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Abstract. Based on the ideas of Bessa, Jorge and Montenegro (Comm. Anal.
Geom., vol. 15, no. 4, 2007, pp. 725–732) we show that a complete submanifold M
with tamed second fundamental form in a complete Riemannian manifold N with
sectional curvature KN ≤ κ ≤ 0 is proper (compact if N is compact). In addition, if N
is Hadamard, then M has finite topology. We also show that the fundamental tone is an
obstruction for a Riemannian manifold to be realised as submanifold with tamed
second fundamental form of a Hadamard manifold with sectional curvature bounded
below.

1. Introduction. Let ϕ : M ↪→ N be an isometric immersion of a complete
Riemannian m-manifold M into a complete Riemannian n-manifold N with sectional
curvature KN ≤ κ ≤ 0. Fix a point x0 ∈ M, and let ρM(x) = distM(x0, x) be the distance
function on M to x0. Let {Ci}∞i=1 be an exhaustion sequence of M by compact sets with
x0 ∈ C0. Let {ai} ⊂ [0,∞] be a non-increasing sequence of possibly extended numbers
defined by

ai = sup
{

Sκ

Cκ

(ρM(x)) · ‖α(x)‖, x ∈ M\Ci

}
,

where

Sκ (t) =
⎧⎨
⎩

1√−κ
sinh(

√−κ t) if κ < 0,

t if κ = 0;
(1)

Cκ (t) = S′
κ (t) and ‖α(x)‖ is the norm of the second fundamental form at ϕ(x). The

number a(M) = lim
i→∞ ai does not depend on the exhaustion sequence {Ci} nor on the

base point x0.

DEFINITION 1.1. An immersion ϕ : M ↪→ N of a complete Riemannian m-
manifold M into an n-manifold N with sectional curvature KN ≤ κ ≤ 0 has tamed
second fundamental form if a(M) < 1.

In [4], Bessa, Jorge and Montenegro showed that a complete submanifold ϕ : M ↪→
�n with tamed second fundamental form is proper and has finite topology, where finite
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topology means that M is C∞-diffeomorphic to a compact smooth manifold M with
boundary. In this paper we show that the ideas of Bessa, Jorge and Montenegro
can be adapted to show that a complete submanifold M ↪→ N with tamed second
fundamental form is proper. In addition if N is a Hadamard manifold, then M has
finite topology. We prove the following theorem.

THEOREM 1.2. Let ϕ : M ↪→ N be an isometric immersion of a complete m-manifold
M into complete Riemannian n-manifold N with sectional curvature KN ≤ κ ≤ 0.
Suppose that M has tamed second fundamental form. Then

(a) M is compact if N is compact;
(b) ϕ is proper if N is non-compact;
(c) M has finite topology if N is a Hadamard manifold.

REMARK 1.3. Jorge and Meeks [10] showed that any complete m-dimensional
submanifold M of �n homeomorphic to a compact Riemannian manifold M,
punctured at finite number of points {p1, . . . , pr} and having a well-defined normal
vector at infinity has a(M) = 0. This class of submanifolds includes all the complete
minimal surfaces ϕ : M2 ↪→ �n with finite total curvature

∫
M |K| < ∞ studied by

Chern and Osserman [7, 14], all the complete surfaces ϕ : M2 ↪→ �n with finite total
scalar curvature ∫M |α|2dV < ∞ and non-positive curvature with respect to every
normal direction studied by White [16] and the m-dimensional minimal submanifolds
ϕ : Mm ↪→ �n with finite total scalar curvature ∫M |α|mdV < ∞ studied by Anderson
[1]. In [13], G. Oliveira Filho proved a version of Anderson’s theorem for complete
minimal submanifolds of �n with finite total curvature ∫M |α|mdV < ∞.

Our second result shows that the fundamental tone λ∗(M) can be an obstruction
for a Riemannian manifold M to be realised as a submanifold with tamed second
fundamental form in a Hadamard manifold with bounded sectional curvature. The
fundamental tone of a Riemannian manifold M is given by

λ∗(M) = inf
{∫M |gradf |2

∫M f 2
, f ∈ H1

0 (M)\{0}
}

, (2)

where H1
0 (M) is the completion of C∞

0 (M) with respect to the norm |f |2 = ∫
M f 2 +∫

M |gradf |2. We prove the following theorem.

