ON SUBMANIFOLDS WITH TAMED SECOND FUNDAMENTAL FORM

G. PACELLI BESSA
Universidade Federal do Ceara, Brazil
e-mail: gpbessa@yahoo.com.br
and M. SILVANA COSTA
Universidade Federal do Ceara, Brazil
e-mail: silvana_math@yahoo.com.br

(Received 16 May 2008; revised 24 October 2008; accepted 15 May 2009)

Abstract

Based on the ideas of Bessa, Jorge and Montenegro (Comm. Anal. Geom., vol. 15, no. 4, 2007, pp. 725-732) we show that a complete submanifold M with tamed second fundamental form in a complete Riemannian manifold N with sectional curvature $K_{N} \leq \kappa \leq 0$ is proper (compact if N is compact). In addition, if N is Hadamard, then M has finite topology. We also show that the fundamental tone is an obstruction for a Riemannian manifold to be realised as submanifold with tamed second fundamental form of a Hadamard manifold with sectional curvature bounded below.

1. Introduction. Let $\varphi: M \hookrightarrow N$ be an isometric immersion of a complete Riemannian m-manifold M into a complete Riemannian n-manifold N with sectional curvature $K_{N} \leq \kappa \leq 0$. Fix a point $x_{0} \in M$, and let $\rho_{M}(x)=\operatorname{dist}_{M}\left(x_{0}, x\right)$ be the distance function on M to x_{0}. Let $\left\{C_{i}\right\}_{i=1}^{\infty}$ be an exhaustion sequence of M by compact sets with $x_{0} \in C_{0}$. Let $\left\{a_{i}\right\} \subset[0, \infty]$ be a non-increasing sequence of possibly extended numbers defined by

$$
a_{i}=\sup \left\{\frac{S_{\kappa}}{C_{\kappa}}\left(\rho_{M}(x)\right) \cdot\|\alpha(x)\|, x \in M \backslash C_{i}\right\},
$$

where

$$
S_{\kappa}(t)=\left\{\begin{array}{cl}
\frac{1}{\sqrt{-\kappa}} \sinh (\sqrt{-\kappa} t) & \text { if } \quad \kappa<0 \tag{1}\\
t & \text { if } \quad \kappa=0
\end{array}\right.
$$

$C_{\kappa}(t)=S_{\kappa}^{\prime}(t)$ and $\|\alpha(x)\|$ is the norm of the second fundamental form at $\varphi(x)$. The number $a(M)=\lim _{i \rightarrow \infty} a_{i}$ does not depend on the exhaustion sequence $\left\{C_{i}\right\}$ nor on the base point x_{0}.

Definition 1.1. An immersion $\varphi: M \hookrightarrow N$ of a complete Riemannian m manifold M into an n-manifold N with sectional curvature $K_{N} \leq \kappa \leq 0$ has tamed second fundamental form if $a(M)<1$.

In [4], Bessa, Jorge and Montenegro showed that a complete submanifold $\varphi: M \hookrightarrow$ \mathbb{R}^{n} with tamed second fundamental form is proper and has finite topology, where finite
topology means that M is C^{∞}-diffeomorphic to a compact smooth manifold \bar{M} with boundary. In this paper we show that the ideas of Bessa, Jorge and Montenegro can be adapted to show that a complete submanifold $M \hookrightarrow N$ with tamed second fundamental form is proper. In addition if N is a Hadamard manifold, then M has finite topology. We prove the following theorem.

Theorem 1.2. Let $\varphi: M \hookrightarrow N$ be an isometric immersion of a complete m-manifold M into complete Riemannian n-manifold N with sectional curvature $K_{N} \leq \kappa \leq 0$. Suppose that M has tamed second fundamental form. Then
(a) M is compact if N is compact;
(b) φ is proper if N is non-compact;
(c) M has finite topology if N is a Hadamard manifold.

