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We consider the dynamics of a set of reduced equations describing the evolution of
a magnetised, rotating stably stratified fluid layer, atop a stagnant dense, perfectly
conducting layer. We consider two closely related models. In the first, the layer has,
above it, relatively light fluid where the magnetic pressure is much larger than the gas
pressure, and the magnetic field is largely force-free. In the second model, the magnetic
field is constrained to lie within the dynamical layer by the implementation of a model
diffusion operator for the magnetic field. The model derivation proceeds by assuming
that the horizontal velocity and the horizontal magnetic field are independent of the
vertical coordinate, whilst the vertical components in the layer have a linear dependence
on height. The full system comprises evolution equations for the magnetic field, horizontal
velocity and height field together with a linear elliptic equation for the vertically integrated
non-hydrostatic pressure. In the magneto-hydrostatic limit, these equations simplify to
equations of shallow-water type. Numerical solutions for both models are provided for
the fiducial case of a Gaussian vortex interacting with a magnetic field. The solutions are
shown to differ negligibly. We investigate how the interaction of the vortex changes in
response to the magnetic Reynolds number Rm, the Rossby deformation radius LD, and
a Coriolis buoyancy frequency ratio f /N measuring the significance of non-hydrostatic
effects. The magneto-hydrostatic limit corresponds to f /N → 0.

Key words: shallow water flows, magnetic fluids, contour dynamics

1. Introduction

The modelling of stably stratified regions can play an important role in explaining the
dynamics of many geophysical and astrophysical objects. On Earth, examples include the
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stratosphere, the oceans and the outer layer of the Earth’s fluid outer core (sometimes
known as the Earth’s inner ocean; Braginsky 1999). Astrophysical examples include the
radiative zones of certain stars and the outermost layers of certain solar system planets
and exoplanets. There are many circumstances in which the stably stratified layer is
electrically conducting and the fluid interacts with magnetic fields. These include the
solar tachocline (see e.g. Tobias 2005; Christensen-Dalsgaard & Thompson 2007; Spiegel
2007), the region of stably stratified, sheared, magnetised plasma at the base of the solar
convection zone, which is believed to be the seat of the solar dynamo, and solar activity
that takes the form of active regions at the solar surface, as well as the outer layers of
certain exoplanets known as hot Jupiters (see e.g. Rogers & Komacek 2014; Yadav &
Thorngren 2017; Fortney, Dawson & Komacek 2021).

Modelling of these stable layers, which are often thin – in the sense that the horizontal
length scales for the dynamics are much longer than typical radial (or vertical) length
scales – often involves the derivation and study of reduced models. These reduced models
are commonly derived from the full ‘parent’ system of equations by making use of a
small parameter (sometimes the ratio of the vertical to horizontal length scales) or by
considering leading-order balances (e.g. geostrophic and hydrostatic). Of these models, in
hydrodynamics the most famous is the hydrostatic single-layer shallow-water model. Here,
one considers a free-surface flow of uniform density in the presence of gravity and, for the
cases of geophysical and astrophysical relevance, background rotation.

The shallow-water model can be derived by assuming that the horizontal flow is
independent of height (columnar motion), and additionally making the hydrostatic
approximation. The latter is valid for disturbances with large horizontal scales, but
becomes increasingly inappropriate for small-scale disturbances in the horizontal (see
e.g. Dritschel & Jalali (2019, 2020), and references therein). An approach with wider
applicability is to relax the hydrostatic approximation while retaining the assumption
of height independence of the horizontal velocity. This hydrodynamic extension, often
termed the ‘Green–Naghdi’ model (Green & Naghdi 1976), has been considered by a
number of authors (for a short review, see Jalali & Dritschel 2021) and has been shown
explicitly to be substantially more accurate than the shallow-water model in describing
the dynamics of shallow rotating free-surface flows (Dritschel & Jalali (2020); see also
Nadiga, Margolin & Smolarkiewicz (1996) for unidirectional non-rotating flow over
topography).

Just as for the hydrodynamic case, magneto-hydrodynamic (MHD) models can be
reduced from the full three-dimensional system. The most severe approximation for stably
stratified systems is to consider a strictly two-dimensional system with a magnetic field
and flow constrained to lie in a plane. Here, it has been shown that even an extremely weak
mean magnetic field can lead to a significant change in the dynamics through the action of
the Lorentz force breaking the material conservation of potential vorticity (see e.g. Tobias,
Diamond & Hughes 2007; Dritschel, Diamond & Tobias 2018). However, this geometry is
overly restrictive, and more sophisticated reduced models are needed.

Significant progress was made by Gilman (2000), who extended the shallow-water
equations to include MHD effects. He considered a perfectly conducting thin layer of
magnetised fluid, which is an excellent test-bed for studying waves (see e.g. Schecter, Boyd
& Gilman 2001; Zaqarashvili, Oliver & Ballester 2009; Márquez-Artavia, Jones & Tobias
2017), joint instabilities of the magnetic field and differential rotation (Dikpati, Gilman
& Rempel 2003), and the nonlinear evolution of such instabilities (see e.g. Dikpati et al.
2021) in magnetised, rotating stratified layers. However, this formalism does not allow
any self-consistent procedure for including the effects of magnetic diffusion and so is less
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useful for nonlinear turbulence problems. We note here that in both astrophysical settings
discussed above, the magnetic Prandtl number Pm = ν/η (where ν is the viscous diffusion,
and η is the magnetic diffusivity) is small, so magnetic diffusion is the primary dissipative
process. The magnetic field therefore dissipates on a length scale much larger than that
of the velocity – motivating the construction of models where the magnetic diffusion is
included explicitly but the viscosity is not (Dritschel et al. 2018). It is possible, however,
to consider models where the diffusive layer is bounded above by an idealised perfectly
conducting fluid, allowing surface currents to form at the interface. In this case, one can
devise dissipative terms that enforce the condition that the field remains tangent to the free
surface in the shallow-water limit (Gilbert, Griffiths & Hughes 2022); this is one of the
models that we will consider here.

The MHD shallow-water equations were subsequently extended to include dispersive
effects by Dellar (2003). These equations are the magnetised versions of the Green–Naghdi
equations, though again only the case with no magnetic diffusivity (and the properties of
waves therein) was considered. A generalisation of this model has been developed recently
by Alonso-Orán (2020), though seemingly independent of Dellar (2003).

In the present paper, we derive reduced models of rotating, stratified magnetised fluid
layers that allow for the presence of magnetic diffusion (though these models are still
inviscid). In § 2, we set up the model, with a full derivation. Numerical results for the
various models are described in § 3, with conclusions offered in § 4.

2. Set-up of the model and derivation

We consider a magnetised, conducting system comprising three layers in a local Cartesian
domain. The bottom layer (z < 0) is either a perfectly conducting solid or a very dense
perfectly conducting fluid, with density ρb, such that the interface between it and the fluid
layer above remains fixed at z = 0. The layer of primary interest is of uniform density ρl �
ρb lying above this flat bottom at z = 0 and extending to a free surface at z = h(x, y, t).
A final layer of much smaller density ρu (and hence negligible gas pressure) lies above the
free surface. The fluid is assumed to be rotating uniformly about the vertical z axis at rate
Ω , and gravity g acts downwards in z.

Let ρ denote a fiducial density. Then the governing three-dimensional incompressible
inviscid, MHD equations that we consider in the middle layer are given by (see e.g.
Chandrasekhar 1981)

ρ

(
∂u
∂t

+ u · ∇u + f k × u + gk
)

= −∇p + j × B, (2.1)

∂B
∂t

= ∇ × (u × B)+ η∇2B, (2.2)

∇ · u = 0, ∇ · B = 0, (2.3a,b)

where u is the velocity field, B is the magnetic field, j = ∇ × B/μ is the current density
(with μ the magnetic permeability, assumed constant throughout), p is the pressure,
f = 2Ω is the Coriolis frequency, k is the (upwards) vertical unit vector, and η = 1/(σμ)
is the magnetic diffusivity (with σ the conductivity, also assumed constant).

