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Abstract Let u be a solution of a generalized Cauchy–Riemann system in Rn. Suppose that |u| � 1 in
the unit ball and |u| � ε on some closed set E. Classical results say that if E is a set of positive Lebesgue
measure, then |u| � Cεα on any compact subset of the unit ball. In the present work the same estimate
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than n − 2. The proof gives control of constants C and α.
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1. Introduction

Given a subset E of the unit ball B ⊂ Rn and a class of (vector) functions A ⊂ C(B),
we say that E is a propagation of smallness set for A if for any u ∈ A

|u(x)| � C‖u‖1−α
B ‖u‖α

E , (1.1)

where α = α(x, E) > 0 is independent of u and bounded away from 0 on compact subsets
of B. We will consider this problem for A being the space of (real) analytic functions or
the space of solutions to some differential equation.

Propagation of smallness was intensively studied for solutions of second-order elliptic
equations. In particular, if E is a small ball, then (1.1) is an immediate consequence of
the three-balls theorem. Various versions of this theorem for solutions of second-order
elliptic equations were proved by Gusarov and Landis [11], and, using another approach,
by Brummelhuis [5]. The result due to Korevaar and Meyers [10] shows that when A is
the space of harmonic functions and E is a ball one can take C = 1 in (1.1). The case
of a set E of positive Lebesgue measure was investigated independently by Nadirashvili
and Vessella. It is proved in [15,20] that if A is the space of real analytic functions that
have analytic extension to a fixed domain in Cn (for example, A is a space of solutions
to an elliptic equation with analytic coefficients) and m(E) > 0, then (1.1) holds. For
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arbitrary second-order elliptic equations the question of propagation of smallness from a
set of positive measure is open. Interesting inequalities are proved in [16,21], but they
are weaker than (1.1).

In this paper A is the space of solutions to a generalized Cauchy–Riemann (GCR)
system. More precisely, we consider systems of first-order differential equations with con-
stant coefficients that are factors of the Laplacian. The simplest example is the classical
Cauchy–Riemann system—for this case, A is the class of functions analytic in the unit
disc. It can be proved that E is a propagation of smallness set for analytic functions if
and only if E is non-polar (see § 2). The author is grateful to Vladimir Eiderman for
pointing out this result. It is related to the fact that the logarithm of the module of
an analytic function is subharmonic (and harmonic off the zero set of the function). In
other words, we have a description of the space of modules of analytic functions. Unfor-
tunately, there is no such description for modules of solutions to GCR systems. It is well
known (see [19]) that if u is a solution to a GCR system, then |u|p is subharmonic for
some p < 1, where p depends on the system. Being a partial substitution to the subhar-
monicity of the logarithm, this result is difficult to use in our problem. The difference
between analytic functions and solutions to higher-dimensional systems is discussed in
the remarkable work of Wolff [22]. It shows that solutions of (even the simplest) gener-
alization of Cauchy–Riemann systems do not share a number of important properties of
analytic functions.

We formulate a condition that is sufficient for propagation of smallness for GCR sys-
tems. It is clear that zero sets of A are of dimension at most n − 2. We assume that E

is a subset of a hyperplane and its (capacitary) dimension is greater than n − 2. Then E

is a propagation of smallness set for A and we have estimates on α in (1.1).

Main Result. Let A be a differential operator with constant coefficients, A =∑n
1Aj∂j , that is a factor of the Laplacian. Let A be the space of solutions to Au = 0,

where u : B → Rm. Suppose that E is a compact subset of a hyperplane, E ⊂ B1/2, and
for some δ > 0 the Riesz capacity Cn−2+δ(E) = C is positive (for the definition of the
capacity see (5.3) below). Then (1.1) holds with some C = C(n) and α = α(x, n, A, δ, C)
bounded away from 0 on compact subsets of B.

The paper is organized as follows. In § 2 we give a simple proof of (1.1) for analytic
functions. The proof is based on the definition of capacity via Chebyshev constants and
gives an estimate for α in terms of the logarithmic capacity. This result is applied in § 3
to obtain propagation of smallness for real-analytic functions in RN . The following result
of § 3 is of independent interest.