THEOREM 1.4. Let ϕ : M ↪→ N be an isometric immersion of a complete m-manifold
M with a(M) < 1 into a Hadamard n-manifold N with sectional curvature μ ≤ KN ≤
0. Given c, a(M) < c < 1, there exists l = l(m, c) ∈ �+ and a positive constant C =
C(m, c, μ) such that

λ∗(M) ≤ C · λ∗(�l(μ)) = C · (l − 1)2μ2/4, (3)

where �l(μ) is the l-dimensional simply connected space form of sectional curvature μ.

REMARK 1.5. As corollary of Theorem (1.4) we have that λ∗(M) = 0 for any
submanifold M mentioned in this list above.

Question 1.5. It is known [3, 5] that the fundamental tones of the Nadirashvilli
bounded minimal surfaces [12] and the Martin–Morales cylindrically bounded minimal
surfaces [11] are positive. We ask if there is a complete properly immersed (minimal)
submanifold of the �n with positive fundamental tone λ∗ > 0.
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2. Preliminaries. Let ϕ : M ↪→ N be an isometric immersion, where M and N
are complete Riemannian manifolds. Consider a smooth function g : N → � and the
composition f = g ◦ ϕ : M → �. Identifying X with dϕ(X) we have at q ∈ M and for
every X ∈ TqM that

〈gradf, X〉 = df (X) = dg(X) = 〈gradg, X〉.
Hence we write

gradg = gradf + (gradg)⊥,

where (gradg)⊥ is perpendicular to TqM. Let ∇ and ∇̄ be the Riemannian connections
on M and N respectively, and let α(x)(X, Y ) and Hessf (x)(X, X) be respectively the
second fundamental form of the immersion ϕ and the Hessian of f at x with X, Y ∈
TxM. Using the Gauss equation we have that

Hessf (x)(X, Y ) = Hessg(ϕ(x))(X, Y ) + 〈gradg, α(X, Y )〉ϕ(x). (4)

Taking the trace in (4), with respect to an orthonormal basis {e1, ..., em} for TxM, we
have that

�f (x) =
m∑

i=1

Hessf (q)(ei, ei)

=
m∑

i=1

Hessg(ϕ(x))(ei, ei) + 〈gradg,

m∑
i=1

α(ei, ei)〉. (5)

We should mention that formulas (4) and (5) first appeared in [9]. If g = h ◦ ρN , where
h : � → � is a smooth function and ρN is the distance function to a fixed point in N,
then equation (4) becomes

Hessf (x)(X, X) = h′′(ρN)〈gradρN, X〉2 + h′(ρN)[HessρN(X, X) + 〈gradρN, α(X, X)〉].
(6)

Another important tool in this paper the Hessian comparison theorem (see [9] or [15]).

THEOREM 2.1 Hessian comparison theorem. Let N be a complete Riemannian n-
manifold and y0, y ∈ N. Let γ : [0, ρN(y)] → N be a minimising geodesic joining y0 and
y, where ρN is the distance function to y0 on N. Let Kγ be the sectional curvatures of N
along γ . Denote by μ = inf Kγ and κ = sup Kγ . Then for all X ∈ TyN, X ⊥ γ ′(ρN(y))
the Hessian of ρN at y = γ (ρN(y)), satisfies

Cμ

Sμ

(ρN(y))‖X‖2 ≥ Hess ρN(y)(X, X) ≥ Cκ

Sκ

(ρN(y))‖X‖2, (7)

where HessρN(y)(γ ′, γ ′) = 0.

Observation 2.2. If y ∈ cutN(y0), inequality (7) has to be understood in the
following sense:

Cμ

Sμ

(ρN(y))‖X‖2 ≥ lim
j→∞

HessρN(yj)(Xj, Xj) ≥ Cκ

Sκ

(ρN(y))‖X‖2·

For a sequence (yj, Xj) → (y, X) ∈ TN, yj /∈ cutN(y0).
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3. Proof of Theorem 1.2.