We next scale pressure and the magnetic variables to remove non-essential constants. If
the substitutions

p
ρl

→ p,
B√
ρlμ

→ B,
μj√
ρlμ

→ j (2.4a–c)
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are made, then the magnetic field is measured in terms of the Alfvén velocity, while j =
∇ × B is analogous to the vorticity relation ω = ∇ × u. Equations (2.2) and (2.3a,b) are
unchanged, while the momentum equation (2.1) is rescaled to

∂u
∂t

+ u · ∇u + f k × u + gk = −∇p + j × B. (2.5)

Traditional shallow-water models (both hydrodynamic and magneto-hydrodynamic) are
derived by making two assumptions. They suppose that the layer of fluid 0 ≤ z ≤ h(x, y, t)
has a characteristic horizontal scale L much larger than the fluid depth h. Further assuming
that the horizontal velocity is independent of z, and making the hydrostatic approximation
(ignoring the vertical acceleration Dw/Dt), leads to the well-known shallow-water model
in the absence of a magnetic field first derived by Saint-Venant (1871). More recently,
this model (with both assumptions on spatial scale and magneto-hydrostatic balance) was
extended to a perfectly conducting magnetised fluid by Gilman (2000). There has been
much development of these MHD shallow-water models, including the investigation of
instabilities and wave phenomena (see e.g. Schecter et al. 2001; Zaqarashvili et al. 2009;
Márquez-Artavia et al. 2017).

In the hydrodynamical context, the shallow-water models were extended to include
non-hydrostatic effects by Serre (1953) but are often attributed to Green & Naghdi
(1976), who explained how the equations can be derived simply by vertically averaging
the parent three-dimensional system when the horizontal velocity is assumed to be
independent of height (see also the discussion in § 3 of Dritschel & Jalali 2020). Notably,
the vertically averaged equations possess all of the material and integral invariants of
the parent hydrodynamic system, and moreover these invariants are simply the vertical
averages of their three-dimensional counterparts (Miles & Salmon 1985; Dritschel &
Jalali 2020). Direct comparisons with the parent three-dimensional free-surface model in
Dritschel & Jalali (2020) demonstrate that the non-hydrostatic model (including rotation)
is substantially more accurate than the hydrostatic one, despite the fact that neither
model captures deep-water waves whose velocity field varies strongly with depth (see
e.g. §§ 4 and figure 16 in Dritschel & Jalali 2019). Similar improvements were reported by
Nadiga et al. (1996) in the non-rotating case for unidirectional flow (independent of one
coordinate) over topography.

The magnetised version of the non-hydrostatic model with no magnetic diffusivity was
first derived formally by Dellar (2003), who also demonstrated that the wave properties
of this model capture more accurately those of the full three-dimensional parent system,
especially at small scales. In this paper, we derive and study the dynamics of two systems
with two different models of magnetic diffusion. In the first, resistive diffusion allows the
magnetic field to leave and enter the domain, but in the layer above, the magnetic pressure
dominates the gas pressure, which can be assumed negligible – the layer above is assumed
to reach rapidly a nearly force-free configuration. In the second scenario, an approximate
model of diffusion is considered that does not allow flux to leave the layer (Gilbert et al.
2022), and the fluid above is again considered to have an approximately zero pressure
acting on the free surface. We believe that the first of these models is more relevant
to the outer layers of planets and stars that lie below a highly compressible magnetised
atmosphere dominated by the magnetic pressure (high plasma β). The second of these
models might be preferred for the interior of stars (in regions such as the solar tachocline).
As we will see, the difference between these models is negligible in the astrophysically
relevant regime of high magnetic Reynolds number Rm, with the difference between them
appearing only at O(Rm−1).
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2.1. Model derivation
Following Dellar (2003) and Dritschel & Jalali (2020), hereafter all three-dimensional
vectors and vector operators are indicated by a subscript 3, while corresponding
two-dimensional quantities have no subscript. Thus the velocity field is u3 = (u,w), where
w is the vertical component. The magnetic field is B3 = (B,Bz), where Bz is the vertical
component. The horizontal components of u are (u, v), while those of B are (Bx,By). The
horizontal position vector is x, while the vertical coordinate is z. In our first derivation we
focus on the model with regular magnetic diffusion given by η∇2

3 B3.
To simplify notation, we use

D ≡ ∂

∂t
+ u · ∇, D3 ≡ ∂

∂t
+ u3 · ∇3, (2.6a,b)

to denote material derivatives in two dimensions and three dimensions, respectively.
In this notation, the scaled three-dimensional equations (2.2), (2.3a,b) and (2.5) read

D3u3 + f k × u3 + gk = −∇3p + j3 × B3, (2.7)

D3B3 − B3 · ∇3u3 = η∇2
3 B3, (2.8)

∇3 · u3 = 0, ∇3 · B3 = 0, (2.9a,b)

where the induction equation (2.8) has been rewritten making use of (2.9a,b). The
boundary conditions are w = Bz = 0 on z = 0, w = Dh on z = h, and p = 0 on z = h.
There is much literature on the construction of the external field for z > h (see
Appendix B). In practice, however, we do not need to do this. The model derived below
is entirely independent of its continued solution outside of the middle layer (0 ≤ z ≤
h), provided that the gas pressure in the uppermost layer is considered negligible (see
Appendix A).

We are guided by Green & Naghdi (1976), who argued that it is necessary to assume
only that the horizontal velocity u is independent of z, then average vertically (see also
Miles & Salmon 1985). No perturbation expansion is needed, and in fact, Green & Naghdi
(1976) warn against such expansions as they do not guarantee conservation (see § 3.1 in
Dritschel & Jalali 2020). Here, we simply make the same assumption for the magnetic
field, taking the horizontal part B to be independent of z.

Starting with incompressibility, ∇3 · u3 = 0, we have

∇ · u + ∂w
∂z

= 0 ⇒ w = −zδ, (2.10)

where δ ≡ ∇ · u is the horizontal divergence (and is independent of z). This already
satisfies w = 0 on z = 0. On z = h, this gives the usual mass continuity equation for h:

Dh = −hδ ⇒ ∂h
∂t

+ ∇ · (hu) = 0 . (2.11)

Next, the divergence-free condition on B3 implies, with τ = ∇ · B,

∇ · B + ∂Bz

∂z
= 0 ⇒ Bz = −zτ, (2.12)

using the boundary condition Bz = 0 on z = 0. This boundary condition arises as the
lower boundary at z = 0 is assumed to be perfectly conducting (see Appendix B). It is
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possible to relax this assumption and allow the field to penetrate the lower boundary, but
this would entail coupling the magneto-hydrodynamics of the fluid layer with a diffusing
three-dimensional magnetic field in the lowest layer, making the model significantly more
complicated.

Turning next to the induction equation (2.8), the horizontal part is

DB − B · ∇u = η∇2B. (2.13)

This is already independent of z, so it is already vertically averaged. The vertical part of
(2.8) is (

D − zδ
∂

∂z

)
(−zτ)−

(
B · ∇ + (−zτ)

∂

∂z

)
(−zδ) = η∇2(−zτ). (2.14)

All terms are proportional to z, and cancelling the common factor −z gives

Dτ − B · ∇δ = η∇2τ. (2.15)

This equation is, however, implied by the horizontal divergence of (2.13), so it is not new.
Now consider the momentum equation (2.7). Following Dritschel & Jalali (2020), we

divide the pressure p into a hydrostatic part ph = g(h − z) and a remaining non-hydrostatic
part pn = p − ph. Then vertically averaging the horizontal part of (2.7), we obtain

Du + f k × u = −g ∇h − ∇p̄n

h
+ F̄ b, (2.16)

(see § 3.1 in Dritschel & Jalali 2020), where

p̄n ≡
∫ h

0
pn dz (2.17)

is the vertically integrated non-hydrostatic pressure, and

F̄ b ≡ 1
h

∫ h

0
( jzk × B − Bz ∇Bz) dz (2.18)

is the vertically averaged horizontal part of the Lorentz force ( j3 × B3), while jz = ∂By/
∂x − ∂Bx/∂y is the z component of the current density and k × B = (−By,Bx). In (2.18),
the first term in the integrand is independent of z, but Bz = −zτ is proportional to z.
Carrying out the integration over z, we obtain