Key Lemma. Let A(BR) be the set of real analytic functions f on BR that admit
analytic continuation f̃ to the closed complex ball BR,C = {z ∈ CN : |z| � R} such that
|f̃ | � 1 on BR,C. Let K ⊂ Br be a compact set of positive Riesz (N − 1 + δ)-capacity.
Then

sup
Br

|f | � sup
K

|f |α,

for any f ∈ A(BR), where α = α(N, δ, r1−N−δCN−1+δ(K)).
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We use this lemma to prove the Main Result in § 4, which begins with definitions and
examples of GCR systems and factors of the Laplacian. In the last section, notions and
results from potential theory are collected.

We use N to denote the dimension of the real (complex) space when working with
(real-)analytic functions. Then in § 4 we change the notation and use n for the dimension
of the space where a GCR system is considered. The reason is that in this section the
results on analytic functions in smaller-dimensional spaces are used.

Throughout the paper c(N), c(n), . . . stand for different constants depending only on
N , n, etc. The values of these constants changes from line to line and is of no importance
for us. By cl(N), l = 0, 1, . . . , we denote constants that are fixed through the paper.
We use the standard notation Hs for the Hausdorff measures and use m to denote the
Lebesgue measure.

2. Propagation of smallness for analytic functions

2.1. Formulation of the result

In this section we consider analytic functions of one complex variable. Suppose that f is
analytic and bounded by 1 in the ball BR = {|z| < R} and suppose that |f | � ε on a
compact subset K ⊂ Br = {|z| < r}, where r < R. We consider estimates of the type

sup
Br

|f | � Cεα, for some α = α(R, r, K) and an absolute constant C. (2.1)

It is clear that such estimates hold with some α and C if and only if K is a non-polar
set. Then one can take C = 1 and α = maxBr

ω(K, BR, z), where

ω(K, BR, z) = inf{u(z), u is superharmonic in BR, u � 0 on BR and u � 1 on K}

is the harmonic measure of K relative to BR. Our aim is to estimate α in terms of the
logarithmic capacity of K. Though the question seems to be classical, we failed to find
the reference in classical monographs on potential theory. For this reason, we give an
elementary proof of the following statement.

Theorem 2.1. Suppose that 4r < R < 1 and f and K are as above. If K is not a
polar set, then (2.1) holds with C = 1 and

α =
1
8

(
ln

3r

C0(K)

)−1

,

where C0(K) is the logarithmic capacity of K (see (5.1) below).

Remark 2.2. As is mentioned in the last section, C0 is a non-decreasing function on
compact sets and C0(K) � C0(Br) = r, thus the expression above is well defined.
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2.2. Proof of Theorem 2.1

We fix m to be the greatest integer such that

ε

(
3r

C0(K)

)m

� 1. (2.2)

Then we have the following inequalities for m:

m � − ln ε

ln(3r) − lnC0(K)
� δ−1ε−δ

(ln(3r) − lnC0(K))
. (2.3)

The last inequality is valid for any δ > 0 and is easy to check.
Now, let z0, z1, . . . , zm ∈ K be such that

dm(K) =
( ∏

0�j<k�m

|zj − zk|
)2/m(m+1)

is the mth transfinite diameter of K (see § 5.2). We consider the Lagrange interpolation
polynomial for f with the nodes z0, z1, . . . , zm:

P (z) =
m∑

k=0

f(zk)
(z − z0) · · · ̂(z − zk) · · · (z − zm)

(zk − z0) · · · ̂(zk − zk) · · · (zk − zm)
.

First, we note that for any z ∈ K the product of the pairwise distances between
z0, . . . , zk−1, z, zk+1, . . . , zm is less than or equal to the same product for z0, z1, . . . , zm.
Hence,

(zk − z0) · · · ̂(zk − zk) · · · (zk − zm) = max
z∈K

(z − z0) · · · ̂(z − zk) · · · (z − zm).

