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BIVECTORS O V E R A FINITE F IELD 

BY 

J. A. MACDOUGALL 

ABSTRACT. Let U be an n -dimensional vector space over a finite 
field of q elements. The number of elements of A2U of each 
irreducible length is found using the isomorphism of A2 U with Hn, 
the space of n x n skew-symmetric matrices, and results due to 
Carlitz and MacWilliams on the number of skew-symmetric matrices 
of any given rank. 

Let U be an n-dimensional vector space over a finite field F=GF(q). We 
consider the elements of A2U (called bivectors, or 2-vectors). The (irreducible) 
length of a 2-vector is well known. Any 2-vector can be expressed as a sum 
Zi *iA Vi where {x l 5 . . . ,xr,y1,... ,yr} is independent and then its length is r. 
The 2-vectors of length 1 are called decomposable. 

Of the q(s) elements of A2U, it is difficult to count directly the number having 
a fixed length, since there is no unique representation for a 2-vector as a sum 
of the minimal number of decomposables. However, we can make use of the 
isomorphism of A2 U with Hn, the space of n x n skew-symmetric matrices over 
F. This isomorphism, denoted <£>, is shown by Marcus and Westwick [3] to have 
the property that zeA2U has length r if and only if <t>(z) e Hn has rank 2r. The 
number of skew-symmetric matrices of rank 2r has been determined by Carlitz 
[1] and MacWilliams [2]. Consequently, we have 

THEOREM. / / U is a vector space of dimension n over GF(q), the number of 
vectors in A2U of length r is 

This is valid even when q = 2s, although then A2 U coincides with the 
symmetric product V2!]. 
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