Remark 1.3. Jorge and Meeks [10] showed that any complete m-dimensional submanifold M of \mathbb{R}^{n} homeomorphic to a compact Riemannian manifold \bar{M}, punctured at finite number of points $\left\{p_{1}, \ldots, p_{r}\right\}$ and having a well-defined normal vector at infinity has $a(M)=0$. This class of submanifolds includes all the complete minimal surfaces $\varphi: M^{2} \hookrightarrow \mathbb{R}^{n}$ with finite total curvature $\int_{M}|K|<\infty$ studied by Chern and Osserman [7, 14], all the complete surfaces $\varphi: M^{2} \hookrightarrow \mathbb{R}^{n}$ with finite total scalar curvature $\int_{M}|\alpha|^{2} d V<\infty$ and non-positive curvature with respect to every normal direction studied by White [16] and the m-dimensional minimal submanifolds $\varphi: M^{m} \hookrightarrow \mathbb{R}^{n}$ with finite total scalar curvature $\int_{M}|\alpha|^{m} d V<\infty$ studied by Anderson [1]. In [13], G. Oliveira Filho proved a version of Anderson's theorem for complete minimal submanifolds of \mathbb{M}^{n} with finite total curvature $\int_{M}|\alpha|^{m} d V<\infty$.

Our second result shows that the fundamental tone $\lambda^{*}(M)$ can be an obstruction for a Riemannian manifold M to be realised as a submanifold with tamed second fundamental form in a Hadamard manifold with bounded sectional curvature. The fundamental tone of a Riemannian manifold M is given by

$$
\begin{equation*}
\lambda^{*}(M)=\inf \left\{\frac{\int_{M}|\operatorname{grad} f|^{2}}{\int_{M} f^{2}}, f \in H_{0}^{1}(M) \backslash\{0\}\right\}, \tag{2}
\end{equation*}
$$

where $H_{0}^{1}(M)$ is the completion of $C_{0}^{\infty}(M)$ with respect to the norm $|f|^{2}=\int_{M} f^{2}+$ $\int_{M}|\operatorname{grad} f|^{2}$. We prove the following theorem.

Theorem 1.4. Let $\varphi: M \hookrightarrow N$ be an isometric immersion of a complete m-manifold M with $a(M)<1$ into a Hadamard n-manifold N with sectional curvature $\mu \leq K_{N} \leq$ 0 . Given $c, a(M)<c<1$, there exists $l=l(m, c) \in \mathbb{Z}_{+}$and a positive constant $C=$ $C(m, c, \mu)$ such that

$$
\begin{equation*}
\lambda^{*}(M) \leq C \cdot \lambda^{*}\left(\mathbb{N}^{l}(\mu)\right)=C \cdot(l-1)^{2} \mu^{2} / 4, \tag{3}
\end{equation*}
$$

where $\mathbb{N}^{l}(\mu)$ is the l-dimensional simply connected space form of sectional curvature μ.
Remark 1.5. As corollary of Theorem (1.4) we have that $\lambda^{*}(M)=0$ for any submanifold M mentioned in this list above.

Question 1.5. It is known [3, 5] that the fundamental tones of the Nadirashvilli bounded minimal surfaces [12] and the Martin-Morales cylindrically bounded minimal surfaces [11] are positive. We ask if there is a complete properly immersed (minimal) submanifold of the \mathbb{R}^{n} with positive fundamental tone $\lambda^{*}>0$.
2. Preliminaries. Let $\varphi: M \hookrightarrow N$ be an isometric immersion, where M and N are complete Riemannian manifolds. Consider a smooth function $g: N \rightarrow \mathbb{R}$ and the composition $f=g \circ \varphi: M \rightarrow \mathbb{R}$. Identifying X with $d \varphi(X)$ we have at $q \in M$ and for every $X \in T_{q} M$ that

$$
\langle\operatorname{grad} f, X\rangle=d f(X)=d g(X)=\langle\operatorname{grad} g, X\rangle .
$$

Hence we write

$$
\operatorname{grad} g=\operatorname{grad} f+(\operatorname{grad} g)^{\perp},
$$

where $(\operatorname{grad} g)^{\perp}$ is perpendicular to $T_{q} M$. Let ∇ and $\bar{\nabla}$ be the Riemannian connections on M and N respectively, and let $\alpha(x)(X, Y)$ and $\operatorname{Hess} f(x)(X, X)$ be respectively the second fundamental form of the immersion φ and the Hessian of f at x with $X, Y \in$ $T_{x} M$. Using the Gauss equation we have that

$$
\begin{equation*}
\operatorname{Hess} f(x)(X, Y)=\operatorname{Hess} g(\varphi(x))(X, Y)+\langle\operatorname{grad} g, \alpha(X, Y)\rangle_{\varphi(x)} \tag{4}
\end{equation*}
$$