Thus the right-hand side of the above inequality is greater than or equal to ρm
m, where

ρm is the mth Chebyshev constant for K (see § 5.2 for the definition). And, using an
elementary estimate ρm � C0(K) (see (5.2) below), we get

(zk − z0) · · · ̂(zk − zk) · · · (zk − zm) � C0(K)m,

for any k. Thus, we get an estimate for the interpolation polynomial on Br:

max
Br

|P (z)| � (m + 1)ε
(

2r

C0(K)

)m

. (2.4)

Using the integral formula for the remainder of the Lagrange interpolation, we get the
following inequality for z ∈ Br:

|f(z) − P (z)| =
∣∣∣∣ 1
2πi

∫
|ζ|=R

f(ζ)(z − z0) · · · (z − zm)
(ζ − z)(ζ − z0) · · · (ζ − zm)

dζ

∣∣∣∣ �
(

2r

R − r

)m

. (2.5)
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We now combine estimates (2.4) and (2.5), and use (2.2):

max
Br

|f | � (m + 1)ε
(

2r

C0(K)

)m

+
(

2r

R − r

)m

�
(

(m + 1)ε
(

3r

C0(K)

)m

+ 1
)(

2
3

)m

� 3
2 (m + 2)εβ , where β =

ln 3
2

ln(3r) − ln(C0(K))
.

Then we apply (2.3) with δ = 2
3β to get

max
Br

|f | � 10εβ/3.

So (2.1) is proved with C = 10 and α = 1
3β. Now, applying the theorem to functions fM ,

where M is any positive integer, we see that if (2.1) is valid with some absolute constant,
then it is valid with C = 1, and we are done. �

2.3. Corollaries and remarks

Clearly, if K has a positive measure, it is non-polar and we can apply the theorem.
Later we need the following result.

Corollary 2.3. Let f and K be as in the theorem. Suppose that K is a subset of a
line and it has a positive linear measure |K|. Then estimate (2.1) is satisfied with

α =
1
8

(
ln

12r

|K|

)−1

.

Proof. Theorem 2.1 combined with the classical inequality C0(K) � 1
4 |K| (here we

use the assumption that K is a subset of a line (see § 5.1)) implies the above estimate. �

If we fix r and R, then α in the theorem can be estimated by the Wiener capacity of E

(for the definition see § 5.1).

Corollary 2.4. Let r < R < 1 be some positive numbers and let K be a compact
subset of Br. Then for any function f analytic in BR,

sup
Br

|f | �
(

sup
K

|f |
)α(

sup
BR

|f |
)1−α

, where α � c(r, R) cap(K).

Proof. First suppose that 4r < R. Then, applying the theorem, we get the required
inequality with

α =
1
8

(
ln

3r

C0(K)

)−1

= 1
8 (ln 3r + cap(K)−1)−1 � c(r) cap(K).

If 4r > R, we set s = 1
4 (R − r) and take a ball B(a, s) such that B(a, 4s) ⊂ BR and

cap(E) � c(r, R) cap(K), where E = K ∩ B(a, s). Then, using the theorem, we get

sup
B(a,s)

|f | �
(

sup
K

|f |
)α(

sup
BR

|f |
)1−α

, where α � c(s) cap(E) � c(r, R) cap(K).
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We need to replace B(a, s) by Br. The standard procedure is to take a chain of balls
and apply Hadamard’s three-circle theorem at each step. Or a continuous version of this
‘propagation of smallness’ due to Arakelian and Shahgholian [3] can be used. �

Recently, an estimate between relative capacity and condenser capacity for compact
subsets of CN was proved by Siciak [18]. Together with [2,4,13], it gives a quantitative
relation between the logarithmic capacity (or transfinite diameter) and the condenser
capacity. Theorem 2.1 can be obtained from these multidimensional results. In the one-
dimensional case we use elementary estimates and interpolation and approximation by
polynomials. We end this section by proving an estimate for α from above.

Remark 2.5. Suppose that inequality (2.1) is satisfied with some constant C. Let P ∗
m

be an extremal polynomial of degree m for K, i.e. the one that gives the mth Chebyshev
constant. It is clear that all roots of P ∗

m lie in Br. Thus we have maxBR
|P ∗

m| � (R + r)m

and maxK |P ∗
m| = ρm(K)m. Using (2.1), we get

ρm
m(Br) � max

Br

|P ∗
m| � C(R + r)m(1−α)ρm(K)mα.

Taking the mth root, we obtain the inequality for the limits

r � (R + r)1−αC0(K)α.

This implies

α � ln(R + r) − ln r

ln(R + r) − ln(C0(K))
� cap(K)

cap(K) ln r + 1
ln

(
1 +

R

r

)
.

In particular, cap(K) > 0, and we have an estimate for α from above.

