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MULTIFRACTIONAL PROCESSES

RENAUD MARTY,∗ Université de Lorraine

Abstract

We consider a class of multifractional processes related to Hermite polynomials. We
show that these processes satisfy an invariance principle. To prove the main result of this
paper, we use properties of the Hermite polynomials and the multiple Wiener integrals.
Because of the multifractionality, we also need to deal with variations of the Hurst index
by means of some uniform estimates.
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1. Introduction

Hermite processes have attracted a lot of attention for many years because they have
nice properties and generalize fractional Brownian motion [7], [14], [17]. Let m ∈ N

∗ and
H ∈ ( 1

2 , 1). The Hermite processWm,H of orderm and Hurst indexH can be defined in terms
of Wiener–Itô–Dobrushin integrals [6] by

Wm,H : t �→ Wm,H (t) =
∫

Rm

fm,H (x1, . . . , xm, t) dB̂x1 · · · dB̂xm (1.1)

with the function fm,H given for every t in R and almost every (x1, . . . , xm) in R
m by

fm,H (x1, . . . , xm, t) = C(m,H)
exp(it (x1 + · · · + xm))− 1

i(x1 + · · · + xm)|x1 · · · xm|(2H−2+m)/2m ,

where C(m,H) is a normalizing constant and dB̂ is a complex Gaussian measure such that
(1.1) defines a real process. Note that, for m = 1, the Hermite process W1,H is the fractional
Brownian motion with Hurst indexH . Moreover, for every integerm ≥ 2, the Hermite process
Wm,H and fractional Brownian motion share many properties. For instance, Wm,H is self-
similar with parameter H : for every a > 0, the process {Wm,H (at)}t≥0 is equal in distribution
to {aHWm,H (t)}t≥0. It is also a basic model for long-range dependence: the sequence of its
increments δWm,H = {δWm,H (j) = Wm,H (j + 1)−Wm,H (j)}j∈N is stationary and satisfies
the long-range property

E[δWm,H (0)δWm,H (j)] ∼ cm,H

j2−2H as j → ∞,

where cm,H is a positive constant.
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324 R. MARTY

The invariance principle [5], [7], [16], [17] is one of the most important properties of Hermite
processes for applications. It can be stated as follows. Let X = {Xj }j∈N be a Gaussian
stationary sequence of centered random variables with variance 1. We assume that there exists
a positive constant c such that X satisfies the long-range property

E[X0Xj ] ∼ c

j2(1−H)/m as j → ∞. (1.2)

We consider a real-valued function φ satisfying
∫

R
φ(x)2e−x2/2 dx < ∞ and with Hermite

rank equal to m. Roughly speaking, this means that there exists a sequence of real numbers
{φj }j≥m such that φm �= 0 and φ = ∑∞

j=m φjPj , where, for each j ≥ m, Pj is the j th Hermite
polynomial. We define the sequence of processes {SNφ,H }N∈N by

SNφ,H (t) = 1

NH

	Nt
∑
j=1

φ(Xj ) (1.3)

for every t ≥ 0 and N ∈ N. The invariance principle states that, as N goes to ∞, the finite-
dimensional distributions of SNφ,H converge to those of a Hermite process Wm,H defined by
(1.1) with a suitable constant C(m,H). This is a remarkable property because it means that
Hermite processes can be universal self-similar models in many applications of probability
when long-range dependence arises. For instance, they have recently been used, in [10], to
describe random media with long-range correlations for the study of wave propagation.

A limitation of Hermite processes and other fractional processes is the strong homogeneity
of their properties as self-similarity, which are governed by the Hurst index H . In order to
generalize fractional processes to less homogeneous processes, multifractional processes, as
the class of multifractional Brownian motions [2], [13] for instance, have been introduced.
Multifractional processes have locally, but not globally, the same properties as fractional
processes. These properties are governed by a function h substituting the constant H in a
suitable sense. For instance, multifractional processes satisfy the so-called local self-similarity
property [2], [13].

As fractional Brownian motion and other Hermite processes, some nontrivial multifractional
Gaussian processes satisfy invariance principles. From [4], we have the following result (see
also [9] for a multidimensional version). Let {Xj(H)}(j,H)∈N×(1/2,1) be a Gaussian field
satisfying some long-range assumptions related to (1.2): roughly speaking, there exists a
continuous and symmetric function R : (H1, H2) → R(H1, H2) such that

E[Xj(H1)Xk(H2)] ∼ R(H1, H2)|j − k|H1+H2−2 as |j − k| → ∞ (1.4)

uniformly in (H1, H2). Let h be a continuous function taking its values in ( 1
2 , 1). We define

the sequence of processes {SNh }N∈N by

SNh (t) =
	Nt
∑
j=1

Xj(h(j/N))

Nh(j/N)
(1.5)

for all t ≥ 0 and N ∈ N. Then, as N goes to ∞, the finite-dimensional distributions of SNh
converge to those of a centered Gaussian process Sh whose covariance is given for all t and
s ≥ 0 by

E[Sh(t)Sh(s)] =
∫ t

0
dθ

∫ s

0
dσR(h(θ), h(σ ))|θ − σ |h(θ)+h(σ)−2, (1.6)
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where R is the continuous function derived from (1.4). The process Sh is locally self-similar.
If the function h is constant then the process Sh is a fractional Brownian motion. This result is
then a generalization of the invariance principles presented above for φ = Id : x → x. It also
defines a class of multifractional Gaussian processes, which satisfies invariance principles.

In this work we generalize the invariance principles presented above. We study the
asymptotic behavior of a sequence generalizing both (1.3) and (1.5). In particular, this sequence
is defined by a Gaussian field {Xj(H)}j,H satisfying the long-range properties in (1.4), a

function φ such that
∫

R
φ(x)2e−x2/2 dx < ∞ with Hermite rank equal to m ∈ N

∗, and a Hurst
function h taking its values in ( 1

2 , 1). We get as a limit a multifractional process Sm,h that
depends on the integer m and the function h. If the function is a constant H then the limit
process is the Hermite process with Hurst index H and Hermite order m. If the integer m is
equal to 1 then the limit process is a Gaussian multifractional process of the class obtained in [4].
Moreover, as Hermite processes, Sm,h is Gaussian if and only ifm = 1. Our result then defines
a class of multifractional processes, which can be Gaussian or non-Gaussian. Because these
processes satisfy invariance principles, they can be suitable models when local self-similarity
arises.

In contrast to what occurs in [4], the processes we study can be non-Gaussian. Hence, our
work cannot be based only on second-order moments as in [4]. To prove our result, we use the
convergence of multiple Wiener–Itô integrals and some properties of the Hermite polynomials.
Moreover, to deal with multifractionality, we prove some uniform estimates to control the
fluctuations of the Hurst index.

The paper is organized as follows. In Section 2 we recall some definitions and preliminary
results about Hermite polynomials and multiple stochastic integrals, which are used throughout
the paper. In Section 3 we establish the main results of the paper. Section 4 is devoted to the
proofs.

2. Preliminaries

In this section we make precise some definitions and recall some results about Hermite
polynomials and multiple stochastic integrals we use throughout this paper.