F̄ b = jzk × B − 1
6

h2 ∇τ 2. (2.19)

The vertically integrated non-hydrostatic pressure p̄n in (2.17) is determined from the
vertical component of (2.7) as follows. Since k · ( j3 × B3) = B · ∇Bz owing to the fact
that B is independent of z, the vertical component of (2.7) is(

D − zδ
∂

∂z

)
(−zδ) = −∂pn

∂z
+ (B · ∇)(−zτ). (2.20)

Expanding and simplifying, we find

∂pn

∂z
= z(Dδ − δ2 − B · ∇τ). (2.21)

As this is a first-order equation in z for pn, we need only one boundary condition, namely
pn = 0 at z = h, to determine pn everywhere. Note that this boundary condition can be
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achieved in two ways. If the field is confined to the fluid layer (via an appropriate choice
of diffusion), then this is achieved through the usual hydrodynamic approximations, i.e.
that the fluid in the layer above has such a small density that it exerts a small constant
pressure. If the field does diffuse into the layer above, then the gas pressure can still
be small compared with the magnetic tension and pressure. For a low-β (compressible)
plasma above, the magnetic pressure dominates and the magnetic field is believed to adjust
rapidly through a sequence of nearly force-free equilibria (see e.g. Wiegelmann & Sakurai
2021; Guo et al. 2016; and Appendices A and B).

Integrating (2.21) in z, we thus find

pn = 1
2(z

2 − h2)(Dδ − δ2 − B · ∇τ). (2.22)

A further integration, now from z = 0 to h, yields the vertically integrated non-hydrostatic
pressure p̄n (see (2.17)) appearing in the horizontal momentum equation (2.16):

p̄n = −1
3 h3(Dδ − δ2 − B · ∇τ). (2.23)

This completes the model equations, which consist of the evolution equations (2.11) for
h, (2.13) for B and (2.16) for u, alongside the relations (2.19) and (2.23). Except for
the diffusive term in (2.13) and the inclusion of rotation, the equations are equivalent
to those first derived by Dellar (2003). Note, however, using (2.23) in (2.16) leads to an
implicit equation for u, since a time derivative of δ = ∇ · u occurs in the Dδ term in p̄n.
Nevertheless, this is the standard form of the so-called Green–Naghdi equations (when
there is no magnetic field).

Pearce & Esler (2010) deal with this problem (when B = 0) by forming an evolution
equation for δ and combining part of the implicit term in p̄n with ∂δ/∂t, so that the
left-hand side of the evolution equation has the form (1 − 1

3 H2 ∇2) ∂δ/∂t, where H is the
mean fluid depth. Yet, part of the implicit term associated with depth variations remains
on the right-hand side, so the equation is still implicit and one cannot fully benefit from the
smoothing effect arising from the inversion of the (1 − 1

3 H2 ∇2) operator. Alternatively,
Holm (1988) propose using a ‘momentum variable’ m = hu − 1

3∇(h3∇ · u) to remove the
implicitness, then deduce u by inverting the definition of m (see also Dellar 2003).

Another approach, arguably simpler, is to remove this implicitness by forming an elliptic
equation directly for p̄n that does not involve any time derivatives. For this, we follow
Dritschel & Jalali (2020). Taking the divergence of the horizontal momentum equation
(2.16), a little rearrangement yields

Dδ − δ2 = Ξ − ∇ · (h−1 ∇p̄n), (2.24)

where

Ξ ≡ f ζ − g ∇2h + 2(J(u, v)− δ2)+ ∇ · F̄ b, (2.25)

in which ζ = k · ω3 = ∂v/∂x − ∂u/∂y is the vertical vorticity and J(·, ·) is the Jacobian
operator in Cartesian geometry (see § 3.1 in Dritschel & Jalali 2020). The important point
is that Ξ depends only on h, u and B. However notice that Dδ − δ2 also appears in the
derived form of p̄n in (2.23). Hence, replacing this term by (2.24), we arrive at an explicit,
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linear, elliptic equation for p̄n:

∇ · (h−1 ∇p̄n)− 3h−3p̄n = Ξ − B · ∇τ = γ̃u + γ̃b, (2.26)

where

γ̃u ≡ f ζ − g ∇2h + 2(J(u, v)− δ2) (2.27)

consists of purely hydrodynamic terms (as in Dritschel & Jalali 2020), while

γ̃b ≡ ∇ · F̄ b − B · ∇τ (2.28)

consists of purely magnetic terms (apart from h).
In summary, given h, u and B, we can compute p̄n from (2.26), then use this in (2.16) to

evolve u. The complete set of equations therefore takes the form

DB − B · ∇u = η∇2B, (2.29)

∂h
∂t

+ ∇ · (hu) = 0, (2.30)

Du + f k × u = −g ∇h − ∇p̄n

h
+ F̄ b, (2.31)

∇ · (h−1 ∇p̄n)− 3h−3p̄n = γ̃u + γ̃b, (2.32)

with F̄ b defined in (2.19), γ̃u defined in (2.27), and γ̃b defined in (2.28). This is a closed,
explicit system of equations governing a thin layer of a conducting magnetised fluid.

2.2. Energy
The total energy E consists of kinetic, magnetic and potential parts. In the parent
three-dimensional system,

E =
∫∫

D

∫ h

0

(
1
2
(|u3|2 + |B3|2)+ gz

)
dx dy dz (2.33)

(see (2) in Dellar 2003). Here, D is the horizontal domain of integration. For the vertically
averaged (Green–Naghdi) model, the horizontal parts of u3 and B3 are independent of z,
while the vertical parts w and Bz are proportional to z. Performing the z integration, we
obtain

E = 1
2

∫∫
D

h
(

|u|2 + 1
3

h2δ2 + |B|2 + 1
3

h2τ 2 + gh
)

dx dy. (2.34)

This is conserved only when there is no magnetic diffusivity η, and no normal component
of B3 on z = h. In general, there is a magnetic energy flux through the free surface,
physically owing to Alfvén waves propagating along field lines. In principle, the total
energy in the extended domain z ≥ 0 is conserved for the ideal case η = 0. The system
(2.29)–(2.32) always conserves total mass, proportional to the domain mean depth H, due
to the flux form of (2.30). As only the parameter combination gH ≡ c2 (a characteristic
squared gravity wave speed) appears in the hydrostatic limit (see below) when using the
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dimensionless height anomaly

h̃ = h − H
H

(2.35)

instead of h, it proves convenient to scale energy E by H, and to distinguish the kinetic,
magnetic and potential components as

E/H = Eu + Eb + Eh,

where

Eu = 1
2

∫∫
D
(1 + h̃)

(
|u|2 + 1

3
h2δ2

)
dx dy,

Eb = 1
2

∫∫
D
(1 + h̃)

(
|B|2 + 1

3
h2τ 2

)
dx dy,

Eh = 1
2

c2
∫∫

D
h̃2 dx dy. (2.36)

Note that the constant background potential energy has been removed to define Eh.

2.3. Alternative variables
In geophysical fluid dynamics, it has proven advantageous to derive equations for the
potential vorticity (PV) q and for variables representing the leading-order departure from
hydrostatic and geostrophic balance (Mohebalhojeh & Dritschel 2000, 2001; Smith &
Dritschel 2006). The most convenient variables representing this departure are the velocity
divergence δ = ∇ · u and the linearised acceleration divergence

γl = f ζ − g ∇2h = f ζ − c2 ∇2h̃ (2.37)

(sometimes called the ageostrophic vorticity), due to their linear dependence on h̃ and u
(recall ζ = ∂v/∂x − ∂u/∂y). As for the PV, since it has a more complicated form in the
vertically averaged (Green–Naghdi) equations, Dritschel & Jalali (2020) advocate using
instead the linearised PV, ql = ζ − f h̃. The linear dependence of ql, δ and γl on h̃, u and
v ensures that the latter variables may be recovered from the former by a simple inversion
(for details, see § 3.2 in Dritschel & Jalali 2020).