Taking the trace in (4), with respect to an orthonormal basis $\left\{e_{1}, \ldots, e_{m}\right\}$ for $T_{x} M$, we have that

$$
\begin{align*}
\Delta f(x) & =\sum_{i=1}^{m} \operatorname{Hess} f(q)\left(e_{i}, e_{i}\right) \\
& =\sum_{i=1}^{m} \operatorname{Hess} g(\varphi(x))\left(e_{i}, e_{i}\right)+\left\langle\operatorname{grad} g, \sum_{i=1}^{m} \alpha\left(e_{i}, e_{i}\right)\right\rangle . \tag{5}
\end{align*}
$$

We should mention that formulas (4) and (5) first appeared in [9]. If $g=h \circ \rho_{N}$, where $h: \mathbb{R} \rightarrow \mathbb{R}$ is a smooth function and ρ_{N} is the distance function to a fixed point in N, then equation (4) becomes
$\operatorname{Hess} f(x)(X, X)=h^{\prime \prime}\left(\rho_{N}\right)\left\langle\operatorname{grad} \rho_{N}, X\right\rangle^{2}+h^{\prime}\left(\rho_{N}\right)\left[\operatorname{Hess} \rho_{N}(X, X)+\left\langle\operatorname{grad} \rho_{N}, \alpha(X, X)\right\rangle\right]$.
Another important tool in this paper the Hessian comparison theorem (see [9] or [15]).
Theorem 2.1 Hessian comparison theorem. Let N be a complete Riemannian n manifold and $y_{0}, y \in N$. Let $\gamma:\left[0, \rho_{N}(y)\right] \rightarrow N$ be a minimising geodesic joining y_{0} and y, where ρ_{N} is the distance function to y_{0} on N. Let K_{γ} be the sectional curvatures of N along γ. Denote by $\mu=\inf K_{\gamma}$ and $\kappa=\sup K_{\gamma}$. Then for all $X \in T_{y} N, X \perp \gamma^{\prime}\left(\rho_{N}(y)\right)$ the Hessian of ρ_{N} at $y=\gamma\left(\rho_{N}(y)\right)$, satisfies

$$
\begin{equation*}
\frac{C_{\mu}}{S_{\mu}}\left(\rho_{N}(y)\right)\|X\|^{2} \geq \operatorname{Hess} \rho_{N}(y)(X, X) \geq \frac{C_{\kappa}}{S_{\kappa}}\left(\rho_{N}(y)\right)\|X\|^{2} \tag{7}
\end{equation*}
$$

where $\operatorname{Hess}_{N}(y)\left(\gamma^{\prime}, \gamma^{\prime}\right)=0$.
Observation 2.2. If $y \in \operatorname{cut}_{N}\left(y_{0}\right)$, inequality (7) has to be understood in the following sense:

$$
\frac{C_{\mu}}{S_{\mu}}\left(\rho_{N}(y)\right)\|X\|^{2} \geq \lim _{j \rightarrow \infty} \operatorname{Hess} \rho_{N}\left(y_{j}\right)\left(X_{j}, X_{j}\right) \geq \frac{C_{\kappa}}{S_{\kappa}}\left(\rho_{N}(y)\right)\|X\|^{2}
$$

For a sequence $\left(y_{j}, X_{j}\right) \rightarrow(y, X) \in T N, y_{j} \notin \operatorname{cut}_{N}\left(y_{0}\right)$.

3. Proof of Theorem 1.2.

3.1. Proof of items (a) and (b). Since $a(M)<1$, we have that for each $a(M)<$ $c<1$, there is i such that $a_{i} \in(a(M), c)$. This means that there exists a geodesic ball $B_{M}\left(r_{0}\right) \subset M$, with $C_{i} \subset B_{M}\left(r_{0}\right)$, centred at x_{0} with radius $r_{0}>0$ such that

$$
\begin{equation*}
\frac{S_{\kappa}}{C_{\kappa}}\left(\rho_{M}(x)\right) \cdot\|\alpha(x)\| \leq c<1, \quad \text { for all } x \in M \backslash B_{M}\left(r_{0}\right) \tag{8}
\end{equation*}
$$