2.1. Hermite polynomials

For each positive integer m ∈ N, the mth Hermite polynomial Pm is defined by

Pm(x) = (−1)mex
2/2 dm

dxm
e−x2/2

for every x ∈ R. The family of the Hermite polynomials {Pm, m ∈ N} is an orthogonal basis
of the space L2(e−x2/2 dx) defined by

L2(e−x2/2 dx) =
{
φ : R → R, φ measurable and

∫
R

(φ(x))2e−x2/2 dx < ∞
}

endowed with the inner product 〈·, ·〉 defined by

〈·, ·〉 : (φ1, φ2) �→ 〈φ1, φ2〉 =
∫

R

φ1(x)φ2(x)e
−x2/2 dx√

2π
.

The norm corresponding to 〈·, ·〉 will be denoted by ‖ · ‖. For every (nonzero) function
φ ∈ L2(e−x2/2 dx), there exists an integer mφ such that 〈φ, Pmφ 〉 �= 0 and 〈φ, Pm〉 = 0 for
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326 R. MARTY

everym = 0, . . . , mφ−1. The integermφ is called the Hermite index of the function φ. Hence,
for every φ ∈ L2(e−x2/2 dx),

φ =
∞∑
m=0

〈φ, Pm〉
m! Pm =

∞∑
m=mφ

〈φ, Pm〉
m! Pm, (2.1)

where the convergence of the series holds for the norm ‖ · ‖. If X and Y are two Gaussian
random variables with mean 0 and variance 1 then, for all j and k in N

∗,

E[Pj (X)Pk(Y )] =
{
k! (E[XY ])k if k = j,

0 if k �= j.
(2.2)

As a consequence, for every φ ∈ L2(e−x2/2 dx) and every Gaussian random variable X with
mean 0 and variance 1,

E[|φ(X)|2] =
∞∑
m=0

〈φ, Pm〉2

m! < ∞. (2.3)

2.2. Multiple Wiener–Itô integrals

Many notions of multiple Wiener–Itô integrals [6], [8] with respect to Brownian motion have
been introduced and have been used to define processes as Hermite processes [7], [17]. Here
we have chosen to use the so-called multiple Wiener–Itô–Dobrushin integral defined in [6]. In
this subsection we give a brief description of this integral, using its properties throughout the
paper. We refer the reader to the seminal paper [6] for a complete construction and a detailed
study.

For every d ∈ N
∗, we denote by L̂2(Rd) (L̂2(R)when d = 1) the space of square-integrable

functions f : R
d → C satisfying, for every (x1, . . . , xd) ∈ R

d ,

f (x1, . . . , xd) = f (−x1, . . . ,−xd),
and, for every permutation σ on {1, . . . , d},

f (x1, . . . , xd) = f (xσ(1), . . . , xσ(d)).

Let B be a real Brownian motion. We define the random measure B̂ by

B̂(ψ) :=
∫

R

ψ̂(ξ) dBξ

for every ψ ∈ L̂2(R), where ψ̂ is the Fourier transform of ψ and the integral of the right-hand
side is the classical Wiener–Itô integral in dimension one. We also denote by

∫
R
ψ(x) dB̂x the

random variable B̂(ψ). Because ψ ∈ L̂2(R), B̂(ψ) is a real Gaussian variable with mean 0
and variance

∫
R

|ψ(x)|2 dx. Let d ∈ N
∗, and consider a function f ∈ L̂2(Rd). A multiple

random integral of f is defined in [6] from B̂ by an approximation of f with step functions
in L̂2(Rd). This is the so-called Wiener–Itô–Dobrushin integral of f , which we denote in this
paper by

∫
Rd
f dB̂⊗d or ∫

Rd

f (x1, . . . , xd) dB̂x1 · · · dB̂xd .

https://doi.org/10.1239/jap/1371648944 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1371648944


From Hermite polynomials to multifractional processes 327

It is a real random variable with mean 0 and variance

E

[(∫
Rd

f dB̂⊗d
)2]

= d!
∫

Rd

|f (x1, . . . , xd)|2 dx1 · · · dxd (2.4)

and is Gaussian if and only if d = 1. The following Fubini-type formula is one of the most
important properties of this integral [6].

Lemma 2.1. Let Pd be the Hermite polynomial of rank d. For every ψ ∈ L̂2(R) satisfying∫
R

|ψ(ξ)|2 dξ = 1,

Pd

(∫
R

ψ(x) dB̂x

)
=

∫
Rd

ψ(x1) · · ·ψ(xd) dB̂x1 · · · dB̂xd . (2.5)

The following lemma states a change-of-variable formula. It is due to the self-similarity of
Brownian motion [6].

Lemma 2.2. For every ε > 0, we have the equality in distribution∫
Rd

f (x1, . . . , xd) dB̂x1 · · · dB̂xd
d= εm/2

∫
Rd

f (εx1, . . . , εxd) dB̂x1 · · · dB̂xd . (2.6)

The following lemma gives another change-of-variable formula. It is a direct consequence
of Proposition 4.2 of [6].

Lemma 2.3. Let z : R → C be a bounded and measurable function satisfying z(x) = z(−x)
and |z(x)| = 1 for every x ∈ R. Then, we have the equality in distribution∫

Rd

f (x1, . . . , xd) dB̂x1 · · · dB̂xd
d=

∫
Rd

f (x1, . . . , xd)z(x1) · · · z(xd) dB̂x1 · · · dB̂xd . (2.7)

By using the linearity of the integral, (2.4), and the bounded convergence theorem, we can
prove the following lemma.

Lemma 2.4. Let {fN }N∈N be a sequence of functions in L̂2(Rd). We assume that there exist
two functions f and f ∗ in L̂2(Rd) such that, for almost every x ∈ R

d , limN→∞ fN(x) = f (x)

and supN |fN(x)| ≤ f ∗(x). Then

lim
N→∞ E

[(∫
Rd

fN dB̂⊗d −
∫

Rd

f dB̂⊗d
)2]

= 0.

Finally, we can generalize (2.4) to every moment by using hypercontractivity arguments
(see, for instance, [11] or [12]).

Lemma 2.5. Let p ∈ N
∗. There exists a constant C = C(d, p) > 0 such that, for every

f ∈ L̂2(Rd),

E

[(∫
Rd

f dB̂⊗d
)2p]

≤ C(d, p)

(∫
Rd

|f (x1, . . . , xd)|2 dx1 · · · dxd

)p
.
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3. Main results

We fix m ∈ N
∗, and define

b = 1 − 1

2m
.

We consider the Gaussian field X = {Xn(H)}(n,H)∈N×(b,1) defined by

Xn(H) =
∫ a

−a
exp(inx)g(H, x)|x|1/2−H dB̂x (3.1)

for all n ∈ N and H ∈ (b, 1), where a ∈ (0, 2π/m), B̂ is the Fourier transform of the random
Brownian measure, and g : (b, 1) × (−a, a) → C is a measurable function. The right-hand
side of (3.1) is a stochastic integral defined as in Section 2.2. We assume that the function g
satisfies the following properties.

• For every (H, x) ∈ (b, 1)× (0, a), g(H, x) = g(H,−x). This property ensures that the
field X is real.

• For every H ∈ (b, 1), ∫ a

−a
|g(H, x)|2|x|1−2H dx = 1, (3.2)

so that E[Xn(H)2] = 1.