The evolution equations for ql, δ and γl are derived readily from (2.30) and (2.31),
and are given by (3.15)–(3.17) in Dritschel & Jalali (2020), apart from new terms arising
from the magnetic field. These new terms come from the Lorentz force F̄ b in (2.31). Both
∂ql/∂t and ∂γl/∂t involve the vorticity tendency ∂ζ/∂t, which acquires the additional term
k · (∇ × F̄ b). By straightforward manipulation, one can show that

k · (∇ × F̄ b) = ∇ · ( jzB)+ 1
6 J(τ 2, h2). (2.38)

This term is added to (3.15) in Dritschel & Jalali (2020), whereas f k · (∇ × F̄ b) is added
to (3.17) in that paper. The δ equation was derived above in (2.24), but an equivalent and
simpler equation can be found by exploiting (2.26). Then the evolution equations for ql, δ
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and γl take the form

∂ql

∂t
= ∇ · ( jzB − qlu)+ J(p̄n, h−1)+ 1

6
J(τ 2, h2) ≡ Sq, (2.39)

∂δ

∂t
= B · ∇τ − 3h−3p̄n + 2δ2 − ∇ · (δu), (2.40)

∂γl

∂t
= G[δ + ∇ · (h̃u)] + fSq, (2.41)

where

G ≡ c2 ∇2 − f 2 (2.42)

is the hydrodynamic ‘gravity-wave operator’. These are supplemented by the induction
equation (2.29), as well as by the elliptic equation (2.32) for p̄n.

2.4. The magneto-hydrostatic limit
We now consider the limit where the mean depth satisfies H → 0 while g → ∞, yet
keeping the product gH = c2 finite. Using the dimensionless depth anomaly h̃ (see (2.35)),
the reduced, magneto-hydrostatic shallow-water equations follow simply by dropping
all terms proportional to positive powers of H, or more accurately H/L, where L is a
characteristic horizontal length. In particular, the non-hydrostatic pressure term in (2.31)
is O((H/L)2) smaller than g ∇h and is therefore negligible, so the horizontal momentum
equation simplifies to

Du + f k × u = −c2 ∇h̃ + F̄ b. (2.43)

Moreover, the horizontal Lorentz force F̄ b in (2.19) simplifies to

F̄ b = jzk × B, (2.44)

after dropping a term O((H/L)2) smaller. The mass continuity equation (2.30) rewritten
in terms of h̃ becomes

∂ h̃
∂t

+ ∇ · ((1 + h̃)u) = 0, (2.45)

while the equation (2.29) for B remains unchanged. Taken together, (2.43), (2.45) and
(2.29) constitute a closed set of equations for u, h̃ and B. These are the magneto-hydrostatic
shallow-water equations, valid for a three-dimensional magnetic field. Note that the kinetic
Eu and magnetic Eb energy components in (2.36) also simplify by dropping the terms
proportional to h2 in the integrals.

In alternative variables ql, δ and γl, the Jacobian term in (2.39) is absent, while
(2.41) is formally unchanged. The shallow-water equation for δ follows from (2.24) by
dropping the non-hydrostatic pressure gradient term, which is again O((H/L)2) smaller.
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Upon rearranging (2.24), the final set of shallow-water equations becomes

∂ql

∂t
= ∇ · ( jzB − qlu) ≡ Sq, (2.46)

∂δ

∂t
= γl + 2 J(u, v)+ ∇ · (F̄ b − δu), (2.47)

∂γl

∂t
= G[δ + ∇ · (h̃u)] + fSq, (2.48)

where G is the gravity-wave operator defined in (2.42). These are supplemented by the
induction equation (2.29).

2.5. Model with alternative magnetic diffusion
The derivation above is for a model with regular magnetic diffusion controlled by ohmic
dissipation. As noted in Appendix C, this leads to the magnetic field B3 not remaining
tangential to the free surface of the fiducial layer, and a normal component developing.
An alternative approach is to consider the evolution of a perfectly conducting fluid η = 0,
but then add in a dissipation operator to the two-dimensional equations that forces the free
surface to remain a flux surface (Gilbert et al. 2022) – this requires ∇ · (hB) = 0 at all
times. The required dissipation operator is given by

d = −h−1 ∇ × (ηh ∇ × B) . (2.49)

This term replaces the diffusive term in (2.29). However, it is redundant to evolve both
components of B. A more efficient, accurate approach is to instead evolve a scalar potential
A, defined through the relation

B = 1

1 + h̃

(
∂A
∂y
,−∂A

∂x

)
, (2.50)

which automatically satisfies ∇ · (hB) = 0. Then the scalar potential A satisfies the
evolution equation

∂A
∂t

+ (u + ud) · ∇A = η∇2A, (2.51)

where ud ≡ ηh−1 ∇h is a diffusion velocity (Gilbert et al. 2022). This equation replaces
(2.29); all remaining equations are unchanged in this alternative model.

3. Results

In this section, we present results first for the magneto-hydrostatic shallow-water equations
derived in § 2.4, then for their non-hydrostatic generalisation, to reveal what new features
arise. As a model problem, we discuss the impact of an initially unidirectional magnetic
field on an isolated vortex. The set-up is identical to that discussed previously in Dritschel
et al. (2018), where the two-dimensional limit (c = √

gH → ∞) was studied. In that
limit, δ = γl = 0, the free-surface remains flat (h̃ = 0) and there are no inertia–gravity
waves. Here, by contrast, we consider the impact of moderate free-surface variations h̃ =
O(1), a finite Rossby number Ro = |ζ |max/f , and a finite Rossby deformation length LD
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defined by

LD =
√

gH
f

= c
f
, (3.1)

which controls the deformation of the free surface in a rotating shallow-water system (see
e.g. Vallis 2017). The two-dimensional model corresponds to the limit LD/L → ∞, where
L is a characteristic horizontal length scale of the flow (the ratio (LD/L)2 is known as the
Burger number).

3.1. Flow initialisation
The initial flow consists of a Gaussian vortex having (vertical) vorticity

ζ = εf exp(−(r/R)2/2)
2(1 − e−1/2)

− C, (3.2)

where r is the cylindrical radius (taking the domain centre at the origin), ε is a nominal
Rossby number, f is the Coriolis frequency, and C is a constant required to ensure
that the domain average vorticity is zero (a consequence of Stokes’ theorem). We take
f = 4π without loss of generality so that a unit of time is one ‘day’. The vortex radius
is R = 5π/32 as in Dritschel et al. (2018), and the simulation domain is the periodic
box [−π,π)2. The slight discontinuity in the normal derivative of the initial ζ at the
domain boundaries has negligible impact on the results. This choice for ζ corresponds to
a maximum tangential velocity U0 = ω0R/2 (where ω0 ≡ εf ) in an infinite domain.

We initialise all flow fields from the relative vorticity ζ alone, by enforcing
hydro-cyclo-geostrophic balance. This is tantamount to requiring p̄n = δ = ∂δ/∂t = 0 in
the absence of a magnetic field (B = 0). From (2.47), this implies that the ageostrophic
vorticity is γl = −2J(u, v), while u = −∂ψ/∂y and v = ∂ψ/∂x are found by inverting
∇2ψ = ζ for the streamfunction ψ . Then the definition of γl in (2.37) provides a Poisson
equation for the dimensionless height anomaly, ∇2h̃ = ( f ζ − γl)/c2, which is easily
inverted for h̃. Finally, from ζ and h̃, the linearised PV ql is obtained simply from
ql = ζ − f h̃.

The initial magnetic field has Bx = B0/(1 + h̃) and By = 0. In this way, the initial field
B3 is tangent to the free surface at z = H(1 + h̃) (note that h̃ → 0 in the limit LD → ∞).
The value of B0 is chosen together with the magnetic diffusivity η so that the maximum
magnetic field B becomes comparable in magnitude with U0 when B is fully intensified
by the vortex (see § 2.2 in Dritschel et al. 2018). In short, we take η = ω0(Δx)2, where
Δx = 2π/ng, and ng is the grid resolution in both x and y (most simulations below use
ng = 512). We then specify the ‘gain’

𝔤 ≡ B0/𝔡
U0

, (3.3)

where 𝔡 = Δx/R is the dimensionless diffusion length (note
√
η/ω0 = Δx). The gain is

the ratio of the maximum expected magnetic field strength B0/𝔡 to the flow speed U0, at
least in the two-dimensional limit LD → ∞. Notably, the magnetic Reynolds number is

Rm = U0R
η

= 1

2𝔡2 . (3.4)

This is equal to 800 at the default grid resolution ng = 512.
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Figure 1. Current density field jz(x, t) at three scaled times t̃ = εt for an MHD shallow-water simulation with
𝔤 = 2, ε = 0.25 and LD = 4.