3. Propagation of smallness for real analytic functions in RN

3.1. Introductory remarks

We denote by A(BR) the set of all real analytic functions f on BR ⊂ RN that have
analytic continuation f̃ to the closed complex ball BR,C = {z ∈ CN : |z| � R} such that
|f̃ | � 1 on BR,C.

Let K be a compact subset of Br, we want to obtain an estimate

sup
Br

|f | � sup
K

|f |α, (3.1)

for any f ∈ A(BR). It follows from the remark in the previous section that this inequality
holds for some α if and only if K is not a pluri-polar set and α can be estimated in terms
of the (pluri-)capacity of K. We will use the fact that K is a subset of Rn and get a
condition on K in real-analytic terms.

Consider the Hausdorff dimension of K. We will use the definition of dimension through
the Riesz capacities and refer the reader to § 5.3 for the details. It is clear that an
(N − 1)-dimensional subset {x = (x1, . . . , xN ) ∈ BR, x1 = 0} is not a uniqueness set for
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the class A(BR). On the other hand, if dimK > N − 1, then K is not pluri-polar and
(3.1) holds. In fact, for this case Cs(K) > 0 for some s > N − 1. Then for almost all
b ∈ SN−1 we have

HN−1{a ∈ b⊥ : Cs−N+1(K ∩ la,b) > 0} > 0,

where la,b = {x = a + tb, t ∈ R} (see [14, Theorem 10.8]). Thus la,b ∩ K is not a polar
set in the complex plane La,b = {z = a + λb, λ ∈ C}. Suppose that K ⊂ {u = −∞} for
some pluri-subharmonic function u. Then for b ∈ SN−1 and a ∈ b⊥ the restriction of u to
La,b is equal to −∞ identically provided that Cs−N+1(K ∩ la,b) > 0. Thus for almost all
b ∈ SN−1 the restriction of u on b⊥ is equal to −∞ on a set of positive measure. Since
u is pluri-subharmonic this implies u = −∞ on b⊥ for almost all b ∈ SN−1. And, finally,
u = −∞ identically.

Our aim is to get a quantitative estimate (3.1) for the case dimK > N − 1. We fix
δ > 0 and assume that K has positive Riesz (N − 1 + δ)-capacity.

3.2. Estimates for functions in A(B)

First we prove inequality (3.1) under the assumption that K has positive N -
dimensional Lebesgue measure.

Lemma 3.1. Suppose that K ⊂ Br, 4r < R < 1, and m = m(K) > 0. Then (3.1) is
satisfied for any f ∈ A(BR) with α = α(r, N, m).

Proof. We fix a point a ∈ Br and consider all lines passing through a. We can find
at least one line l such that |K ∩ l| > c(N)r1−Nm. In fact,

m = m(K) =
∫

χK(x) dm(x) =
∫

SN−1

∫ 2r

0
tN−1χK(a + tx′) dt ds(x′),

and there exists x′ ∈ SN−1 such that

|K ∩ {a + sx′}| =
∫ 2r

0
χK(a + tx′) dt

� (2r)1−N

∫ 2r

0
tN−1χK(a + tx′) dt � c(N)r1−Nm.

We take l to be {a + sx′ : s ∈ R}. Now let 2r̃ = |Br ∩ l| < 2r. We apply Corollary 2.3
replacing r, R and K by r̃,

√
R2 − r2 + r̃2 and K ∩ l. Denote by f̃ the extension of f | l

to the complex ball of radius
√

R2 − r2 + r̃2, then we have

|f(a)| � sup
Br̃

|f̃ | � sup
K∩l

|f |α,

where

α � 1
8

(
ln

c(N)rN

m(K)

)−1

.

This completes the proof. �

https://doi.org/10.1017/S0013091503000245 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091503000245


198 E. Malinnikova

We finish this section by proving the Key Lemma formulated in § 1.

Lemma 3.2. Let K ⊂ Br, 4r < R < 1, and let C(K) = CN−1+δ(K) > 0. Then (3.1)
holds with

α = α(N, δ, r1−N−δC(K)).

Proof. Applying Lemma 5.3 to K we can find the line l such that

HN−1{a ∈ l⊥ : Cδ(K ∩ la) � k(N)r1−NC(K)} � c1(N)r−δC(K).