• The function g is twice continuously differentiable on (b, 1)× (−a, a). Then, for every
(H, x) ∈ (b, 1)× (−a, a), we define

g0(H) = g(H, 0) and g1(H, x) =
∫ x

0

∂g

∂ξ
(H, ξ) dξ,

so that g = g0 + g1 and

lim
x→0

sup
H∈K

(
|g1(H, x)| +

∣∣∣∣∂g1

∂H
(H, x)

∣∣∣∣
)

= 0

for every compact set K of (b, 1).

The assumptions above ensure that the covariance function satisfies the uniform long-range
property of [4]. More precisely, Lemma A.1 (see Appendix A) states that, for every compact
set K ⊂ (b, 1),

lim
j−k→∞ sup

(H1,H2)∈K2
|(j − k)2−H1−H2E[Xj(H1)Xk(H2)] − R(H1, H2)| = 0, (3.3)

where

R(H1, H2) = g0(H1)g0(H2)

∫
R

exp(ix)|x|1−H1−H2 dx (3.4)

for every (H1, H2) ∈ (b, 1)2.
We consider a function φ ∈ L2(e−x2/2 dx) with Hermite rank equal tom ∈ N

∗. Note that φ
then satisfies the centering condition∫

R

φ(x)e−x2/2 dx = 0.
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We consider a continuously differentiable function h : [0,∞) → ( 1
2 , 1) and set

h̃ := 1 + h− 1

m
: [0,∞) → (b, 1).

For all t ≥ 0 and N ∈ N
∗, we define

SNφ,h(t) :=
	Nt
∑
j=1

φ(Xj (h
N
j ))

Nh(j/N)
, (3.5)

where, for every j ∈ {1, . . . , 	Nt
},

hNj = 1 + h(j/N)− 1

m
= h̃

(
j

N

)
.

For every (x1, . . . , xm, t) ∈ (R∗)m × [0,∞), we set

fm,h(x1, . . . , xm, t) =
∫ t

0
exp

(
iθ

m∑
l=1

xl

)
g̃(θ)|x1 · · · xm|1/2−h̃(θ) dθ,

where

g̃ = 〈φ, Pm〉
m! (g0 ◦ h̃)m.

For every t ≥ 0, we define

Sm,h(t) =
∫

Rm

fm,h(x1, . . . , xm, t) dB̂x1 · · · dB̂xm.

For all t, u ≥ 0 and ε ∈ (0, 1), we set

T εm,h,t (u) = Sm,h(t + εu)− Sm,h(t)

εh(t)

and

Tm,h,t (u) = g̃(t)

∫
Rm

exp(iu
∑m
l=1 xl)− 1

i(
∑m
l=1 xl)|x1 · · · xm|h̃(t)−1/2

dB̂x1 · · · dB̂xm.

For any real interval I , D(I ) is the space of càdlàg functions on I with the Skorokhod topology
(see [3, Chapter 3]) and C(I ) is the space of continuous functions on I with the uniform
topology on each compact set. For a real continuous function w and a point t in the domain of
definition of w, the local Hölder exponent of w around t is denoted by αw(t) and defined by

αw(t) = sup

{
α ∈ (0, 1] : lim

s→t

|w(t)− w(s)|
|t − s|α < ∞

}
.

The two main results of this paper can now be stated. The first result concerns an invariance
principle.

Theorem 3.1. The process Sm,h = {Sm,h(t)}t≥0 is continuous (up to a modification) and
SNφ,h = {SNφ,h(t)}t≥0 converges in distribution to Sm,h in D([0,∞)) as N → ∞.
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The second main result deals with sample path properties (local self-similarity and local
Hölder exponent) of the limit process Sm,h.

Theorem 3.2. Let t ≥ 0. The process T εm,h,t = {T εm,h,t (u)}u≥0 converges in distribution to
Tm,h,t = {Tm,h,t (u)}u≥0 in C([0,∞)) as ε → 0. Moreover, the local Hölder exponent of Sm,h
around t is equal to h(t).

Theorems 3.1 and 3.2 establish that sequences of processes defined as in (3.5), in particular
from a function φ in L2(e−x2/2 dx) of Hermite rank m and a Hurst function h, converge to a
multifractional process Sm,h with Hurst function h and represented as a multiple integral of
order m. Therefore, because the process Sm,h is defined as the limit of an invariance principle,
it can be a universal model when local self-similarity and long-range dependence arise in a
Gaussian or non-Gaussian framework.

Theorem 3.1 generalizes the results of [7] and [17] to a multifractional setting. Indeed, if we
assume that h ≡ H ∈ ( 1

2 , 1) then Theorem 3.1 is the main result of [7] and [17]. In particular,
the limit process Sm,H can be written as Wm,H in (1.1) with the constant

C(m,H) = 〈φ, Pm〉
m! (g0(H̃ ))

m = 〈φ, Pm〉
m!

(
R(H̃ , H̃ )∫

R
eiξ |ξ |1−2H̃ dξ

)m/2
,

where

H̃ := 1 + H − 1

m
∈ (b, 1).

Theorem 3.1 is also an extension of the main result of [4] (Theorem 2) to a non-Gaussian
framework. Indeed, if we assume that φ = Id : x → x then m = 1 and the limit process is
S1,h, which is a centered Gaussian process of covariance

(t, s) �→ E[S1,h(t)S1,h(s)] =
∫ t

0
dθ

∫ s

0
dσR(h(θ), h(σ ))|θ − σ |h(θ)+h(σ)−2

with R defined by (3.4).
To conclude this section, let us note the connection between our work and [15]. Let Yh =

{Yh(t)}t≥0 be the process defined for every t ≥ 0 by

Yh(t) = R

∫
R

(∫ t

0

exp(iyθ)

|y|h(θ)−1/2
dθ

)
dB̃(y), (3.6)

where dB̃ is a complex Gaussian measure and R stands for the real part. This process is
called integrated fractional white noise and has been introduced in [15] as an alternative to
multifractional Brownian motion. An advantage is the fact that it is a multifractional Gaussian
process without undesirable oscillations that multifractional Brownian motion has (see [15]).
Note that if we let g0 ≡ (m!/〈φ, Pm〉)1/m then, for m = 1, the process S1,h has the same
distributions as Yh. Therefore, Theorem 3.1 states that Yh is the limit of an invariance principle.
This is another interest of Yh. Moreover, for every m ≥ 2, the process Sm,h is a natural
generalization of Yh to a non-Gaussian framework.

4. Proofs

In this section we prove Theorems 3.1 and 3.2 and we proceed as follows. In Subsec-
tion 4.1 we establish a technical lemma. We prove the convergence of the finite-dimensional
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distributions of SNφ,h in Subsection 4.2. The regularity properties of Sm,h are established in
Subsection 4.3. Finally, we deal with the tightness for the Skorokhod topology in Subsection 4.4.
Throughout this section, for every setE and every subsetA ⊂ E, we denote by 1A the function
defined on E such that 1A(a) = 1 if a ∈ A and 1A(a) = 0 if a ∈ E − A.

4.1. Technical lemma

In the following lemma we prove, for every T > 0, the existence of a function f̃T that is
useful in the sequel to establish uniform bounds.

Lemma 4.1. For every T > 0, there exists a function f̃T ∈ L2(Rm,R) such that, for every
t ∈ [0, T ], every H ∈ [min h̃,max h̃], and almost every (x1, . . . , xm) ∈ R

m,∣∣∣∣ exp(it
∑m
l=1 xl)− 1

|x1 · · · xm|H−1/2
∑m
l=1 xl

∣∣∣∣(1 + | ln |x1 · · · xm||) ≤ f̃T (x).