To fix the notation, let $x_{0} \in M, y_{0}=\varphi\left(x_{0}\right)$ and $\rho_{M}(x)=\operatorname{dist}_{M}\left(x_{0}, x\right)$ and $\rho_{N}(y)=$ $\operatorname{dist}_{N}\left(y_{0}, y\right)$. Suppose first that $\kappa=0$. Letting $h(t)=t^{2}$ we have that $f(x)=\rho_{N}(\varphi(x))^{2}$. By equation (6) the Hessian of f at $x \in M$ in the direction X is given by

$$
\begin{equation*}
\operatorname{Hess} f(x)(X, X)=2\left[\rho_{N} \operatorname{Hess} \rho_{N}(X, X)+\rho_{N}\left\langle\operatorname{grad} \rho_{N}, \alpha(X, X)\right\rangle+\left\langle\operatorname{grad} \rho_{N}, X\right\rangle^{2}\right](y), \tag{9}
\end{equation*}
$$

where $y=\varphi(x)$. By the Hessian comparison theorem, we have that

$$
\begin{equation*}
\operatorname{Hess} \rho_{N}(y)(X, X) \geq \frac{1}{\rho_{N}(y)}\left\|X^{\perp}\right\|^{2} \tag{10}
\end{equation*}
$$

where $\left\langle X^{\perp}, \operatorname{grad} \rho_{N}\right\rangle=0$. Therefore for every $x \in M \backslash B_{M}\left(r_{0}\right)$,

$$
\begin{align*}
\operatorname{Hess} f(x)(X, X)= & 2\left[\rho_{N} \operatorname{Hess} \rho_{N}(X, X)+\left\langle\operatorname{grad} \rho_{N}, X\right\rangle^{2}\right. \\
& \left.+\rho_{N}\left\langle\operatorname{grad} \rho_{N}, \alpha(X, X)\right\rangle\right](y) \\
\geq \geq & 2\left[\rho_{N} \frac{1}{\rho_{N}}\left\|X^{\perp}\right\|^{2}+\left\|X^{\top}\right\|^{2}+\rho_{N}\left\langle\operatorname{grad} \rho_{N}, \alpha(X, X)\right\rangle\right](y) \\
\geq \geq & 2\left[\left\|X^{\top}\right\|^{2}+\left\|X^{\perp}\right\|^{2}-\rho_{M}\|\alpha\| \cdot\|X\|^{2}\right] \\
\geq & 2(1-c)\|X\|^{2} . \tag{11}
\end{align*}
$$

In the third and fourth lines of (11) we have used $\rho_{N}(\varphi(x)) \leq \rho_{M}(x)$. If $\kappa<0$, we let $h(t)=\cosh (\sqrt{-\kappa} t)$; then $f(x)=\cosh \left(\sqrt{-\kappa} \rho_{N}\right)(\varphi(x))$. By equation (6) the Hessian of f is given by

$$
\begin{align*}
\operatorname{Hess} f(x)(X, X)= & {\left[-\kappa \cosh \left(\sqrt{-\kappa} \rho_{N}\right)\left\langle\operatorname{grad} \rho_{N}, X\right\rangle^{2}+\sqrt{-\kappa} \sinh \left(\sqrt{-\kappa} \rho_{N}\right)\right.} \\
& \left.\times \operatorname{Hess} \rho_{N}(X, X)+\sqrt{-\kappa} \sinh \left(\sqrt{-\kappa} \rho_{N}\right)\left\langle\operatorname{grad} \rho_{N}, \alpha(X, X)\right\rangle\right](\varphi(x)) . \tag{12}
\end{align*}
$$

By Hessian comparison theorem we have that

$$
\begin{equation*}
\operatorname{Hess} \rho_{N}(y)(X, X) \geq \sqrt{-\kappa} \frac{\cosh \left(\sqrt{-\kappa} \rho_{N}\right)}{\sinh \left(\sqrt{-\kappa} \rho_{N}\right)}\left\|X^{\perp}\right\|^{2} \tag{13}
\end{equation*}
$$

Since $a(M)<1$, we have

$$
\begin{equation*}
\|\alpha(x)\| \leq c \sqrt{-\kappa} \frac{\cosh \left(\sqrt{-\kappa} \rho_{M}\right)}{\sinh \left(\sqrt{-\kappa} \rho_{M}\right)}(x) \leq c \sqrt{-\kappa} \frac{\cosh \left(\sqrt{-\kappa} \rho_{N}\right)}{\sinh \left(\sqrt{-\kappa} \rho_{N}\right.}(\varphi(x)) \tag{14}
\end{equation*}
$$

for every $x \in M \backslash B_{M}\left(r_{0}\right)$ and some $c \in(0,1)$. The last inequality follows from the fact that $\rho_{N}(\varphi(x)) \leq \rho_{M}(x)$ and that the function $\sqrt{-\kappa} \operatorname{coth}(\sqrt{-\kappa} t)$ is non-increasing.