The numerical codes have been adapted directly from those used in Dritschel et al.
(2018) for the two-dimensional limit LD → ∞, and from the hydrodynamic shallow-water
and vertically averaged codes used in Dritschel & Jalali (2020) and Jalali & Dritschel
(2021). Without a magnetic field, the codes reproduce the results in Jalali & Dritschel
(2021) with very minor differences associated with using the linearised PV anomaly ql in
place of full PV, a variable time step, and variable hyperviscosity in the present codes.
(The numerical damping rate on the highest resolved wavenumber is 10( f + ζrms) rather
than 10f ; see Appendix C in Dritschel & Jalali 2020.) Also, for large LD, the shallow-water
code reproduces closely the two-dimensional magnetic results of Dritschel et al. (2018).
This is a difficult limit to simulate with a shallow-water code since short-scale gravity
waves are fast (c = fLD � U0), requiring a small time step for accuracy. At the same
time, the Rossby number ε must be small to avoid ageostrophic effects. Nonetheless, with
LD = 4 and ε = 0.25, the evolution of the vertical current density jz shown in figure 1 is
strikingly similar to that shown in figure 2 (three middle panels, right column) in Dritschel
et al. (2018) – note that the field values are a factor ε smaller here. Only by the latest
time are differences apparent, with the vortex rotated slightly less here, an effect due
mainly to the finite value of LD. The agreement is remarkable considering that LD is
not particularly large, nor is ε particularly small. Moreover, the vorticity-based Rossby
number Ro = |ζ |max/f rises from approximately 0.305 to 0.884 at late times. However,
the free surface varies by no more than 0.614 %, and this decays to 0.335 % by late times.

3.2. Dependence on the form of the diffusion
We start by comparing the evolution of the models with different forms of magnetic
diffusion, holding all other parameters fixed. (Note that in the numerical code, the scalar
potential A in (2.51) is split into a mean part B0y and a residual Ã so that the latter can be
represented as a periodic field.) To produce a strong interplay between the magnetic field
and the fluid motion, we choose the Rossby number ε = 0.1, the radius of deformation
LD = 0.25, and the gain 𝔤 = 2. The current density field jz at the final time (t = 250) is
shown in figure 2, where the simulation using regular magnetic diffusion in figure 2(a)
is compared to that using the alternative model of Gilbert et al. (2022) in figure 2(b); the
difference field is shown in figure 2(c). Qualitatively, the alternative diffusion that keeps
∇ · (hB) = 0 has little impact, even by this late time in the evolution. The overall structure
and amplitude of the field are closely comparable to those found in the regular diffusion
case. There are quantitative differences (see figure 2c), primarily at small scales; however,
in such a complex flow, the small scales are the least predictable, so this is to be expected.

973 A17-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

74
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.746


D.G. Dritschel and S.M. Tobias

−π/2 0 π/2 π−π

−π/2

0

π/2

π

−π

−π/2

0

π/2

π

−π

−π/2

0

π/2

π
∇ · (hB) = 0

−π/2 0 π/2 π

∇ · (hB) = 0

−π/2 0 π/2 π

Difference

−1.6

−1.2

−0.8

−0.4

0

0.4

0.8

1.2

1.6

−1.6

−1.2

−0.8

−0.4

0

0.4

0.8

1.2

1.6

−1.2

−0.8

−0.4

0

0.4

0.8

1.2

(a) (b) (c)

Figure 2. Current density field jz(x, t) at the final time t̃ = εt = 25 for ε = 0.1, LD = 0.25 and 𝔤 = 2;
(a) regular magnetic diffusion; (b) alternative magnetic diffusion (which keeps ∇ · (hB) = 0); and (c) the
difference ((b) minus (a)).
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Figure 3. (a–d) Time evolutions of the scaled total, potential, kinetic and magnetic energy, respectively, for a
simulation with regular magnetic diffusion (solid curves) and a simulation with alternative magnetic diffusion
(dashed curves). The flow parameters are the same as in figure 2. Note that Eh is defined relative to its initial
value to facilitate comparison after scaling by εL2

D. This is why this component and the total energy have
negative values.

Comparing the energy components in figure 3, there are hardly any visible differences
between the two simulations. The kinetic energy differs the most, but still only slightly.
The detailed variations of the energy components compare closely despite using different
magnetic diffusion mechanisms.

Hence we believe that the precise form of the diffusive operator has little effect on the
form of the solution for these problems where the magnetic field is imposed a priori (rather
than generated self-consistently via a dynamo process, where the diffusive process is key).
For this reason, henceforth in this paper, we will consider the evolution of the model using
regular magnetic diffusion, where the magnetic field is allowed to leave (and enter) the
upper free surface.

3.3. Dependence on the Rossby deformation length
We next investigate flows for which the Rossby deformation length LD is comparable with
or smaller than the vortex radius R (≈ 0.5), and for which the free surface exhibits strong
variations. Here, we consider flows in magneto-hydrostatic balance, and defer discussion
of non-hydrostatic effects to § 3.5. We vary LD and ε together so that the initial height
anomaly field h̃ is similar in each simulation. This is done by choosing ε = 1.6L2

D for
three values of LD: 0.5, 0.25 and 0.125. This gives ε = 0.4, 0.1 and 0.025, respectively.
The corresponding initial minimum and maximum values of h̃ are (−0.652, 0.164),
(−0.604, 0.161) and (−0.592, 0.161), and these values change little as the flow evolves.
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Figure 4. Vertical vorticity field ζ(x, t) at three scaled times t̃ = εt for three simulations having different LD
as labelled, and for 𝔤 = 2. Note that ε = 1.6L2

D.

The initial horizontal magnetic field is specified through the gain parameter 𝔤, and as in
figure 1, we take 𝔤 = 2.

The three simulations were carried out to the same final scaled time t̃ = εt = 25. The
vorticity evolution is compared in figure 4 at a few characteristic times. At early times,
the evolution is very similar, with a wind-up of alternating positive and negative bands
of vorticity that strengthen up to approximately t = 14 (the Rossby number Ro climbs
from just under 0.5 to over 2.1 when LD = 1/2). These bands are created largely by
the effect of the Lorentz force; the initial vorticity is only slightly negative outside the
vortex. The tightly wound bands then undergo instability and mix, leaving a region of near
zero vorticity surrounding a central core (see also Gilbert, Mason & Tobias 2016). In the
periphery, strong bands of vorticity stretch in the periodic flow field and decay gradually
at late times.

As LD decreases, the instability is less vigorous and smaller scale, yet leaves a smaller
vortex core at late times. The flow is also more axisymmetric. This behaviour is consistent
with the fact that flow interactions generally weaken as LD decreases. This is quantified in
figure 5, which shows the Rossby number |ζ |max/f , and the scaled maximum horizontal
magnetic field (or actual gain) ‖B‖max/U0, as functions of scaled time t̃ = εt for the three
simulations. The Rossby number evolves similarly in all cases, the main difference being
the magnitude. There is always an initial drop as the tension in the twisting magnetic
field slows the vortex rotation (elaborated in Dritschel et al. 2018), but then there is a
significant increase as current sheets form in the periphery of the vortex core. At late times,
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Figure 5. Time evolutions of (a) the maximum vorticity scaled by the Coriolis frequency (i.e. Rossby number),
and (b) maximum horizontal magnetic field scaled by the characteristic flow speed U0, for the three simulations
illustrated in figure 4.

these current sheets diffuse and the vorticity weakens slightly. Regarding ‖B‖max/U0,
theoretically this should reach 𝔤 = 2 when the flow is mature, but the actual gain is
seen to be 0.4𝔤–0.5𝔤. In fact, the gain parameter 𝔤 is only a qualitative estimate of the
amplification of the magnetic field. Perhaps surprisingly, the actual gain is larger when LD
is smaller, despite the weaker flow interactions occurring in this case. This may explain
the reduction in the size of the vortex core as LD decreases.