Proof. We fix T > 0. We define L(x1, . . . , xm) = (1 + | ln |x1 · · · xm||)2 and

f̃T (x1, . . . , xm)

=
√√√√ ∑
H=min h̃,max h̃

T 21{| ∑m
l=1 xl |≤1} + 4| ∑m

l=1 xl |−21{| ∑m
l=1 xl |>1}

|x1 · · · xm|2H−1 L(x1, . . . , xm).

We have

max
H∈[min h̃,max h̃]

1

|x1 · · · xm|2H−1 ≤ 1

|x1 · · · xm|2 min h̃−1
+ 1

|x1 · · · xm|2 max h̃−1
.

Then, for every t ∈ [0, T ],∣∣∣∣exp(it
∑m
l=1 xl)− 1∑m
l=1 xl

∣∣∣∣
2

max
H∈[min h̃,max h̃]

L(x1, . . . , xm)

|x1 · · · xm|2H−1 ≤ f̃T (x1, . . . , xm)
2.

It is then enough to prove that, for H ∈ {min h̃,max h̃}, the function

(x1, . . . , xm) �→ T 21{| ∑m
l=1 xl |≤1} + 4| ∑m

l=1 xl |−21{| ∑m
l=1 xl |>1}

|x1 · · · xm|2H−1 L(x1, . . . , xm)

is integrable. We successively make the substitutions yj = x1 + · · · + xj for every
j ∈ {1, . . . , m}, zk = yk/yk+1 for every k ∈ {1, . . . , m− 1}, and zm = ym to get

∫
Rm

T 21{| ∑m
l=1 xl |≤1} + 4| ∑m

l=1 xl |−21{| ∑m
l=1 xl |>1}

|x1 · · · xm|2H−1 L(x1, . . . , xm) dx1 · · · dxm

=
∫

Rm

T 21{|ym|≤1} + 4|ym|−21{|ym|>1}
|y1(y2 − y1) · · · (ym − ym−1)|2H−1L(y1, y2 − y1, . . . , ym − ym−1) dy1 · · · dym

=
∫

R

T 21{|zm|≤1} + 4|zm|−21{|zm|>1}
|zm|2m(H−1)+1

dzm

∫
R

dzm−1

|1 − zm−1|2H−1|zm−1|2(m−1)(H−1)+1
× · · ·

×
∫

R

dz1

|1 − z1|2H−1|z1|2H−1L

( m∏
k=1

zk, (1 − z1)

m∏
k=2

zk, . . . , (1 − zm−1)zm

)
.
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The right-hand side above can be bounded by a finite sum of terms of the form∫
R

T 21{|zm|≤1} + 4|zm|−21{|zm|>1}
|zm|2m(H−1)+1

dzm

∫
R

dzm−1

|1 − zm−1|2H−1|zm−1|2(m−1)(H−1)+1
× · · ·

×
∫

R

dz1

|1 − z1|2H−1|z1|2H−1 | ln |zk||µ| ln |1 − zj ||ν, (4.1)

where k, j ,µ, and ν are integers. The terms of the form (4.1) are finite sinceH ∈ (1−1/(2m), 1)
and by Bertrand’s test. This concludes the proof.

4.2. Convergence of the finite-dimensional distributions

First, we deal with the sequence {SNPm,h}N∈N defined by

SNPm,h(t) =
	Nt
∑
j=1

Pm(Xj (h
N
j ))

Nh(j/N)

for all t ≥ 0 and N ∈ N. From now on, we denote by dB̂⊗m
x the product

∏m
l=1 dB̂xl when

x = (x1, . . . , xd).

Lemma 4.2. For every N ∈ N, the process SNPm,h is equal in distribution to the process S̃Nm,h
defined by

S̃Nm,h(t) =
∫
(−Na,Na)m

dB̂⊗m
x

1

N

	Nt
∑
j=1

m∏
l=1

exp

(
ijxl
N

)
g

(
hNj ,

xl

N

)
|xl |1/2−hNj

for every t ≥ 0.

Proof. Using (2.5), we obtain

Pm(Xj (h
N
j )) =

∫
(−a,a)m

m∏
l=1

exp(ijxl)g(h
N
j , xl)|xl |1/2−hNj dB̂xl

almost surely. We then have

SNPm,h(t) =
	Nt
∑
j=1

1

N1−m/2

∫
(−a,a)m

dB̂⊗m
x

m∏
l=1

exp(ijxl)g(h
N
j , xl)|Nxl |1/2−hNj .

Making the substitution x → x/N and using (2.6), we obtain

SNPm,h
d= t �→

	Nt
∑
j=1

1

N

∫
(−Na,Na)m

dB̂⊗m
x

m∏
l=1

exp

(
ijxl
N

)
g

(
hNj ,

xl

N

)
|xl |1/2−hNj .

This concludes the proof by the linearity of the multiple integral.

We now aim to prove the convergence of {S̃Nm,h(t)}N∈N inL2(�,R) for every t . We introduce
the sequence of functions {f N }N∈N defined by

f N : [0,∞)× R
m → C,

(t, x) �→ 1(−Na,Na)m(x)
1

N

	Nt
∑
j=1

m∏
l=1

exp

(
ijxl
N

)
g(hNj , xl/N)

|xl |h
N
j −1/2

,

and we establish the following lemma.
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Lemma 4.3. For every t ≥ 0, there exists a function f ∗
t ∈ L2(Rm,R) such that, for all x ∈ R

m

and N ∈ N,
|f N(t, x)| ≤ f ∗

t (x).

Proof. We have

f N(t, x) = 1(−Na,Na)(x)
i
∑m
l=1 xl/N

1 − exp(−i
∑m
l=1 xl/N)

×
	Nt
∑
j=1

exp(ij
∑m
l=1 xl/N)− exp(i(j − 1)

∑m
l=1 xl/N)

i
∑m
l=1 xl

GNj (x),

where

GNj (x) =
m∏
l=1

g(hNj , xl/N)

|xl |h
N
j −1/2

.

We write
f N(t, x) = f N,1(t, x)− f N,2(t, x)

with

f N,1(t, x) = 1(−Na,Na)(x)
i
∑m
l=1 xl/N

1 − exp(−i
∑m
l=1 xl/N)

×
	Nt
∑
j=1

1

i
∑m
l=1 xl

(
GNj (x)

(
exp

(
ij

m∑
l=1

xl

N

)
− 1

)

−GNj−1(x)

(
exp

(
i(j − 1)

m∑
l=1

xl

N

)
− 1

))

= 1(−Na,Na)(x)
i
∑m
l=1 xl/N

1 − exp(−i
∑m
l=1 xl/N)

GN	Nt
(x)
exp(i	Nt
 ∑m

l=1 xl/N)− 1

i
∑m
l=1 xl

and

f N,2(t, x) = 1(−Na,Na)(x)
i
∑m
l=1 xl/N

1 − exp(−i
∑m
l=1 xl/N)

×
	Nt
∑
j=1

exp(i(j − 1)
∑m
l=1 xl/N)− 1

i
∑m
l=1 xl

(GNj (x)−GNj−1(x)).