3.1. Proof of items (a) and (b). Since a(M) < 1, we have that for each a(M) <

c < 1, there is i such that ai ∈ (a(M), c). This means that there exists a geodesic ball
BM(r0) ⊂ M, with Ci ⊂ BM(r0), centred at x0 with radius r0 > 0 such that

Sκ

Cκ

(ρM(x)) · ‖α(x)‖ ≤ c < 1, for all x ∈ M\BM(r0). (8)

To fix the notation, let x0 ∈ M, y0 = ϕ(x0) and ρM(x) = distM(x0, x) and ρN(y) =
distN(y0, y). Suppose first that κ = 0. Letting h(t) = t2 we have that f (x) = ρN(ϕ(x))2.
By equation (6) the Hessian of f at x ∈ M in the direction X is given by

Hessf (x)(X, X) = 2 [ρN HessρN(X, X) + ρN 〈gradρN, α(X, X)〉 + 〈gradρN, X〉2](y),
(9)

where y = ϕ(x). By the Hessian comparison theorem, we have that

HessρN(y)(X, X) ≥ 1
ρN(y)

‖X⊥‖2, (10)

where 〈X⊥, gradρN〉 = 0. Therefore for every x ∈ M\BM(r0),

Hessf (x)(X, X) = 2[ρN HessρN(X, X) + 〈gradρN, X〉2

+ ρN〈gradρN, α(X, X)〉](y)

≥ 2
[
ρN

1
ρN

‖X⊥‖2 + ‖X�‖2 + ρN〈gradρN, α(X, X)〉
]

(y)

≥ 2 [‖X�‖2 + ‖X⊥‖2 − ρM ‖α‖ · ‖X‖2]

≥ 2(1 − c)‖X‖2. (11)

In the third and fourth lines of (11) we have used ρN(ϕ(x)) ≤ ρM(x). If κ < 0, we let
h(t) = cosh(

√−κ t); then f (x) = cosh(
√−κ ρN)(ϕ(x)). By equation (6) the Hessian of

f is given by

Hessf (x)(X, X) = [−κ cosh(
√−κ ρN)〈gradρN, X〉2 + √−κ sinh(

√−κ ρN)

× HessρN(X, X) + √−κ sinh(
√−κ ρN)〈gradρN, α(X, X)〉] (ϕ(x)).

(12)

By Hessian comparison theorem we have that

HessρN(y)(X, X) ≥ √−κ
cosh(

√−κρN)

sinh(
√−κρN)

‖X⊥‖2. (13)

Since a(M) < 1, we have

‖α(x)‖ ≤ c
√−κ

cosh(
√−κρM)

sinh(
√−κρM)

(x) ≤ c
√−κ

cosh(
√−κρN)

sinh(
√−κρN

(ϕ(x)) (14)

for every x ∈ M\BM(r0) and some c ∈ (0, 1). The last inequality follows from the
fact that ρN(ϕ(x)) ≤ ρM(x) and that the function

√−κ coth(
√−κ t) is non-increasing.
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Substituting in equation (12), we obtain

Hessf (x)(X, X) ≥ −κ cosh(
√−κρN)‖X⊥‖2 − κ cosh(

√−κρN)‖X�‖2

+ κ · c · cosh(
√−κρN)‖X‖2

≥ −κ · cosh(ρN)(1 − c)‖X‖2

≥ −κ · (1 − c) · ‖X‖2. (15)

Let σ : [0, ρM(x)] → M be a minimal geodesic joining x0 to x. For all t > r0 we have
that (f ◦ σ )′′(t) = Hessf (σ (t))(σ ′, σ ′) ≥ 2(1 − c) if κ = 0 and (f ◦ σ )′′(t) ≥ −κ(1 − c) if
κ < 0.
For t ≤ r0 we have that (f ◦ σ )′′(t) ≥ b = inf {Hessf (x)(ν, ν), x ∈ BM(r0), |ν| = 1}.
Hence (κ = 0),