Substituting in equation (12), we obtain

$$
\begin{align*}
\operatorname{Hess} f(x)(X, X) \geq & -\kappa \cosh \left(\sqrt{-\kappa} \rho_{N}\right)\left\|X^{\perp}\right\|^{2}-\kappa \cosh \left(\sqrt{-\kappa} \rho_{N}\right)\left\|X^{\top}\right\|^{2} \\
& +\kappa \cdot c \cdot \cosh \left(\sqrt{-\kappa} \rho_{N}\right)\|X\|^{2} \\
\geq & -\kappa \cdot \cosh \left(\rho_{N}\right)(1-c)\|X\|^{2} \\
\geq & -\kappa \cdot(1-c) \cdot\|X\|^{2} . \tag{15}
\end{align*}
$$

Let $\sigma:\left[0, \rho_{M}(x)\right] \rightarrow M$ be a minimal geodesic joining x_{0} to x. For all $t>r_{0}$ we have that $(f \circ \sigma)^{\prime \prime}(t)=\operatorname{Hess} f(\sigma(t))\left(\sigma^{\prime}, \sigma^{\prime}\right) \geq 2(1-c)$ if $\kappa=0$ and $(f \circ \sigma)^{\prime \prime}(t) \geq-\kappa(1-c)$ if $\kappa<0$.
For $t \leq r_{0}$ we have that $(f \circ \sigma)^{\prime \prime}(t) \geq b=\inf \left\{\operatorname{Hess} f(x)(v, v), x \in B_{M}\left(r_{0}\right),|v|=1\right\}$. Hence ($\kappa=0$),

$$
\begin{align*}
(f \circ \sigma)^{\prime}(s) & =(f \circ \sigma)^{\prime}(0)+\int_{0}^{s}(f \circ \sigma)^{\prime \prime}(\tau) d \tau \\
& \geq(f \circ \sigma)^{\prime}(0)+\int_{0}^{r_{0}} b d \tau+\int_{r_{0}}^{s} 2(1-c) d \tau \\
& \geq(f \circ \sigma)^{\prime}(0)+b r_{0}+2(1-c)\left(s-r_{0}\right) . \tag{16}
\end{align*}
$$

Now, $\rho_{N}\left(\varphi\left(x_{0}\right)\right)=\operatorname{dist}_{N}\left(y_{0}, y_{0}\right)=0$; then $(f \circ \sigma)^{\prime}(0)=0$ and $f\left(x_{0}\right)=0$; therefore

$$
\begin{align*}
f(x) & =\int_{0}^{\rho_{M}(x)}(f \circ \sigma)^{\prime}(s) d s \\
& \geq \int_{0}^{\rho_{M}(x)}\left\{b r_{0}+2(1-c)\left(s-r_{0}\right)\right\} d s \\
& \geq b r_{0} \rho_{M}(x)+2(1-c)\left(\frac{\rho_{M}^{2}(x)}{2}-r_{0} \rho_{M}(x)\right) \\
& \geq(1-c) \rho_{M}^{2}(x)+(b-2(1-c)) r_{0} \rho_{M}(x) \tag{17}
\end{align*}
$$

Thus

$$
\begin{equation*}
\rho_{N}^{2}(\varphi(x)) \geq(1-c) \rho_{M}^{2}(x)+(b-2(1-c)) r_{0} \rho_{M}(x) \tag{18}
\end{equation*}
$$

for all $x \in M$. Similarly, for $\kappa<0$ we obtain that

$$
\begin{equation*}
\cosh \left(\sqrt{-\kappa} \rho_{N}\right)(\varphi(x)) \geq \sqrt{-\kappa}(1-c) \rho_{M}^{2}(x)+(b / \sqrt{-\kappa}-\sqrt{-\kappa}(1-c)) r_{0} \rho_{M}(x)+1 \tag{19}
\end{equation*}
$$