First, we deal with f N,1. Because g is bounded, there exists M1 > 0 such that, for every N
and almost every x,

|f N,1(t, x)| ≤ M1

∣∣∣∣ exp(i	Nt
 ∑m
l=1 xl/N)− 1

|x1 · · · xm|hN	Nt
−1/2 ∑m
l=1 xl

∣∣∣∣.
Then, by Lemma 4.1, there exists a function f̃t,1 ∈ L2(Rm,R) such that∣∣∣∣ exp(i	Nt
 ∑m

l=1 xl/N)− 1

|x1 · · · xm|hN	Nt
−1/2 ∑m
l=1 xl

∣∣∣∣ ≤ f̃t,1(x),
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so that we get
|f N,1(t, x)| ≤ M1f̃t,1(x). (4.2)

We now deal with f N,2. By Taylor’s formula we obtain

|GNj (x)−GNj−1(x)|

≤ max |h̃′|
N

max
H∈[min h̃,max h̃]

∣∣∣∣ − ln |x1 · · · xm|
|x1 · · · xm|H−1/2

m∏
l=1

g

(
H,

xl

N

)

+ 1

|x1 · · · xm|H−1/2

m∑
k=1

(
∂g

∂H

(
H,

xk

N

)) m∏
l=1, l �=k

g

(
H,

xl

N

)∣∣∣∣.
Since g and ∂g/∂H are bounded, there exists a constantM2 > 0, which depends only on h and
g, such that, for almost every x and every N ,

|f N,2(t, x)| ≤ M2

N

	Nt
∑
j=1

| exp(i(j − 1)
∑m
l=1 xl/N)− 1|

| ∑m
l=1 xl |

max
H∈[min h̃,max h̃]

1 + | ln |x1 · · · xm||
|x1 · · · xm|H−1/2 .

As in the case of f N,1, by Lemma 4.1, there exists a function f̃t,2 ∈ L2(Rm,R) such that, for
all N and j and almost every x,∣∣∣∣exp(i(j − 1)

∑m
l=1 xl/N)− 1∑m

l=1 xl

∣∣∣∣ max
H∈[min h̃,max h̃]

1 + | ln |x1 · · · xm||
|x1 · · · xm|H−1/2 ≤ f̃t,2(x).

We then get
|f N,2(t, x)| ≤ M2f̃t,2(x). (4.3)

Hence, taking f̃t = M1f̃t,1 +M2f̃t,2 and combining (4.2) and (4.3) completes the proof.

The convergence of {S̃Nm,h}n∈N can now be established.

Lemma 4.4. For every t ≥ 0, as N → ∞, S̃Nm,h(t) converges in L2(�,R) to S̃∞
m,h(t) given by

S̃∞
m,h(t) =

∫
Rm

dB̂⊗m
x

∫ t

0
exp

(
iθ

m∑
l=1

xl

)
g0(h̃(θ))

m|x1 · · · xm|1/2−h̃(θ) dθ.

Proof. We fix t ≥ 0. By Lemmas 2.4 and 4.3, it suffices to prove that, for almost every x,
f N(t, x) converges to f∞(t, x) defined by

f∞(t, x) :=
∫ t

0
exp

(
iθ

m∑
l=1

xl

)
g0(h̃(θ))

m|x1 · · · xm|1/2−h̃(θ) dθ.

We let

GNj,0(x) = g0(h
N
j )
m|x1 · · · xm|1/2−hNj and GNj,1(x) = GNj (x)−GNj,0(x),

whereGNj (x) is defined as in the proof of Lemma 4.3. We also consider the same decomposition

f N = f N,1 − f N,2 as in the proof of Lemma 4.3 and we let

f N,1 = f N,1,0 − f N,1,1 and f N,2 = f N,2,0 − f N,2,1,
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where, for κ ∈ {0, 1},

f N,1,κ (t, x) = 1(−Na,Na)(x)
i
∑m
l=1 xl/N

1 − exp(−i
∑m
l=1 xl/N)

GN	Nt
,κ (x)
exp(i	Nt
 ∑m

l=1 xl/N)− 1

i
∑m
l=1 xl

and

f N,2,κ (t, x) = 1(−Na,Na)(x)
i
∑m
l=1 xl/N

1 − exp(−i
∑m
l=1 xl/N)

×
	Nt
∑
j=1

exp(i(j − 1)
∑m
l=1 xl/N)− 1

i
∑m
l=1 xl

(GNj,κ (x)−GNj−1,κ (x)).

Because h and g0 are continuously differentiable, we get, for almost every x,

lim
N→∞ f

N,1,0(t, x) = g0(h̃(t))
m exp(it

∑m
l=1 xl)− 1

i|x1 · · · xm|h̃(t)−1/2
∑m
l=1 xl

and

lim
N→∞ f

N,2,0(t, x) =
∫ t

0

exp(iθ
∑m
l=1 xl)− 1

i
∑m
l=1 xl

h̃′(θ) ∂
∂H

(
g0(H)

m

|x1 · · · xm|H−1/2

)∣∣∣∣
H=h̃(θ)

dθ,

so that
lim
N→∞(f

N,1,0(t, x)− f N,2,0(t, x)) = f∞(t, x).

We now deal with f N,1,1 and f N,2,1. We write GNj,1(x) as

GNj,1(x) = |x1 · · · xm|1/2−hNj
m∑
k=1

g1

(
hNj ,

xk

N

)
g0(h

N
j )
k−1

m∏
l=k+1

g

(
hNj ,

xl

N

)
.

Then, by Lemma 4.1 and because g0 and g are bounded, there exist a constant M3 > 0 and a
function f̃t,3 ∈ L2(Rm,R) such that, for almost every x,

|f N,1,1(t, x)| ≤ M3f̃t,3(x)

m∑
k=1

sup
H∈[min h̃,max h̃]

∣∣∣∣g1

(
H,

xk

N

)∣∣∣∣,
so that limN→∞ f N,1,1(t, x) = 0. Similarly, by Lemma 4.1, there exist a constant M4 > 0
and a function f̃t,4 ∈ L2(Rm,R) such that, for almost every x,

|f N,2,1(t, x)| ≤ M4f̃t,4(x)

m∑
k=1

sup
H∈[min h̃,max h̃]

(∣∣∣∣g1

(
H,

xk

N

)∣∣∣∣ +
∣∣∣∣∂g1

∂H

(
H,

xk

N

)∣∣∣∣
)
.

Therefore, limN→∞ f N,2,1(t, x) = 0 and

lim
N→∞(f

N,1,1(t, x)− f N,2,1(t, x)) = 0,

which concludes the proof.
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The following lemma states that the convergence of {SNφ,h}N∈N can be reduced to the
convergence of {SNPm,h}N∈N and, as a consequence of Lemma 4.2, to the convergence of
{S̃Nm,h}N∈N.

Lemma 4.5. For every t ≥ 0,

lim
N→∞ E

[(
SNφ,h(t)− 〈φ, Pm〉

m! SNPm,h(t)

)2]
= 0.

Proof. By (2.1) we have

E

[(
SNφ,h(t)− 〈φ, Pm〉

m! SNPm,h(t)

)2]

= E

[(	Nt
∑
j=1

1

Nh(j/N)

∞∑
n=m+1

〈φ, Pn〉
n! Pn(Xj (h

N
j ))

)2]

=
	Nt
∑
j=1

	Nt
∑
k=1

1

Nh(j/N)+h(k/N)
∞∑

n=m+1

〈φ, Pn〉2

(n!)2 E[Pn(Xj (hNj ))Pn(Xk(hNk ))].