We denote by Pl the orthogonal projection of RN onto l⊥ and by L the set of a ∈ l⊥

such that Cδ(K ∩ la) � k(N)r1−NC(K). Then, we apply Theorem 2.1 to each set K ∩ la
and use a simple estimate C0(K ∩ la) � (Cδ(K ∩ la))1/δ (see (5.4) below). We get

|f(x)| � sup
K

|f |α for any x ∈ Br ∩ P−1
l (L), (3.2)

where

α � 1
8δ

(
ln

c(N)rN−1+δ

C(K)

)−1

.

Now we consider the hyperplanes {l⊥ + h}, where h ∈ l, |h|2 < c3(N)r−N+3−δC(K).
Each of them intersects P−1

l (L) ∩ Br and, provided that c3(N) is small enough, we can
estimate the measure of Eh = (l⊥ + h) ∩ Br ∩ P−1

l (L),

HN−1(Eh) � c4(N)r−δC(K).

On Eh estimate (3.2) is valid and, applying Lemma 3.1 to each (N − 1)-dimensional set
Eh, we get

|f(x)| � sup
K

|f |α, whenever dist(x, l⊥) �
√

c3(N)r−N+3−δC(K),

where

α � 1
64δ

(
ln

c(N)rN−1+δ

C(K)

)−2

.

Finally,

m
{

x ∈ Br : dist(x, l⊥) � c(N)
√

r−N+3−δC(K)
}

� c(N)
√

rN+1−δC(K)

and, using Lemma 3.1 once again, we have

sup
Br

|f | � sup
K

|f |α,

where

α � 1
256δ

(
ln

c(N)rN−1+δ

C(K)

)−3

.

This completes the proof of the theorem. We obtained an explicit estimate for α, but it
looks too complicated to be used. �
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4. Prolongation of smallness for factors of the Laplacian

4.1. Definition and examples

Let A be a first-order linear differential operator with constant coefficients defined on
vector functions, A =

∑n
j=1 Aj∂j , where Aj are constant matrices. The system of equa-

tions

(AF =)
n∑

j=1

Aj
∂F

∂xj
= 0 (4.1)

is called a generalized Cauchy–Riemann (GCR) system if for any solution F to this
system, F : Rn → Rm, F = (f1, . . . , fm), all its components f1, f2, . . . , fm are harmonic
(see [19]). (We suppose that F is well defined and satisfies (4.1) in an open subset of Rn.)

Definition 4.1. A GCR system (4.1) is said to be a factor of the Laplacian if there
exists a first-order differential operator B =

∑n
j=1 Bj∂j with constant coefficients such

that BA = ∆.

Let us remark that BA = ∆ means that

BjAj = Im, j = 1, . . . , n, and BjAk + BkAj = 0, 1 � j < k � n,

where Im is the identity matrix.

Example 4.2. The simplest GCR system in Rn is

n∑
j=1

∂fj

∂xj
= 0,

∂fj

∂xk
=

∂fk

∂xj
, 1 � j < k � n. (4.2)

Clearly, it is a factor of the Laplacian. A solution to this system is locally the gradient
of a harmonic function. In R2 = C, (4.2) is the classical Cauchy–Riemann system for
(f1,−f2).

Example 4.3. We consider (non-homogeneous) differential forms in Rn. Let d be the
exterior differential operator and δ the adjoint operator (see, for example, [7]). Then the
system

(d + δ)ω = 0

can be written as a system of first-order differential equations with constant coefficients
and it is a factor of the Laplacian as ∆ω = −(dδ + δd)ω = −(d + δ)(d + δ)ω. When
ω =

∑N
j=1 fj dxj is a 1-form, the system above coincides with (4.2).

Further examples and a description of rotationally invariant factors of the Laplacian
can be found in [6] (see also [8] and references therein).

4.2. Prolongation to an (n − 1)-dimensional ball

Now we are ready to prove the Main Result formulated in § 1. First we shall apply the
results of § 3. In order to do this we need the following classical lemma. It can be found
in textbooks on harmonic functions (see, for example, [9, Chapter 1.5]).
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Lemma 4.4. Suppose that h is a harmonic function in the ball BR ⊂ Rn and |h| � 1
on BR, r = 1

3R. Then h has an analytic continuation h̃ to Br,C that is bounded by c(n)
and, for z ∈ Br,C,

|h̃(z) − Tkh̃(z)| � c(n)ρk,

where Tkh̃ is the Taylor polynomial for h̃ and ρ < 1.