The current density evolution (not shown) is broadly similar to that exhibited by the
vorticity in figure 4, with the exception that there is no core; the magnetic field is largely
expelled from the centre, as seen previously in figure 1 and first theorised by Weiss (1966)
and elucidated by Moffatt & Kamkar (1983). On the other hand, the horizontal divergence
field, shown in figure 6, exhibits very different behaviour. While it also winds up at early
times, it fragments into small-scale structures that subsequently grow in scale and weaken.
These structures are likely to be imbalanced inertia–gravity waves, and an especially novel
feature is that these waves appear to be confined to the region of relatively weak magnetic
field, and so may be suppressed by the presence of a strong magnetic field. Notably, the
amplitude of δ is much smaller than that of ζ , implying that the associated divergent flow
contributes relatively little to the velocity field. Moreover, it decreases in proportion to L2

D
or faster at intermediate and late times.

The energy evolution in these three flows is shown in figure 7 versus (rescaled) time t̃. In
the figure, the energy components are scaled by εL2

D to enable comparison, and moreover,
the initial value of the potential energy Eh(0) is subtracted from Eh(t̃) (the reference value
of potential energy is not important, but the construction here facilitates scaling). The
total energy E in figure 7(a) is the sum of the (redefined) potential Eh, kinetic Eu and
magnetic Eb components; see (2.36). The initial strong growth in Eb is offset primarily by
the decrease in Eh, especially at small LD. As LD increases, the kinetic energy Eu accounts
for an increasing proportion of this initial energy change (notice the sharper decrease of
the solid curve for LD = 1/2 in figure 7(c), together with the slower decrease in Eh in
figure 7(b)). Interestingly, the greatest growth in magnetic energy Eb occurs for the smallest
LD; evidently, small LD favours a greater intensification of the magnetic field B, which in
turn leads to greater destruction of the vortex core, as seen in figure 4. At early times, the
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Figure 6. As in figure 4 but for the horizontal divergence field δ(x, t).
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Figure 7. (a–d) Time evolutions of the scaled total, potential, kinetic and magnetic energy, respectively, for
the three simulations illustrated in figures 4 and 6. Note that Eh is defined relative to its initial value to facilitate
comparison after scaling by εL2

D.

total energy E is conserved approximately; thereafter, E decays owing to both magnetic
and numerical dissipation. The numerical dissipation is associated indirectly with current
sheet formation, which tends to generate collocated intense vorticity sheets. These sheets
subsequently stretch and thin, eventually dissipating when they reach the scale of ‘surgery’
in the numerical method (here 1/16th of the grid scale). This dissipation is inevitable in
any numerical method owing to the forward energy cascade (in spectral space) induced by
the magnetic field, in particular the Lorentz force (2.44).

3.4. Dependence on the magnetic diffusivity
We next examine the dependence of the flow evolution on the magnetic diffusivity η.
We keep all other parameters the same as in the simulation featuring in figure 4(d–f )
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Figure 8. Vertical vorticity field ζ(x, t) at three scaled times t̃ = εt for three simulations differing in their
magnetic Reynolds number Rm, as indicated. The corresponding grid resolutions are (a–c) ng = 256, (d–f )
ng = 512, and (g–i) ng = 1024. Otherwise, the simulations are identical, with LD = 0.25, ε = 0.1 and 𝔤 = 2.

(LD = 1/4, ε = 0.1, 𝔤 = 2), and vary η, equivalent to varying the grid resolution ng in
our set-up. The vorticity field ζ is compared in figure 8. Note that the initial horizontal
magnetic field amplitude is varied so that B0 ∝ Rm−1/2 to keep the gain fixed at 𝔤 = 2,
on the understanding that when the flow reaches a mature stage, ‖B‖ ∼ 𝔤U0. At early
times, all simulations show the characteristic spiral windup of the vorticity field (echoed
by jz, δ and γ , not shown). The outer core then destabilises, leading to a mixed region of
weak vorticity surrounding a compact inner core. At low Rm, there is very little vorticity
growth before decay at late times (mainly outside the core region). With increasing Rm,
the vorticity growth becomes pronounced, especially on the periphery of the outer core.
Filaments thin and intensify owing to interactions with the magnetic field (the current
density jz looks closely similar apart from the absence of an inner core, not shown).

The growth in both vorticity and maximum horizontal magnetic field strength is
quantified in figure 9 for these three simulations. As expected, high Rm favours a strong
and persistent growth in vorticity, which is caused by the emergence of current sheets (not
shown). The amplification of vorticity is approximately proportional to Rm, which is the
expected amplification of jz based on simple scaling arguments (Dritschel et al. 2018).
On the other hand, the actual gain in the horizontal magnetic field decreases with Rm,
though it is sustained over a longer period of time before diffusive effects weaken the
field. While three simulations cannot be conclusive, it appears that ‖B‖max/U0 remains
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Figure 9. Time evolutions of (a) the maximum vorticity scaled by the Coriolis frequency (i.e. Rossby number,
and (b) maximum horizontal magnetic field scaled by the initial maximum flow speed U0, for the three
simulations illustrated in figure 8.
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Figure 10. (a–d) Time evolutions of the scaled total, potential, kinetic and magnetic energy, respectively, for
the three simulations illustrated in figure 8. Note that Eh is defined relative to its initial value.

finite as Rm → ∞. However, recall that the initial magnetic field is B0 ∝ Rm−1/2; this
goes to zero in this limit.

The total energy E , together with its potential Eh, kinetic Eu and magnetic Eb
components, is shown as a function of (rescaled) time t̃ for these three flows in figure 10.
The total energy E is better conserved especially at early times for large Rm, as expected.
The potential energy (or its difference from its initial value) exhibits a similar variation,
with a slower decrease occurring for large Rm. Some of this decrease is dissipative,
especially for low Rm, but some also compensates for the gain in magnetic energy Eb.
There is a similar decrease in kinetic energy Eu, though this is smaller due to the small
value of LD (here 1/4 or approximately half of the vortex radius). The magnetic energy
Eb initially grows from low levels as the horizontal field B amplifies, reaching a peak that
is delayed and reduced with increasing Rm. The gain in Eb is largest for low Rm. Recall
that the scaling of mean magnetic field applied is chosen so that the peak magnetic field in
each case is comparable. However, at higher Rm, the magnetic field is confined to thinner
regions (with length scale ∝Rm1/2), so it is reasonable that the integrated energy reduces
as Rm increases.
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3.5. Dependence on finite depth: non-hydrostatic effects
Finally, we turn to the non-hydrostatic magnetic shallow-water or ‘vertically averaged’
model derived in § 2.1 (see also § 2.3). This model extends the traditional hydrostatic
shallow-water model by relaxing the long-wave approximation (necessary for the
hydrostatic approximation), thereby capturing explicitly horizontal scales comparable to
the mean fluid depth H. We compare three simulations, varying a dimensionless frequency
ratio f /N, where f is the Coriolis frequency as before, while N ≡ √

3g/H can be thought
of as a buoyancy frequency (Dritschel & Jalali 2020). The justification for this appellation
is that the dispersion relation for linear waves in the hydrodynamical context then closely
resembles that occurring in a three-dimensional linearly stratified fluid. Small values of
f /N correspond to strongly stratified flows, characteristic of large to intermediate scale
atmospheric and oceanic flows, while moderate to large values of f /N correspond to
weakly stratified flows (for observational evidence, see Dritschel & Jalali 2020). When
f /N = 1 identically, linear inertia–gravity waves are entirely trapped; their group velocity
vanishes for all wavelengths. In general, inertia–gravity wave frequencies ω lie between f
and N, with ω ≈ f for the longest wavelengths, and ω ≈ N for the shortest wavelengths.