By (2.2) and (3.2), we obtain, for every n ≥ m+ 1,

E[Pn(Xj (hNj ))Pn(Xk(hNk ))] = n! E[Xj(hNj )Xk(hNk )]n ≤ n! |E[Xj(hNj )Xk(hNk )]|m+1,

so that

E

[(
SNφ,h(t)− 〈φ, Pm〉

m! SNPm,h(t)

)2]

≤
( ∞∑
n=m+1

〈φ, Pn〉2

n!
) 	Nt
∑
j=1

	Nt
∑
k=1

|E[Xj(hNj )Xk(hNk )]|m+1

Nh(j/N)+h(k/N) .

Let η > 0. By (3.1) and (3.3), there exists Nη ∈ N
∗ such that, for |j − k| > Nη and N ∈ N

∗,
|E[Xj(hNj )Xk(hNk )]| ≤ η. Therefore,

	Nt
∑
j=1

	Nt
∑
k=1

|E[Xj(hNj )Xk(hNk )]|m+1

Nh(j/N)+h(k/N)

≤
	Nt
∑
j=1

	Nt
∑
k=1

1{|j−k|≤Nη}
Nh(j/N)+h(k/N) + η

	Nt
∑
j=1

	Nt
∑
k=1

1{|j−k|≥1}
|E[Xj(hNj )Xk(hNk )]|m
Nh(j/N)+h(k/N) .

There exists C1(η) > 0 such that

	Nt
∑
j=1

	Nt
∑
k=1

1{|j−k|≤Nη}
Nh(j/N)+h(k/N) ≤ C1(η)

N2 min h−1 .

Moreover, by (3.1) and (3.3), there exists a constant C2 > 0, which is independent on η, such
that, for all j , k, and N ,

|E[Xj(hNj )Xk(hNk )]| ≤ C2|j − k|hNj +hNk −2
. (4.4)
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We then obtain

	Nt
∑
j=1

	Nt
∑
k=1

|E[Xj(hNj )Xk(hNk )]|m+1

Nh(j/N)+h(k/N)

≤ C1(η)

N2 min h−1 + ηC2

N2

	Nt
∑
j=1

	Nt
∑
k=1

1{|j−k|≥1}
∣∣∣∣j − k

N

∣∣∣∣
m(hNj +hNk −2)

.

Hence, for every η > 0,

lim sup
N→∞

E

[(
SNφ,h(t)− 〈φ, Pm〉

m! SNPm,h(t)

)2]

≤ ηC2

( ∞∑
n=m+1

〈φ, Pn〉2

n!
) ∫ t

0

∫ t

0
|θ − σ |h(θ)+h(σ)−2 dθ dσ.

The constants
∑∞
n=m+1 〈φ, Pn〉2/n! and

∫ t
0

∫ t
0 |θ − σ |h(θ)+h(σ)−2 dθ dσ are finite by (2.3) and

because min h > 1
2 , respectively. This concludes the proof.

We conclude this subsection with the following lemma.

Lemma 4.6. As N → ∞, the finite-dimensional distributions of SNφ,h converge to those of
Sm,h, which can be defined by

Sm,h(t) := 〈φ, Pm〉
m!

∫
Rm

f∞(t, x1, . . . , xm) dB̂x1 · · · dB̂xm

for every t ≥ 0.

Proof. We fixn ∈ N, (t1, . . . , tn) ∈ [0,∞)n, and a Lipschitz bounded function� : R
n → R.

We define φm = 〈φ, Pm〉/m!.We have

|E[�(SNφ,h(t1), . . . , SNφ,h(tn))] − E[�(Sm,h(t1), . . . , Sm,h(tn))]| ≤ EN1 + EN2 , (4.5)

where

EN1 = |E[�(SNφ,h(t1), . . . , SNφ,h(tn))−�(φmS
N
Pm,h

(t1), . . . , φmS
N
Pm,h

(tn))]|
and

EN2 = |E[�(φmSNPm,h(t1), . . . , φmSNPm,h(tn))] − E[�(Sm,h(t1), . . . , Sm,h(tn))]|.
Because � is Lipschitz and by the Cauchy–Schwarz inequality, there exists C1 > 0 such that,
for every N ,

EN1 ≤ C1

n∑
j=1

√
E[(SNφ,h(tj )− φmS

N
Pm,h

(tj ))2].

Then, by Lemma 4.5,
lim
N→∞E

N
1 = 0. (4.6)
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By Lemma 4.2 we have

EN2 = |E[�(φmS̃Nm,h(t1), . . . , φmS̃Nm,h(tn))−�(Sm,h(t1), . . . , Sm,h(tn))]|.
Thus, as in the EN1 case, there exists C2 > 0 such that, for every N ,

EN2 ≤ C2

n∑
j=1

√
E[(φmS̃Nm,h(tj )− Sm,h(tj ))2].

As a consequence, by Lemma 4.4,

lim
N→∞E

N
2 = 0. (4.7)

Combining (4.5), (4.6), and (4.7) completes the proof.

4.3. Continuity, local self-similarity, and local Hölder exponent of the limit

In this subsection we first prove the convergence of the finite-dimensional distributions of
{T εm,h,t }ε>0 for every t . Then, we prove the continuity of Sm,h and the tightness of {T εm,h,t }ε>0
in C([0,∞)) to deduce the local self-similarity property. Finally, we deal with the local Hölder
exponent of Sm,h.

Making the substitution θ → εθ + t , we obtain, for every u ≥ 0,

T εm,h,t (u) =
∫

Rm

exp

(
it

m∑
l=1

xl

)
ψ1(t, u, x, ε) dB̂x1 · · · dB̂xm,

where

ψ1(t, u, x, ε) = ε1−h(t)
∫ u

0
exp

(
iεθ

m∑
l=1

xl

)
g̃(εθ + t)|x1 · · · xm|1/2−h̃(εθ+t) dθ.

By (2.6) and (2.7), we have

{T εm,h,t (u)}u≥0
d=

{∫
Rm

ψ2(t, u, x, ε) dB̂x1 · · · dB̂xm

}
u≥0

with

ψ2(t, u, x, ε) =
∫ u

0
εm(h̃(εθ+t)−h̃(t)) exp

(
iθ

m∑
l=1

xl

)
g̃(εθ + t)|x1 · · · xm|1/2−h̃(εθ+t) dθ.

For all u and t and almost every x,

lim
ε→0

ψ2(t, u, x, ε) = g̃(t)
exp(iu

∑m
l=1 xl)− 1

i(
∑m
l=1 xl)|x1 · · · xm|h̃(t)−1/2

.

By an integration by parts,

ψ2(t, u, x, ε) = εm(h̃(εu+t)−h̃(t))g̃(εu+ t)
exp(iu

∑m
l=1 xl)− 1

i(
∑m
l=1 xl)|x1 · · · xm|h̃(εu+t)−1/2

+ ε

∫ u

0
εm(h̃(εθ+t)−h̃(t))

exp(iθ
∑m
l=1 xl)− 1

i(
∑m
l=1 xl)|x1 · · · xm|h̃(εθ+t)−1/2

× {g̃′(εθ + t)+ h̃′(εθ + t)g̃(εθ + t)(ln(εm)− ln |x1 · · · xm|)} dθ.
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As a consequence of the identity above and because of Lemma 4.1, there exists a function
ψ3,t,u ∈ L2(Rm,R+) such that, for every x ∈ R

m,

|ψ2(t, u, x, ε)| ≤ ψ3,t,u(x).