Let F = (f1, . . . , fm) be a solution to a GCR system AF = 0 in BR ⊂ Rn

and supBR
|F | � 1. And let K be a subset of the hyperplane {xn = 0} with C(K) =

Cn−2+δ(K) > 0 for some δ > 0. To prove the main result we should estimate supBt
|F |

(where t < R) in terms of supK |F |. We may assume that K ⊂ Br, where r < 1
12R. The

first step is to estimate |F | on Br ∩ {xn = 0}.
Each component fj of F is a harmonic function. Applying Lemma 4.4, we see that fj

can be extended to a bounded analytic function in BR/3,C. Let B′
r = Br ∩ {xn = 0}.

Theorem 3.2 implies
sup
B′

r

|F | � c(n)
(

sup
K

|F |
)α

, (4.3)

where α = α(r, n, C(K), δ).

4.3. From hyperplane to a cylinder

Suppose that |F | � 1 on BR and |F | � ε on K, where K is as above. Then by (4.3) we
have |F | � c(n)εα on B′

r, where 12r < R. We shall extend this estimate to a ball in Rn.
We consider analytic continuation F̃ of (all components of) F that is obtained by the

series expansion and diverges in Br,C. By Lemma 4.4, we have supB′
t,C

|F̃ | � c(n)εα for
t < 1

3r. Thus we can estimate the partial derivatives of F with respect to the first n − 1
variables. Letting λ = (λ1, . . . , λn−1, 0), we have

|DλF | � c(n)|λ|!
(

2
t

)|λ|
εα on B′

s, s < 1
2 t.

To get estimates for the partial derivatives with respect to xn, note that F (with all
its partial derivatives) satisfies a GCR system and all components of F are harmonic
functions. Thereby we have

|∂nF | = |BnAn∂nF | =
∣∣∣∣Bn

(
−

n−1∑
1

Aj∂jF

)∣∣∣∣ � c(A, n)
2
t
εα on B′

s.

Furthermore, the following estimates hold on B′
s:

|∂2k
n F | =

∣∣∣∣
(

−
n−1∑

1

∂2
j

)k

F

∣∣∣∣ � c(n)nk(2k)!
(

2
t

)2k

εα

and

|∂2k+1
n F | =

∣∣∣∣Bn

(
−

n−1∑
1

Aj∂j

(
−

n−1∑
1

∂2
j

)k )
F

∣∣∣∣ � c(n, A)nk(2k + 1)!
(

2
t

)2k+1

εα.
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Finally, for x = (x′, xn) with |x′| < s and xn < t/4
√

n, we have

|F (x′, xn)| =
∣∣∣∣

∞∑
0

1
l!

∂l
nF (x′, 0)xl

n

∣∣∣∣ � c(n, A)εα.

In particular, the last estimate is valid in the ball of radius r/12
√

n. Once again, using
the three-balls theorem, we can replace the ball by any other that is compactly supported
in BR and we are done.

5. Some definitions and results from potential theory

In this section results from potential theory that were used in the work are collected.
Our main sources are [1,12,14].

5.1. The Wiener and logarithmic capacities on the complex plane

We follow Landkof’s book [12, Chapter II, no. 15] to define the capacity of subsets of
(the unit disc in) the complex plane. Let E be a compact subset of the unit disc. Then
the Wiener capacity of E is

cap(E) =
(

inf
{

I(µ) =
∫

E

∫
E

ln
1

|x − y| dµ(x) dµ(y), supp(µ) ⊂ E, µ(E) = 1
})−1

,

where the infimum is taken over all Radon measures µ.
A compact subset E of the unit disc is called polar if there exists a subharmonic

function u such that u|E = −∞; E is a polar set if and only if cap(E) = 0. We shall also
use the logarithmic capacity of E defined by

C0(E) = exp(− cap(E)−1). (5.1)

It is easy to see that C0 is a non-negative monotone non-decreasing function of compact
sets and the logarithmic capacity of a ball is given by C0(Br) = r (see [12, Chapter II,
nos 16, 17]). Another simple inequality we use is if K is a compact subset of a line, then
C0(K) � 1

4 |K|, where |K| is the linear measure of K.