Figure 11 compares, for the final time only, the vorticity ζ , divergence δ, and scaled
non-hydrostatic pressure Pn = p̄n/H for three values of f /N: 1/4, 1 and 4. The structure
of the vorticity field is weakly dependent on f /N, with some variation in shape of
the central core, and with the lowest extreme field values occurring for f /N = 1. The
root-mean-square vorticity varies even less, taking the values 1.027, 1.062 and 1.059,
respectively, for f /N = 1/4, 1 and 4. This weak variation with f /N is consistent with
previous findings in the hydrodynamical context (Dritschel & Jalali 2020). Vorticity is
dominated by the underlying balance, controlled by the relatively slow advection of PV.
By contrast, both divergence and non-hydrostatic pressure vary strongly with f /N. Both
the amplitude and spatial pattern vary considerably, especially for Pn, which appears to
scale like ( f /N)2. One may also observe that δ and Pn are approximately 45◦ out of phase
but otherwise exhibit a similar spatial pattern. The impact of f /N on the evolution of the
magnetic field (e.g. jz, not shown) is comparably weak to that seen above for the vorticity ζ .

Regarding energy, the impact of f /N is barely visible in comparison to that found
above when varying LD in figure 7 – the weakest energy component, the magnetic energy
Eb, differs by no more than 3.5 % across f /N (not shown), while the other components
differ by much less than 1 %. This reflects the fact that the balanced part of the flow
dominates energetically. In more turbulent flows than those studied here, the impact of f /N
is expected to be larger, as found previously in purely hydrodynamical flows (Dritschel &
Jalali 2020), owing to greater activity (i.e. more energy) at small scales.

4. Discussion

Following the approach of Green & Naghdi (1976), we have derived a non-hydrostatic
shallow-water model for a layer of magnetised fluid that consistently includes finite
conductivity (non-zero magnetic diffusivity). Provided that the gas pressure is negligible
in the layer above, one may consider two separate models of diffusion. The first allows the
magnetic field to exit the domain, and the field in the layer above transits rapidly through
a series of force-free equilibria. The application of such a model may be more natural to
the outer layers of astrophysical objects (see e.g. Hindle, Bushby & Rogers 2019) having a
tenuous atmosphere above. The second model of diffusion confines the field to the primary
fluid layer so that the upper free surface remains a magnetic flux surface, which may be
a good modelling assumption for the solar tachocline (Tobias & Weiss 2007). In fact, the
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Figure 11. Relative vorticity ζ , divergence δ and scaled vertically integrated non-hydrostatic pressure
Pn = p̄n/H at the final (scaled) time t̃ = εt = 25 for three non-hydrostatic shallow-water simulations with
varying f /N as indicated. Here, 𝔤 = 2, ε = 0.25 and LD = 1/2.

dynamical difference between these models is exceptionally small at high Rm. We note
that such models (and even simpler models) have been used previously for studying the
stably stratified interiors of stars.

The non-hydrostatic model discussed here gives a representation of small horizontal
scales (comparable to the free-surface depth) that is more accurate than traditional
shallow-water models. This may be particularly important for situations in which magnetic
fields play a key role. It is well known that the presence of magnetic fields can lead to the
promotion of a forward cascade, rather than the inverse cascade of quasi-two-dimensional
hydrodynamics (see e.g. Seshasayanan, Benavides & Alexakis (2014) for a discussion of
the transition between the two types of behaviour). Dellar (2003) has already demonstrated
that the linearised form of the model presented here better replicates the dispersion
properties of the full three-dimensional system for waves on a smaller scale, and that
nonlinear cnoidal wave solutions exist.

The derivation of the non-hydrostatic model presented here follows Green & Naghdi
(1976), who pointed out that for the hydrodynamic case, all that is required is a single
assumption on the horizontal velocity field – namely, that it is independent of height z
in the layer; the equations then follow by vertical averaging (see also Miles & Salmon
1985; Jalali & Dritschel 2021). In the magnetised case, the analogous assumption is
that both the velocity and the horizontal magnetic field are independent of height. The
non-hydrostatic magnetised shallow-water equations, together with all of their associated
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conservation laws, then follow directly by vertically averaging the (inviscid) Euler and
magnetic induction equations.

The total energy contained within the fluid layer is not conserved owing to magnetic
diffusion. Notably, without diffusion, energy is conserved only for a magnetic field
confined entirely to the fluid layer (tangent to its upper and lower surfaces). As diffusion
causes the magnetic field to develop a non-zero normal component at the surfaces,
inevitably energy will pass through the surfaces, as well as diffuse. This situation is
common in models of the solar atmosphere (Priest 2014).

Numerical simulations were conducted for the magneto-hydrostatic version of the model
(derived assuming finite gravity wave speeds

√
gh and taking the limit h/L → 0, where

L is a characteristic horizontal scale), as well as for the fully non-hydrostatic model. We
revisited the problem of a Gaussian vortex initially within a (nearly) uniform horizontal
magnetic field, studied previously in Dritschel et al. (2018) in the two-dimensional limit
of a flat free surface.

In the hydrostatically balanced cases, finite free-surface variations in the shallow-water
model and a finite Rossby number nonetheless produce results that are qualitatively similar
to those in Dritschel et al. (2018). The most pronounced differences occur when the Rossby
deformation length LD = √

gH/f (where H is the mean fluid depth, and f is the Coriolis
frequency) is small compared to the initial vortex radius R. Then the core region around
the vortex is smaller and more circular, and contains a broader region of well-mixed nearly
irrotational flow. The initial magnetic field is expelled to the periphery of this region,
where it exhibits current sheets and collocated vorticity sheets. In the parameter regime
investigated, the divergent component of the flow is weak, and weakens in proportion to
(LD/R)2.

For the non-hydrostatic model, we investigated the effects of varying the Coriolis
buoyancy frequency ratio f /N, where N ≡ √

3g/H depends on the mean depth H. Perhaps
as expected, whilst the vorticity (dominated by the underlying balance) is relatively
insensitive to the frequency ratio, the divergence and non-hydrostatic pressure are strongly
affected by changes in this ratio, exhibiting energy on smaller scales as f /N increases,
which may be the signature of magneto-inertia–gravity waves. We note that a greater
impact of f /N is likely to occur in fully turbulent flows due to heightened small-scale
activity; this is worth investigating further.

We believe that the model may be used to study general features of the solar tachocline,
including free-surface and non-hydrostatic effects, exploring the properties and behaviour
of linear and nonlinear waves (Rossby, gravity, Alfvén). Finally, an extension to spherical
geometry will enable the investigation of global instabilities and MHD turbulence in thin
spherical shells, which will provide better models of the solar tachocline and the stability
of jets in exoplanetary atmospheres.

Acknowledgements. We would like to acknowledge useful discussions with R. Keppens and T. Neukirch.

Funding. D.G.D. would like to thank the Leverhulme Trust for support received during a Research Fellowship.
S.M.T. was supported by funding from the European Research Council (ERC) under the EU’s Horizon 2020
research and innovation programme (grant agreement D5S-DLV-786780).

Declaration of interests. The authors report no conflict of interest.

Author ORCIDs.
David G. Dritschel https://orcid.org/0000-0001-6489-3395;
Steven M. Tobias https://orcid.org/0000-0003-0205-7716.

973 A17-22

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

74
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://orcid.org/0000-0001-6489-3395
https://orcid.org/0000-0001-6489-3395
https://orcid.org/0000-0003-0205-7716
https://orcid.org/0000-0003-0205-7716
https://doi.org/10.1017/jfm.2023.746


The magnetic non-hydrostatic shallow-water model

Appendix A. Approximately force-free fields in the upper layer

In this appendix, we describe the circumstances under which the magnetic field in the
upper layer may be considered to be a quasi-static force-free field.

In each layer, we consider the dimensional incompressible inviscid momentum equation
in a rotating Cartesian frame with gravity pointing downwards, i.e.