(f ◦ σ )′(s) = (f ◦ σ )′(0) +
∫ s

0
(f ◦ σ )′′(τ )dτ

≥ (f ◦ σ )′(0) +
∫ r0

0
b dτ +

∫ s

r0

2(1 − c)dτ

≥ (f ◦ σ )′(0) + b r0 + 2(1 − c)(s − r0). (16)

Now, ρN(ϕ(x0)) = distN(y0, y0) = 0; then (f ◦ σ )′(0) = 0 and f (x0) = 0; therefore

f (x) =
∫ ρM (x)

0
(f ◦ σ )′(s)ds

≥
∫ ρM (x)

0
{b r0 + 2(1 − c)(s − r0)} ds

≥ b r0 ρM(x) + 2(1 − c)
(

ρ2
M(x)
2

− r0 ρM(x)
)

≥ (1 − c) ρ2
M(x) + (b − 2(1 − c)) r0 ρM(x). (17)

Thus

ρ2
N(ϕ(x)) ≥ (1 − c) ρ2

M(x) + (b − 2(1 − c))r0 ρM(x) (18)

for all x ∈ M. Similarly, for κ < 0 we obtain that

cosh(
√−κ ρN)(ϕ(x)) ≥ √−κ(1 − c)ρ2

M(x) + (b/
√−κ − √−κ(1 − c))r0ρM(x) + 1.

(19)
If N is compact, the left-hand sides of the inequalities (18) and (19) are bounded above.
That implies that M must be compact. In fact, we can find μ = μ(diam(N), c, κ) so
that diam(M) ≤ μ. Otherwise (if N is complete non-compact) if ρM(x) → ∞, then
ρN(ϕ) → ∞ and ϕ is proper.

3.2. Proof of item (c). Recall that we have by hypothesis that ϕ : M ↪→ N is a
complete m-dimensional submanifold with tamed second fundamental form immersed
in complete n-dimensional Hadamard manifold N with KN ≤ κ ≤ 0. We can assume
that M is non-compact. Moreover, by item (a), proved in the last subsection, ϕ is a
proper immersion. Let BN(r0) be the geodesic ball of N centred at y0 with radius r0

https://doi.org/10.1017/S0017089509990085 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089509990085


674 G. PACELLI BESSA AND M. SILVANA COSTA

and Sr0 = ∂BN(r0). Since ϕ is proper and a(M) < 1 we can take r0 so that

Sκ

Cκ

(ρM(x))‖α(x)‖ ≤ c < 1, for all x ∈ M\ϕ−1(BN(r0)), (20)

and by Sard’s theorem (see [8], p. 79), r0 can be chosen so that �r0 = ϕ(M)∩Sr0 �= ∅ is
a submanifold of dim �r0 = m − 1. For each y ∈ �r0 , let us denote by Ty�r0 ⊂ Tyϕ(M)
the tangent spaces of �r0 and ϕ(M), respectively, at y. Since the dimension dim Ty�r0 =
m − 1 and dim Tyϕ(M) = m, there exist only one unit vector ν(y) ∈ Tyϕ(M) such that
Tyϕ(M) = Ty�r0 ⊕ [[ν(y)]], with 〈ν(y), gradρN(y)〉 > 0. This defines a smooth vector
field ν on a neighborhood V of ϕ−1(�r0 ). Here [[ν(y)]] is the vector space generated by
ν(y). Consider the function on ϕ(V ) defined by

ψ(y) = 〈ν, gradρN〉(y) = 〈ν, gradR〉(y) = ν(y)(R), y = ϕ(x). (21)

Then ψ(y) = 0 if and only if every x = ϕ−1(y) ∈ V is a critical point of the extrinsic
distance function R. Now for each y ∈ �r0 fixed, let us consider the solution ξ (t, y) of
the following Cauchy problem on ϕ(M):⎧⎨

⎩ ξt(t, y) = 1
ψ

ν(ξ (t, y)),

ξ (0, y) = y.