5.2. Chebyshev constants and transfinite diameter

Denote by Pm the space of all polynomials of degree m whose leading coefficient equals
one. Then Chebyshev’s constants for E are given by

ρm(E) = min
Pm

max
E

|Pm(z)|1/m.

Now, the mth transfinite diameter of E is

dm(E) = max
zj∈E

( ∏
0�j<k�m

|zj − zk|
)2/m(m+1)

.
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Then limits of both sequences {ρm} and {dm} exist and are equal to the logarithmic
capacity of E (see [1, Part I, § 7]):

lim
m→∞

ρm(E) = lim
m→∞

dm(E) = C0(E).

The following simple inequality was used:

ρm(E) � C0(E). (5.2)

In order to prove it let us take P ∗
m ∈ Pm such that ρm(E) = maxE |P ∗

m|1/m. Then for
any positive integer n we have

ρm(E) = max
E

|(P ∗
m)n|1/mn � ρmn(E).

As we know that limm→∞ ρm(E) exists, we get (5.2) immediately.

5.3. The Riesz capacities in Rn and the capacitary dimension

Definition 5.1. Let s > 0. The Riesz s-capacity of a set A ⊂ RN is defined by

Cs(A) = sup{Is(µ)−1 : µ(A) = 1}, (5.3)

where the supremum is taken over all Radon measures µ compactly supported on A, and

Is(µ) =
∫∫

|x − y|−s dµ(x) dµ(y).

Similarly, the logarithmic capacity of A is defined by

C0(A) = sup
{

exp
(

−
∫∫

ln
1

|x − y| dµ(x) dµ(y)
)

: µ(A) = 1
}

.

It is easy to check that Cs(Br) = c(s, n)rs if 0 < s < n.
By the mean inequality, we have

Is(µ) � exp
(

s

∫∫
ln

1
|x − y| dµ(x) dµ(y)

)
= exp(sI(µ)).

Thus,
Cs(A) � Cs

0(A), (5.4)

where C0 is the logarithmic capacity.

Definition 5.2. Let A be a subset of RN . The capacitary dimension of A is defined
by

dimc(A) = sup{s : Cs(A) > 0}.

The remarkable fact is that the capacitary dimension coincides with the Hausdorff one
(see [14, Chapter 8]).
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5.4. Slicing

Suppose that A ⊂ RN is such that C(A) = CN−1+δ(A) > 0 for some positive δ. We
consider intersections of A and one-dimensional lines. Consider all lines passing through
the origin, and for any such line l and any a ∈ l⊥ define la = l+a. The following inequality
is used to reduce the multidimensional case to the one-dimensional one (see [14, § 10.9]
and [17]): ∫∫

l⊥
Cδ(A ∩ la) dHN−1(a) dγN,1(l) � c0(N)CN−1+δ(A), (5.5)

where γN,1 is the measure on the manifold of all lines (in RN ) passing through the origin
which is induced by the surface measure on SN−1. This inequality implies the following
lemma.

Lemma 5.3. There exist k = k(N) such that for any A ⊂ Br

HN−1{a ∈ l⊥ : Cδ(A ∩ la) � kr1−NC(A)} � c1(N)r−δC(A)

is valid for at least one line l.

Proof. According to (5.5), there exists l such that∫
l⊥

Cδ(A ∩ la) dHN−1(a) � c0(N)C(A).

By the hypothesis A ⊂ Br, Cδ(A ∩ la) � Crδ and

HN−1{a ∈ l⊥ : A ∩ la �= ∅} � c2(N)rN−1.

For any k > 0, we define

Ek = {a ∈ l⊥ : Cδ(A ∩ la) � kr1−NC(A)} and Hk = HN−1(Ek).

Then we have

c0(N)C(A) �
∫

l⊥
Cδ(A ∩ la) dHN−1(a)

=
∫

Ek

Cδ(A ∩ la) dHN−1(a) +
∫

l⊥\Ek

Cδ(A ∩ la) dHN−1(a)

� CrδHk + kr1−NC(A)(c2(N)rN−1 − Hk)

= (Crδ − kr1−NC(A))Hk + c2(N)kC(A).

Taking k small enough, we may assume that Crδ − kr1−NC(A) > c(N)rδ > 0 (since
A ⊂ Br) and c2(N)k < c0(N). Then we have Hk � c1(N)r−δC(A) and the lemma is
proved. �
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