ρ

(
Du
Dt

+ 2Ω × u
)

= −∇p + j × B + ρg, (A1)

where Ω = Ωk and g = −gk. We consider an upper layer with density ρu, and a middle,
primary, fluid layer with density ρl, and take ρu � ρl such that ρu/ρl = ε2, with ε � 1.
We non-dimensionalise the equations using typical values of the density, fluid pressure,
magnetic field and velocity in the middle layer. That is, we set ρ = ρlρ̂, p = plp̂, B = BlB̂
and j = (Bl/μL)∇ × B̂, where L is a typical horizontal length scale. We also set u = Ulû
and use the advective time scale T = L/Ul, taking t = Tt̂.

On dropping the hats, this leads to the non-dimensional inviscid momentum equation

Ma2 Du
Dt

+ Ma2

Ro
k × u = −β

2
∇p + (∇ × B)× B − Ma2

Fr2 k, (A2)

in which

Ma = Ul

vA,l
= Ul

√
μρl

Bl
(A3)

is the Alfvén Mach number, where vA,l = Bl/
√
μρl is the Alfvén speed in the middle layer.

Moreover,

Ro = Ul

2ΩL
, Fr = Ul

(gL)1/2
, β = pl

B2
l /2μ

(A4a–c)

are, respectively, the Rossby number, the Froude number, and the plasma beta (i.e. the
ratio of the fluid pressure to the magnetic pressure) in the middle layer.

With this non-dimensionalisation, the magnetic induction equation in the middle layer
becomes

∂B
∂t

= ∇ × (u × B)+ 1
Rm

∇2B, (A5)

where

Rm = μσlUlL = UlL
ηl

(A6)

is the magnetic Reynolds number. Here, σl is the conductivity in the middle layer, while
ηl = 1/(μσl) is the magnetic diffusivity.

In the upper layer, as discussed above, both the density ρu and the fluid pressure p are
small compared with their values at the bottom of the middle layer. As we will see in
Appendix B, it is appropriate to assume that the magnetic field in the upper layer is of the
same order as that in the middle layer, so the Alfvén speed vA,u = Bl/

√
μρu is much larger

in the upper layer than in the middle layer (indeed, by a factor ε−1). In addition, we assume
that the fluid pressure is small compared to the magnetic pressure in the upper layer.
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With ρu/ρl = ε2, the equations in the upper layer become

ε2 Ma2 Du
Dt

+ ε2 Ma2

Ro
k × u = −β

2
∇p + (∇ × B)× B − ε2 Ma2

Fr2 k. (A7)

To leading order, the equation becomes one of magneto-hydrostatic balance:

0 = −β
2

∇p + (∇ × B)× B. (A8)

Here, recall that p is the upper layer fluid pressure scaled on the characteristic middle-layer
fluid pressure pl. If pu is a characteristic upper layer fluid pressure, then p in (A8) is of order
pu/pl. Assuming that this scales like ρu/ρl (as in air over water), we have p ∼ ε2. Thus
when βε2 � 1, the magnetic field adjusts to approximately satisfy the force-free condition

0 ≈ (∇ × B)× B. (A9)

Physically, because the Alfvén speed in the upper layer is much larger than a typical
velocity in the middle layer, the magnetic field in the upper layer responds on a short time
scale compared with the typical time scale for the evolution of the magnetic field and
velocity in the middle layer. This results in the magnetic field stepping through a series of
quasi-static force-free configurations as the flow below evolves (see e.g. Priest 2014). Note
that the fluid pressure in many situations is believed to be too small to act back on the layer
below – just as in the hydrodynamic case. We note that Rogers & Komacek (2014) solve
anelastic equations in a spherical shell and match to a potential field in the region external
to the spherical shell; this is a solution to j = 0, which is clearly a force-free solution.

Appendix B. Boundary and interface conditions

In this appendix, we consider the conditions that pertain at the free surface interface and
the lower fixed boundary.

Without a magnetic field, the only boundary conditions are that (a) the vertical velocity
w vanishes at z = 0, (b) the free surface at z = h moves with the fluid (it is a material
surface consisting always of the same fluid particles), and (c) the pressure p is constant at
z = h. Condition (b) leads to an evolution equation for h:

D(z − h)
Dt

= 0 ⇒ ∂h
∂t

+ u
∂h
∂x

+ v
∂h
∂y

= w(x, y, h, t). (B1)

Condition (c) expresses continuity of pressure because when B = 0, (A8) reduces to
∇p = 0 in the upper layer, i.e. p is a constant. In an incompressible fluid, we can take
this constant to be zero without loss of generality.

For the magnetic case, we consider the lower boundary to be perfectly conducting; in
this case, surface currents at the boundary are allowed. If the layer below is also static, then
a trapped unchanging magnetic field is allowed there. If this magnetic field is assumed
zero, then the requirement of no normal flow across the boundary yields B · n = 0 and
j × n = 0 at the interface, where n is the unit normal vector (Jones 2008; Gilbert et al.
2022).

There are two potential choices for the magnetic layer above the active (primary) layer.
If the upper layer is also perfectly conducting, then again the normal field at the free
surface is zero, and this field must remain tangent to the surface. This can be ensured
only if one employs a special (non-ohmic) dissipation operator that is compatible with
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this constraint (Gilbert et al. 2022). This is the diffusion operator considered in (2.49).
Otherwise, for finite conductivity, we must deal with the boundary conditions that apply
at the free surface. Here, we consider the case where the magnetic permeability μ of the
two layers is constant. This implies that B is continuous at the interface, or that

[B] = 0, (B2)

where [ f ] is the jump in the function f across the interface. This implies that B in the
upper layer should be of the same order of magnitude as that in the middle layer. Similarly,
μ being constant implies that ∇ · j = 0 and hence

[ j · n] = 0. (B3)

(This may also be derived from the integral form of Ampère’s law.) While the normal
current is continuous, the tangential current is not; however, the tangential electric field E
is, so

[E × n] = 0. (B4)

Using Ohm’s law in the two regions, this is equivalent to

[( j/σ − u × B)× n] = 0. (B5)

Hence, given u, B (and thus j) and σ in the middle layer, and B, j and σ in the upper layer,
it is possible to calculate the tangential components of u just above the interface, provided
that B · n = B⊥ /= 0, as shown next.

This calculation proceeds from (B5) as follows. We note that (B2) ensures the continuity
of B, and we also know

[u · n] = 0. (B6)

Using the formula for the vector triple product in (B5) yields

[ j × n/σ + (n · B)u − (n · u)B] = 0. (B7)

The normal component of this is zero, while the tangential components yield

[ j‖ × n/σ + B⊥u‖] = 0, (B8)

thus providing u‖ ≡ u − (n · u)n above the interface – though this is not needed. (Here,
we have used j = j‖ + j⊥n.) Note that if B⊥ = 0 and σ is continuous, then j‖ is also
continuous.

Though it is not necessary for our purposes, there are many methods for calculating
nonlinear force-free fields in a domain for a given magnetic field and current at the lower
boundary. Although there are some questions about the regularity and uniqueness of the
solutions, successful implementations of magneto-frictional methods have been described,
and more sophisticated methods have considered the case of pressure gradients and gravity
(see e.g. Beliën et al. 2002; Guo et al. 2016; Wiegelmann & Sakurai 2021).

The remaining condition on the interface arises from continuity of the normal stress. In
an inviscid fluid, this implies

[
−pn − |B|2

2μ
n + B⊥B

μ

]
= 0. (B9)

As B and μ are continuous, this means that the pressure p must also be continuous.
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Appendix C. The evolution of the normal component of the magnetic field at the free
surface

In this appendix, we determine the evolution equation for the normal component of the
magnetic field B⊥ = B3 · n.

With n = −∇h + k and B3 = B − zτk, we have

B⊥ = B3 · n

= −Bx
∂h
∂x

− By
∂h
∂y

− hτ

= −∇ · (hB). (C1)

Note here that n is not normalised. Nonetheless, n points normal to the surface z = h, and
the adopted form of B⊥ yields a simple evolution equation.

This equation is derived by multiplying (2.30) by B and adding to (2.29) multiplied by
h. On taking the divergence, one finds (after an overall change in sign)

∂B⊥
∂t

+ ∇ · (B⊥u) = −η∇ · (h ∇2B). (C2)

This shows that B⊥ does not generally remain zero if initially so. The diffusive term cannot
be expressed solely in terms of B⊥.
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