(22)

We will prove that along the integral curve t �→ ξ (t, y) there are no critical points
for R = ρN ◦ ϕ. For this, consider the function (ψ ◦ ξ )(t, y) and observe that

ψt = ξt〈gradρN, ν〉
= 〈∇̄ξt gradρN, ν〉 + 〈gradρN, ∇̄ξtν〉
= 1

ψ
〈∇̄νgradρN, ν〉 + 1

ψ
〈gradρN,∇νν + α(ν, ν)〉

= 1
ψ

HessρN(ν, ν) + 1
ψ

[〈gradρN,∇νν〉 + 〈gradρN, α(ν, ν)〉]

= 1
ψ

[HessρN(ν, ν) + 〈gradρN,∇νν〉 + 〈gradρN, α(ν, ν)〉] . (23)

Thus

ψtψ = HessρN(ν, ν) + 〈gradρN,∇νν〉 + 〈gradρN, α(ν, ν)〉. (24)

Since 〈ν, ν〉 = 1, we have at once that 〈∇νν, ν〉 = 0. As ∇νν ∈ TxM, we have that

〈gradρN,∇νν〉 = 〈gradR,∇νν〉.
By equation (21), we can write gradR(x) = ψ(ϕ(x)) · ν(ϕ(x)), since gradR(x) ⊥
Tϕ(x)�ρN (y), (�ρN (y) = ϕ(M) ∩ ∂BN(ρN(y))). Then

〈gradρN,∇νν〉 = 〈gradR,∇νν〉 = ψ〈ν,∇νν〉 = 0.

Writing

ν(y) = cos β(y) gradρN + sin β(y) ω (25)
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and

gradρN(y) = cos β ν(y) + sin β ν∗, (26)

where 〈ω, gradρN〉 = 0 and 〈ν, ν∗〉 = 0, equation (24) becomes

ψtψ = sin2 β HessρN(ω,ω) + sin β 〈ν∗, α(ν, ν)〉. (27)

From (25) we have that ψ(y) = cos β(y),

ψtψ =
√

1 − ψ2
√

1 − ψ2HessρN(ω,ω) +
√

1 − ψ2〈ν∗, α(ν, ν)〉. (28)

Hence

ψtψ√
1 − ψ2

=
√

1 − ψ2HessρN(ω,ω) + 〈ν∗, α(ν, ν)〉. (29)

Thus we arrive at the following differential equation:

−(
√

1 − ψ2)t =
√

1 − ψ2 HessρN(ω,ω) + 〈ν∗, α(ν, ν)〉. (30)

The Hessian comparison theorem implies that

HessρN(ω,ω) ≥ Cκ

Sκ

(ρN(ξ (t, y))). (31)

Substituting it in equation (30) the following inequality is obtained:

−(
√

1 − ψ2)t ≥
√

1 − ψ2
Cκ

Sκ

(ρN(ξ (t, y))) + 〈ν∗, α(ν, ν)〉. (32)

Denoting by R(t, y) the restriction of R = ρN ◦ ϕ to ϕ−1(ξ (t, y)) we have

R(t, y) = R(ϕ−1(ξ (t, y))) = ρN(ξ (t, y)).

On the other hand we have that

Rt =
〈
gradR,

1
ψ

ν

〉
=

〈
ψν,

1
ψ

ν

〉
= 1; (33)

then

R(t, y) = t + r0. (34)

Writing Ck
Sk

(ρN(ξ (t, y))) = Cκ

Sκ
(t + r0) in (32) we have

−(
√

1 − ψ2)t ≥
√

1 − ψ2
Cκ

Sκ

(t + r0) + 〈ν∗, α(ν, ν)〉. (35)

Multiplying (35) by Sκ (t + r0), the following is obtained:

−
[
Sκ (t + r0)(

√
1 − ψ2)t + Cκ (t + r0)

√
1 − ψ2

]
≥ Sk(t + r0)〈ν∗, α(ν, ν)〉.
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The last inequality can be written as[
Sκ (t + r0)

√
1 − ψ2

]
t
≤ −Sκ (t + r0)〈ν∗, α(ν, ν)〉. (36)

Integrating (36) from 0 to t the resulting inequality is as follows:

Sκ (t + r0) sin β(ξ (t, y)) ≤ Sκ (r0) sin β(y) +
∫ t

0
−Sk(s + r0)〈ν∗, α(ν, ν)〉ds.