Because ψ3,t,u is square integrable and by Lemma 2.4, this proves the convergence of the
finite-dimensional distributions of T εm,h,t .

To prove the continuity of Sm,h, we use the Kolmogorov lemma. Let T > 0. As previously,
by Lemma 4.1 again, there exists C > 0 such that, for all 0 ≤ s < t ≤ T ,

E[(Sm,h(t)− Sm,h(s))
2] = m! (t − s)2h(s)

∫
Rm

(ψ2(s, 1, x, t − s))2 dx1 · · · dxm

≤ C(t − s)2h(s), (4.8)

which concludes the proof of the continuity of Sm,h.
Moreover, in a similar way, we prove that, for every compact set U ⊂ [0,∞), there exists a

constant CU > 0 such that, for all u and v in U such that |u− v| < 1, we have

E

[(
Sm,h(t + εu)− Sm,h(t + εv)

εh(t)

)2]
≤ CU |u− v|2h(t).

This proves the tightness of the family {T εm,h,t }ε>0 in C([0,∞)) by the Kolmogorov lemma [3],
and then the local self-similarity property of Sm,h.

Finally, for each t0 ≥ 0, we deal with the local Hölder exponent of Sm,h around t0, which
is denoted by αSm,h(t0). By (4.8) and Lemma 2.5, for every p ∈ N

∗, there exists Cp > 0 such
that, for all s ≤ t in a neighborhood of t0,

E[(Sm,h(t)− Sm,h(s))
2p] ≤ Cp(t − s)2p inf [s,t] h.

By the Kolmogorov lemma, this implies that αSm,h(t0) ≥ h(t0). Using the local self-similarity
of Sm,h and proceeding as in [1], we prove that αSm,h(t0) ≤ h(t0), which gives αSm,h(t0) = h(t0)

and concludes this subsection.

4.4. Tightness

Because of Theorem 15.6 of [3], it is enough to show that there exist C > 0 and γ > 1 such
that, for all t1, t2, t3 ∈ [0, T ] satisfying t1 < t2 < t3 and t3 − t1 < 1, we have

E[|SNφ,h(t3)− SNφ,h(t2)||SNφ,h(t2)− SNφ,h(t1)|] ≤ C(t3 − t1)
γ . (4.9)

First, we assume that t3 − t1 < 1/N . Hence, 	Nt1
 = 	Nt2
 or 	Nt2
 = 	Nt3
, which gives

E[|SNφ,h(t3)− SNφ,h(t2)||SNφ,h(t2)− SNφ,h(t1)|] = 0. (4.10)

Then, we assume that 1/N ≤ t3 − t1 < 1. By the Cauchy–Schwarz inequality, we have

E[|SNφ,h(t3)− SNφ,h(t2)||SNφ,h(t2)− SNφ,h(t1)|]
≤

√
E[|SNφ,h(t3)− SNφ,h(t2)|2]

√
E[|SNφ,h(t2)− SNφ,h(t1)|2]. (4.11)

Consequently, it is enough to prove that there exist C > 0 and γ > 1 such that, for (s, t) =
(t1, t2) or (t2, t3),

E[|SNφ,h(t)− SNφ,h(s)|2] ≤ C(t3 − t1)
γ . (4.12)
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Proceeding as in the proof of Lemma 4.5, we obtain

E[|SNφ,h(t)− SNφ,h(s)|2]

≤
( ∞∑
n=m

〈φ, Pn〉2

n!
) 	Nt
∑
j=	Ns
+1

	Nt
∑
k=	Ns
+1

E[Xj(hNj )Xk(hNk )]m
Nh(j/N)+h(k/N) . (4.13)

Because of (4.4), there exists C1 > 0 such that

	Nt
∑
j=	Ns
+1

	Nt
∑
k=	Ns
+1

E[Xj(hNj )Xk(hNk )]m
Nh(j/N)+h(k/N)

≤
	Nt3
∑

j=	Nt1
+1

|E[X0(h
N
j )

2]|m
Nh(j/N)+h(k/N) + C1

	Nt3
∑
j,k=	Nt1
+1, j �=k

|j − k|m(hNj +hNk −2)

Nh(j/N)+h(k/N)

≤ C2
	Nt3
 − 	Nt1


N2 min h + C1

N2

	Nt3
∑
j,k=	Nt1
+1, j �=k

∣∣∣∣j − k

N

∣∣∣∣
2 min h−2

, (4.14)

where C2 = maxH∈[min h,max h] |E[X0(H)
2]|m. We have

	Nt3
 − 	Nt1

N2 min h ≤ t3 − t1

N2 min h−1 + 1

N2 min h ≤ 2(t3 − t1)
2 min h (4.15)

because 1/N ≤ t3 − t1. Moreover,

1

N2

	Nt3
∑
j,k=	Nt1
+1, j �=k

∣∣∣∣j − k

N

∣∣∣∣
2 min h−2

≤ C3

∫ t

s

dθ
∫ t3

t1

dσ |θ − σ |2 min h−2

≤ C3(t3 − t1)
2 min h

(2 min h− 1)min h
, (4.16)

where C3 > 0 does not depend on (N, t1, t3). Combining (4.16), (4.15), (4.14), and (4.13), we
get (4.12). Because of (4.11) and (4.10), this concludes the proof of (4.9).

Appendix A. Technical lemma

This section is devoted to the proof of a lemma that deals with the asymptotic behavior of a
covariance function.

Lemma A.1. Let X = {Xn(H)}(n,H)∈N×(b,1) be a random field as defined by (3.1). For every
compact set K ⊂ (b, 1),

lim
n→∞ sup

(H1,H2)∈K2
|n2−H1−H2E[Xn(H1)X0(H2)] − R(H1, H2)| = 0,

where, for every (H1, H2) ∈ (b, 1)2,

R(H1, H2) = g0(H1)g0(H2)

∫
R

exp(ix)|x|1−H1−H2 dx.
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Proof. Let K be a compact set in (b, 1). We fix (H1, H2) ∈ K2 and n ∈ N
∗. We have

E[Xn(H1)X0(H2)] =
∫ a

−a
exp(inx)g(H1, x)g(H2, x)|x|1−H1−H2 dx

= nH1+H2−2
∫ na

−na
exp(inx)g

(
H1,

x

n

)
g

(
H2,

x

n

)
|x|1−H1−H2 dx.

Setting
ψH1,H2(y) = g(H1, y)g(H2, y)− g0(H1)g0(H2)

for every y ∈ R, we prove hereafter that

lim
n→∞ sup

(H1,H2)∈K2

∣∣∣∣g0(H1)g0(H2)

∫ na

−na
exp(ix)|x|1−H1−H2 dx − R(H1, H2)

∣∣∣∣ = 0 (A.1)

and

lim
n→∞ sup

(H1,H2)∈K2

∣∣∣∣
∫ na

−na
exp(ix)ψH1,H2

(
x

n

)
|x|1−H1−H2 dx

∣∣∣∣ = 0. (A.2)

By an integration by parts, we have

1

2

(∫ na

−na
exp(ix)|x|1−H1−H2 dx −

∫ ∞

−∞
exp(ix)|x|1−H1−H2 dx

)

= −
∫ ∞

na

cos(x)x1−H1−H2 dx

= sin(na)(na)1−H1−H2 + (1 −H1 −H2)

∫ ∞

na

sin(x)x−H1−H2 dx.

