24)
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Start by setting all of the functions h(0)ε , 00 . . . 0 6= ε ∈ {0, 1}d , to be equal to f . By
Corollary 7.2 applied with m = d and rewritten in the current notation, we have that
property (23) is satisfied for j = 0.

8.2. Iteration. Assume j ≥ 1 and that property (23) is satisfied for j − 1.
By Proposition 5.3,∫ ∏

ε∈{0,1}d+1

ε 6=00...0,ε 6=00...01

h̃( j−1)
ε1...εd

(xε) dν(d+1)
e,e (x) > 0.

By Lemma 7.1, rewritten in our current notation, we have that∫
f̃ (x00...01) ·

∏
ε∈{0,1}d+1

ε 6=00...0,ε 6=00...01

h̃( j−1)
ε1...εd

(xε) dν(d+1)
e (x) > 0.

For convenience, we write h( j−1)
00...0 = f and rewrite this equation as∫ ∏
ε∈{0,1}d+1

ε 6=00...0

h̃( j−1)
ε1...εd

(xε) dν(d+1)
e (x) > 0. (25)

By Proposition 6.4, this last integral is the iterated limit of the averages for n =
(n1, . . . , nd+1) of ∏

ε∈{0,1}d+1

ε 6=00...0

h( j−1)
ε1...εd

(T n·εx0).

We make a change of indices, writing elements of Zd+1 as (p, n1, . . . , nd) and setting
n = (n1, . . . , nd). Elements of {0, 1}d+1 are written as ηε1 . . . εd with η ∈ {0, 1} and we
set ε = ε1 . . . εd . The last product becomes

h( j−1)
100...0(T

px0)
∏

ε∈{0,1}d
ε 6=00...0

(h( j−1)
0ε1...εd−1

· T ph( j−1)
1ε1...εd−1

)(T n·εx0).

For ε ∈ {0, 1}d , ε 6= 00 . . . 0, and for p ∈ Z, set

gp,ε = h( j−1)
0ε1...εd−1

· T ph( j−1)
1ε1...εd−1

and rewrite the last expression as

h( j−1)
100...0(T

px0)
∏

ε∈{0,1}d
ε 6=00...0

gp,ε(T
n·εx0).

By Proposition 6.4 again, the iterated limit of the averages in n1, . . . , nd of this expression
converges to

h( j−1)
100...0(T

px0)

∫ ∏
ε∈{0,1}d
ε 6=00...0

E
(
gp,ε : Zd−1

)
(xε) dµ(d)d−1 e(x)

= h( j−1)
100...0(T

px0)

∫ ∏
ε∈{0,1}d
ε 6=00...0

g̃p,ε(xε) dµ(d)e (x)
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because the measure µ
(d)
e is relatively independent with respect to µ

(m)
d−1 e (see

Proposition 5.1, part (d)).
The averages in p over the intervals I of this expression converge to the limit (25), which

is positive. Thus there exists some p (belonging to some Ii ) such that this expression is
positive. Choosing p j to be this p, for 00 . . . 0 6= ε ∈ {0, 1}d , we define

h( j)
ε = gp j ,ε = h( j)

0ε1...εd−1
· T p j h( j−1)

1ε1...εd−1

(recall that h( j−1)
00...0 = f ). Since (23) is valid with h( j)

ε substituted for h( j−1)
ε , we can iterate.

Moreover,
h( j−1)

100...0(T
p j x0) > 0,

meaning that relation (24) is satisfied.

8.2.1. Interpreting the iteration. By induction, it follows that for every j ≥ 0, the
functions h( j)

ε , 00 . . . 0 6= ε ∈ {0, 1}d , only depend on the first non-zero digit of ε:

h( j)
ε = φ

(k)
j if ε1 = · · · = εk=1 = 0 and εk = 1.

We have the inductive relations

φ
(k)
0 = f for 1≤ k ≤ d,

φ
(1)
j−1(T

p j x0) > 0,

for 1≤ k < d, φ
(k)
j = φ

(k+1)
j−1 · T

p jφ
(1)
j−1,

φ
(d)
j = f · T p jφ j−1,1.

By induction, φ(1)j ≤ φ
(2)
j ≤ · · · ≤ φ

(d)
j ≤ f . Moreover, we deduce the following relations

between the functions φ(1)j :

for 1≤ j < d, φ
(1)
j = f ·

j∏
k=1

T p j−k+1φ
(1)
j−k

for j ≥ d, φ
(1)
j = f ·

d∏
k=1

T p j−k+1φ
(1)
j−k .

It follows that, for every j , there is a finite set E j of integers with

φ
(1)
j =

∏
q∈E j

T q f.

We have that E0 = {0} and the E j satisfy the relations

for 1≤ j < d, E j = {0} ∪ (E j−1 + p j ) ∪ (E j−2 + p j−1) ∪ · · · ∪ (E0 + p1),

for j ≥ d, E j = {0} ∪ (E j−1 + p j ) ∪ (E j−2 + p j−1) ∪ · · · ∪ (E j−d + p j−d+1).

By induction, E j consists in all sums of the form ε1 p1 + · · · + ε j p j where εi ∈ {0, 1} for
all i , and, after the first occurrence of 1, there can be no block of d consecutive 0’s.

By induction, each function φ(1)j only takes on the values of 0 and 1 and corresponds to
a subset B j of the integers, and we have

B j =
⋂

q∈E j

(B − q).

https://doi.org/10.1017/S014338570900087X Published online by Cambridge University Press

https://doi.org/10.1017/S014338570900087X


142 B. Host and B. Kra

For every j , since φ
(1)
j−1(T

p j x0) > 0, we have that p j ∈ B j−1 and thus that E j−1

+ p j ⊂ B.
We conclude that all sums of the form ε1 p1 + · · · + εk pk with εi ∈ {0, 1} for all i

belong to B, provided the εi are not all equal to 0 and that the blocks of consecutive
0s between two 1s have length less than d . In other words, B ⊃ SGd({p j : j ≥ 1}) and we
have a contradiction of the assumptions. 2

We note that, at each step in the iteration, we have infinitely many choices for the next p.
In particular, we can take the p j tending to infinity as fast as we want. More interesting,
in the construction we can choose a different permutation of coordinates at each step.
This gives rise to different, but related, structures, which do not seem to have any simple
description.
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