Thus

sin β(ξ (t, y)) ≤ Sκ (r0)
Sk(t + r0)

sin β(y) + 1
Sκ (t + r0)

∫ t

0
Sκ (s + r0)(−〈ν∗, α(ν, ν)〉)ds. (37)

Since a(M) < 1,

−〈ν∗, α(ν, ν)〉(ξ (s, y)) ≤ ‖α(ξ (s, y))‖ ≤ c
Cκ

Sκ

(ρM(ξ (s, y)))

≤ c
Cκ

Sκ

(ρN(ξ (s, y))) = c
Cκ

Sκ

(s + r0)

for every s ≥ 0. Substituting in (37), we have

sin β(ξ (t, y)) ≤ Sκ (r0)
Sκ (t + r0)

sin β(y) + c
Sκ (t + r0)

∫ t

0
Cκ (s + r0)ds

= Sκ (r0)
Sκ (t + r0)

sin β(y) + c
Sκ (t + r0)

(Sκ (t + r0) − Sκ (r0))

= Sκ (r0)
Sκ (t + r0)

(sin β(y) − c) + c < 1 (38)

for all t ≥ 0. Therefore, along the integral curve t �→ ξ (t, y), there are no critical points
for the function R(x) = ρN(ϕ(x)) outside the geodesic ball BN(r0). The flow ξt maps
∂BN(r0) diffeomorphically into ∂BN(r0 + t), for all t ≥ 0. This shows that M has finite
topology (see also [6]). This concludes the proof of Theorem 1.2. For the sake of clarity
we show that Sκ (r0)

Sκ (t+r0) (sin β(y) − c) + c < 1. Let h(t) = Sκ (r0)
Sκ (t+r0) (sin β(y) − c) + c. We have

that h(0) = sin β < 1 and h′(t) = −Cκ (t+r0)Sκ (r0)
S2

κ (t+r0)) (sin β − c). If sin β ≥ c, then h′(t) ≤ 0
and h(t) ≤ h(0). If sin β < c, suppose by contradiction that there exists a T > 0 such
that h(T) > 1. This implies that 0 > Sκ (r0)(sin β − c) > (1 − c)Sκ (T + r0) > 0.

4. Proof of Theorem 1.4. The first ingredient for the proof of Theorem 1.4 is the
well-known Barta’s theorem [2] stated here for the sake of completeness.

THEOREM 4.1 (Barta). Let � be a bounded open of a Riemannian manifold with
piecewise smooth boundary. Let f ∈ C2(�) ∩ C0(�̄) with f |� > 0 and f |∂� = 0. The
first Dirichlet eigenvalue λ1(�) has the following bounds:

sup
�

(
−�f

f

)
≥ λ1(�) ≥ inf

�

(−�f
f

)
, (39)

with equality in (4) if and only if f is the first eigenfunction of �.
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Let ϕ : M ↪→ N be an isometric immersion with tamed second fundamental form of
a complete m-manifold M into a Hadamard n-manifold N with sectional curvature
μ ≤ KN ≤ 0. Let x0 ∈ M, y0 = ϕ(x0) ∈ N, and let ρN(y) = distN(y0, y) be the distance
function on N and ρN ◦ ϕ the extrinsic distance on M. By the proof of Theorem
(1.2) there is an r0 > 0 such that there is no critical point x ∈ M \ ϕ−1(BN(r0)) for
ρN ◦ ϕ, where BN(r0) is the geodesic ball in N centred at y0 with radius r0. Let R > r0,
and let � ⊂ ϕ−1(BN(R)) be a connected component. Since ϕ is proper we have that
� is bounded with boundary ∂� that we may suppose to be piecewise smooth. Let
v : B�l (μ)(R) → � be a positive first eigenfunction of the geodesic ball of radius R in
the l-dimensional simply connected space form �l(μ) of constant sectional curvature
μ, where l is to be determined. The function v is radial, i.e. v(x) = v(|x|), and satisfies
the following differential equation:

v′′(t) + (l − 1)
Cμ

Sμ

(t) v′(t) + λ1(B�l (μ)(R))v(t) = 0, ∀ t ∈ [0, R], (40)

with initial data v(0) = 1, v′(0) = 0. Moreover, v′(t) < 0 for all t ∈ (0, R]; Sμ and Cμ

are defined in (1) and λ1(B�l (μ)(R)) is the first Dirichlet eigenvalue of the geodesic
ball B�l (μ)(R) ⊂ �l(μ) with radius R. Define ṽ : BN(R) → � by ṽ(y) = v ◦ ρN(y) and
f : � → � by f (x) = ṽ ◦ ϕ(x). By Barta’s theorem we have λ1(�) ≤ sup�(−�f/f ). The
Laplacian �f at a point x ∈ M is given by

�Mf (x) =
[

m∑
i=1

Hess ṽ(ei, ei) + 〈gradṽ, �H〉
]

(ϕ(x))

=
m∑

i=1

[
v′′(ρN)〈gradρN, ei〉2 + v′(ρN) Hess ρN(ei, ei)

] + v′(ρ)〈gradρN, �H〉,

where Hess ṽ is the Hessian of ṽ in the metric of N and {ei}m
i=1 is an orthonormal basis

for TxM at which we made the identification ϕ∗ei = ei. We are going to give an upper
bound for (−�f/f ) on ϕ−1(BN(R)). Let x ∈ ϕ−1(BN(R)), and choose an orthonormal
basis {e1, ..., em} for TxM such that {e2, . . . , em} are tangent to the distance sphere
∂BN(r(x)) of radius r(x) = ρN(ϕ(x)) and e1 = 〈e1, gradN ρ̄〉gradN ρ̄ + 〈e1, ∂/∂θ〉∂/∂θ ,
where |∂/∂θ | = 1, ∂/∂θ ⊥ gradN ρ̄. To simplify the notation set t = ρN(ϕ(x)), �M = �.
Then

�f (x) =
m∑

i=1

[
v′′(t)〈gradρN, ei〉2 + v′(t) Hess ρN(ei, ei)

] + v′(t)〈gradρN, �H〉

= v′′(t)〈gradρN, e1〉2 + v′(t)〈e1, ∂/∂θ〉2 Hess ρN(∂/∂θ, ∂/∂θ )

+
m∑

i=2

v′(t) Hess ρN(ei, ei) + v′(t)〈gradρN, �H〉. (41)

Thus from (41)

−�f
f

(x) = −v′′

v
(t)〈gradρN, e1〉2 − v′

v
(t)〈e1, ∂/∂θ〉2 Hess ρN(∂/∂θ, ∂/∂θ )

−
m∑

i=2

v′

v
(t) Hess ρN(ei, ei) − v

v

′
(t)〈gradρN, �H〉. (42)
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Equation (40) says that

−v′′

v
(t) = (l − 1)

Cμ

Sμ

v′

v
(t) + λ1(B�l (μ)(R)).

By the Hessian comparison theorem and the fact v′/v ≤ 0 we have from equation (42)
the following inequality:

−�f
f

(x) ≤ λ1(B�l (μ)(R))][1 − 〈e1, ∂/∂θ〉2]

−Cμ

Sμ

(t)
v′

v
(t)

[
m − l + l 〈e1, ∂/∂θ〉2 + Sμ

Cμ

‖ �H‖
]

. (43)

On the other hand the mean curvature vector �H at ϕ(x) has the norm

‖ �H‖(ϕ(x)) ≤ ‖α‖(ϕ(x)) ≤ c · (Cκ/Sκ )(ρM(x)) ≤ c · (Cκ/Sκ )(ρN(ϕ(x))).