Hence, we get

sup
(H1,H2)∈K2

∣∣∣∣g0(H1)g0(H2)

∫ na

−na
exp(ix)|x|1−H1−H2 dx − R(H1, H2)

∣∣∣∣
≤ 2 sup

(H1,H2)∈K2

∣∣∣∣g0(H1)g0(H2)

(
|na|1−H1−H2 +

∫ ∞

na

|x|−H1−H2 dx

)∣∣∣∣,
which implies (A.1) because K ⊂ ( 1

2 , 1).
Now we prove (A.2). Again by integration by parts, we obtain∫ na

0
exp(ix)ψH1,H2

(
x

n

)
x1−H1−H2 dx

= i(1 − eina)ψH1,H2(a)(na)
1−H1−H2 − i

n

∫ na

0
(1 − eix)ψ ′

H1,H2

(
x

n

)
x1−H1−H2 dx

+ i(H1 +H2 − 1)
∫ na

0
(1 − eix)ψH1,H2

(
x

n

)
x−H1−H2 dx. (A.3)

Obviously, we have

sup
(H1,H2)∈K2

|i(1 − eina)ψH1,H2(a)(na)
1−H1−H2 |

≤ 2 sup
(H1,H2)∈K2

|ψH1,H2(a)| sup
(H1,H2)∈K2

|(na)1−H1−H2 |

→ 0 as n → ∞. (A.4)
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By a change of variable we get

sup
(H1,H2)∈K2

∣∣∣∣ i

n

∫ na

0
(1 − eix)ψ ′

H1,H2

(
x

n

)
x1−H1−H2 dx

∣∣∣∣
≤ sup
(H1,H2)∈K2

∣∣∣∣
∫ a

0
ψ ′
H1,H2

(x)x1−H1−H2 dx

∣∣∣∣ sup
(H1,H2)∈K2

|n1−H1−H2 |

→ 0 as n → ∞. (A.5)

It remains to prove that

lim
n→∞ sup

(H1,H2)∈K2

∣∣∣∣(H1 +H2 − 1)
∫ na

0
(1 − eix)ψH1,H2

(
x

n

)
x−H1−H2 dx

∣∣∣∣ = 0. (A.6)

By the assumptions on g1, for almost every x ∈ R,

lim
n→∞ 1(0,na)(x)(1 − eix) sup

(H1,H2)∈K2

∣∣∣∣(H1 +H2 − 1)ψH1,H2

(
x

n

)
x−H1−H2

∣∣∣∣ = 0.

Moreover,

1(0,na)(x)(1 − eix) sup
(H1,H2)∈K2

∣∣∣∣(H1 +H2 − 1)ψH1,H2

(
x

n

)
x−H1−H2

∣∣∣∣
≤ (1 − eix) sup

(H1,H2)∈K2
|(H1 +H2 − 1)x−H1−H2 | sup

(H1,H2,y)∈K2×(0,a)
|ψH1,H2(y)|.

The function x �→ (1 − eix) sup(H1,H2)∈K2 |(H1 +H2 − 1)x−H1−H2 | is integrable. Then, by
the dominated convergence theorem we obtain (A.6). Combining (A.3), (A.4), (A.5), and (A.6),
we obtain

lim
n→∞ sup

(H1,H2)∈K2

∣∣∣∣
∫ na

0
eixψH1,H2

(
x

n

)
x1−H1−H2 dx

∣∣∣∣ = 0.

Similarly, we obtain

lim
n→∞ sup

(H1,H2)∈K2

∣∣∣∣
∫ 0

−na
eixψH1,H2

(
x

n

)
x1−H1−H2 dx

∣∣∣∣ = 0,

which proves (A.2).

Acknowledgements

I would like to thank Céline Lacaux for many fruitful discussions about multifractional
processes. I also thank the anonymous referee for valuable remarks that made me improve an
earlier version of the paper.

References

[1] Benassi, A., Cohen, S. and Istas, J. (2002). Identification and properties of real harmonizable Lévy motions.
Bernoulli 8, 97–115.

[2] Benassi, A., Jaffard, S. and Roux, D. (1997). Elliptic Gaussian random processes. Rev. Math. Iberoamericana
13, 19–90.

https://doi.org/10.1239/jap/1371648944 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1371648944


From Hermite polynomials to multifractional processes 343

[3] Billingsley, P. (1968). Convergence of Probability Measures. John Wiley, New York.
[4] Cohen, S. and Marty, R. (2008). Invariance principle, multifractional Gaussian processes and long-range

dependence. Ann. Inst. H. Poincaré Prob. Statist. 44, 475–489.
[5] Davydov, Y. A. (1970). The invariance principle for stationary processes. Theory Prob. Appl. 15, 487–498.
[6] Dobrushin, R. L. (1979). Gaussian and their subordinated self-similar random generalized fields. Ann. Prob.

7, 1–28.
[7] Dobrushin, R. L. and Major, P. (1979). Non-central limit theorems for nonlinear functionals of Gaussian

fields. Z. Wahrscheinlichkeitsth. 50, 27–52.
[8] Itô, K. (1951). Multiple Wiener integral. J. Math. Soc. Japan 3, 157–169.
[9] Lacaux, C. and Marty, R. (2011). From invariance principles to a class of multifractional fields related to

fractional sheets. Preprint. Available at http://hal.archives-ouvertes.fr/hal-00592188.
[10] Marty, R. and Sølna, K. (2011).A general framework for waves in random media with long-range correlations.

Ann. Appl. Prob. 21, 115–139.
[11] Nelson, E. (1973). The free Markoff field. J. Funct. Anal. 12, 211–227.
[12] Nourdin, I. and Peccati, G. (2012). Normal Approximations Using Malliavin Calculus (Cambridge Tracts

Math. 192). Cambridge University Press.
[13] Peltier, R. F. and Lévy Véhel, J. (1995). Multifractional Brownian motion: definition and preliminary results.

Preprint. Available at http://hal.inria.fr/inria-00074045/.
[14] Samorodnitsky, G. and Taqqu, M. S. (1994). Stable Non-Gaussian Random Processes. Chapman and Hall,

New York.
[15] Sly, A. (2007). Integrated fractional white noise as an alternative to multifractional Brownian motion. J. Appl.

Prob. 44, 393–408.
[16] Taqqu, M. S. (1975). Weak convergence to fractional Brownian motion and to the Rosenblatt process.

Z. Wahrscheinlichkeitsth. 31, 287–302.
[17] Taqqu, M. S. (1979). Convergence of integrated processes of arbitrary Hermite rank. Z. Wahrscheinlichkeitsth.

50, 53–83.

https://doi.org/10.1239/jap/1371648944 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1371648944

	1 Introduction
	2 Preliminaries
	2.1 Hermite polynomials
	2.2 Multiple Wiener--Itô integrals

	3 Main results
	4 Proofs
	4.1 Technical lemma
	4.2 Convergence of the finite-dimensional distributions
	4.3 Continuity, local self-similarity, and local Hölder exponent of the limit
	4.4 Tightness

	A Technical lemma
	Acknowledgements
	References