We have that for any given a(M) < c < 1 there exist r0 = r0(c) > 0 such that
there is no critical point x ∈ M \ ϕ−1(BN(r0)) for ρN ◦ ϕ. A critical point x
satisfies 〈e1, ∂/∂θ〉(ϕ(x)) = 1 (see equation (25), where 〈e1, ∂/∂θ〉(ϕ(x)) = sin β(ϕ(x))).
Inequality (38) shows that for any x ∈ M \ ϕ−1(BN(r0)) we have (κ = 0 in our case)

〈e1, ∂/∂θ〉(ϕ(x)) ≤ r0

ρN(ϕ(x)) + r0

(
sup

z∈ϕ−1(∂BN (r0))
sin β(ϕ(z))) − c

)
+ c

≤ r0

r0 + r0
(1 − c) + c

= 1 + c
2

. (44)

We have then from (43) and (44) the following inequality:

−�f
f

(x) ≤ λ1(B�l (μ)(R)) − Cμ

Sμ

(t)
v′

v
(t)

[
m − l + l

4
(1 + c)2 + c

]
.

Choose the least l ∈ �+ such that m − l + l(1 + c)2/4 + c ≤ 0. With this choice of l we
have for all x ∈ ϕ−1(BN(R) \ BN(r0)) that

−�f
f

(x) ≤ λ1(B�l (μ)(R)). (45)

Now let x ∈ ϕ−1(BN(r0)). Since 1 − 〈e1, ∂/∂θ〉2 ≤ 1 and −l + l 〈e1, ∂/∂θ〉2 ≤ 0 we
obtain from (43) the following inequality (t = ρN(ϕ(x))):

−�f
f

(x) ≤ λ1(B�l (μ)(R))] − Cμ

Sμ

(t)
v′

v
(t)

[
m + Sμ

Cμ

‖ �H‖
]

. (46)

We need the following technical lemma.

LEMMA 4.2. Let v be the function satisfying (40). Then −v′(t)/t ≤ λ1(B�l (μ)(R)) for
all t ∈ [0, R].

https://doi.org/10.1017/S0017089509990085 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089509990085


ON SUBMANIFOLDS WITH TAMED SECOND FUNDAMENTAL FORM 679

Proof. Consider the function h : [0, R] → � given by h(t) = λ · t + v′(t), λ =
λ1(B�l (μ)(R)). We know that v(0) = 1, v′(0) = 0 and v′(t) ≤ 0; besides v satisfies
equation (40). Observe that

0 = v′′(t) + (l − 1)v′ + λv ≤ v′′ + λ.

Thus v′′ ≥ −λ and h′(t) = λ + v′′ ≥ 0. Since h(0) = 0 we have h(t) = λt + v′(t) ≥ 0.
This proves the lemma. �

Since v is a non-increasing positive function we have v(t) ≥ v(r0). Applying Lemma
(4.2) we obtain

−�f
f

(x) ≤ λ1(B�l (μ)(R)) + t · Cμ(t)
Sμ(t)

(
−v′(t)

t

)
· 1
v(r0)

[m + c] (47)

≤ λ1(B�l (μ)(R))
[

1 + r0
Cμ

Sμ

(r0) · 1
v(r0)

[m + c]
]

. (48)

Thus for all x ∈ ϕ−1(BN(R)) we have

−(�f/f )(x) ≤ max
{

1,

[
1 + r0

Cμ

Sμ

(r0) · 1
v(r0)

[m + c]
]}

· λ1(B�l (μ)(R))

=
[

1 + r0
Cμ

Sμ

(r0) · 1
v(r0)

[m + c]
]

· λ1(B�l (μ)(R)).

Then by Barta’s theorem

λ1(�) ≤
[

1 + r0
Cμ

Sμ

(r0) · 1
v(r0)

[m + c]
]

· λ1(B�l (μ)(R)).

Observe that C =
[
1 + r0

Cμ

Sμ
(r0) · 1

v(r0) [m + c]
]

does not depend on R. So letting R →
∞ we have λ∗(M) ≤ Cλ∗(�l(μ)).

COROLLARY 4.3 (From the proof). Given c, a(M) < c < 1, there exists r0 = r0(c) >

0, l = l(m, c) ∈ �+ and C = C(m, μ, c) > 0 such that for any R > r0 and any connected
component � of ϕ−1(BN(r)), then

λ∗(�) ≤ C · λ1(B�l (μ)(R)).
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