If N is compact, the left-hand sides of the inequalities (18) and (19) are bounded above. That implies that M must be compact. In fact, we can find $\mu=\mu(\operatorname{diam}(N), c, \kappa)$ so that $\operatorname{diam}(M) \leq \mu$. Otherwise (if N is complete non-compact) if $\rho_{M}(x) \rightarrow \infty$, then $\rho_{N}(\varphi) \rightarrow \infty$ and φ is proper.
3.2. Proof of item (c). Recall that we have by hypothesis that $\varphi: M \hookrightarrow N$ is a complete m-dimensional submanifold with tamed second fundamental form immersed in complete n-dimensional Hadamard manifold N with $K_{N} \leq \kappa \leq 0$. We can assume that M is non-compact. Moreover, by item (a), proved in the last subsection, φ is a proper immersion. Let $B_{N}\left(r_{0}\right)$ be the geodesic ball of N centred at y_{0} with radius r_{0}
and $S_{r_{0}}=\partial B_{N}\left(r_{0}\right)$. Since φ is proper and $a(M)<1$ we can take r_{0} so that

$$
\begin{equation*}
\frac{S_{\kappa}}{C_{\kappa}}\left(\rho_{M}(x)\right)\|\alpha(x)\| \leq c<1, \quad \text { for all } x \in M \backslash \varphi^{-1}\left(B_{N}\left(r_{0}\right)\right), \tag{20}
\end{equation*}
$$

and by Sard's theorem (see [8], p. 79), r_{0} can be chosen so that $\Gamma_{r_{0}}=\varphi(M) \cap S_{r_{0}} \neq \emptyset$ is a submanifold of $\operatorname{dim} \Gamma_{r_{0}}=m-1$. For each $y \in \Gamma_{r_{0}}$, let us denote by $T_{y} \Gamma_{r_{0}} \subset T_{y} \varphi(M)$ the tangent spaces of $\Gamma_{r_{0}}$ and $\varphi(M)$, respectively, at y. Since the dimension dim $T_{y} \Gamma_{r_{0}}=$ $m-1$ and $\operatorname{dim} T_{y} \varphi(M)=m$, there exist only one unit vector $\nu(y) \in T_{y} \varphi(M)$ such that $T_{y} \varphi(M)=T_{y} \Gamma_{r_{0}} \oplus[[\nu(y)]]$, with $\left\langle\nu(y), \operatorname{grad} \rho_{N}(y)\right\rangle>0$. This defines a smooth vector field ν on a neighborhood V of $\varphi^{-1}\left(\Gamma_{r_{0}}\right)$. Here $[[\nu(y)]]$ is the vector space generated by $\nu(y)$. Consider the function on $\varphi(V)$ defined by

$$
\begin{equation*}
\psi(y)=\left\langle v, \operatorname{grad} \rho_{N}\right\rangle(y)=\langle v, \operatorname{grad} R\rangle(y)=v(y)(R), y=\varphi(x) . \tag{21}
\end{equation*}
$$

Then $\psi(y)=0$ if and only if every $x=\varphi^{-1}(y) \in V$ is a critical point of the extrinsic distance function R. Now for each $y \in \Gamma_{r_{0}}$ fixed, let us consider the solution $\xi(t, y)$ of the following Cauchy problem on $\varphi(M)$:

$$
\left\{\begin{array}{l}
\xi_{t}(t, y)=\frac{1}{\psi} \nu(\xi(t, y)), \tag{22}\\
\xi(0, y)=y
\end{array}\right.
$$

We will prove that along the integral curve $t \mapsto \xi(t, y)$ there are no critical points for $R=\rho_{N} \circ \varphi$. For this, consider the function $(\psi \circ \xi)(t, y)$ and observe that

$$
\begin{align*}
\psi_{t} & =\xi_{t}\left\langle\operatorname{grad} \rho_{N}, v\right\rangle \\
& =\left\langle\bar{\nabla}_{\xi_{t}} \operatorname{grad} \rho_{N}, v\right\rangle+\left\langle\operatorname{grad} \rho_{N}, \bar{\nabla}_{\xi_{t}} \nu\right\rangle \\
& =\frac{1}{\psi}\left\langle\bar{\nabla}_{v} \operatorname{grad} \rho_{N}, v\right\rangle+\frac{1}{\psi}\left\langle\operatorname{grad} \rho_{N}, \nabla_{v} v+\alpha(\nu, v)\right\rangle \\
& =\frac{1}{\psi} \operatorname{Hess} \rho_{N}(v, v)+\frac{1}{\psi}\left[\left\langle\operatorname{grad} \rho_{N}, \nabla_{v} v\right\rangle+\left\langle\operatorname{grad} \rho_{N}, \alpha(v, v)\right\rangle\right] \\
& =\frac{1}{\psi}\left[\operatorname{Hess} \rho_{N}(v, v)+\left\langle\operatorname{grad} \rho_{N}, \nabla_{v} v\right\rangle+\left\langle\operatorname{grad} \rho_{N}, \alpha(v, v)\right\rangle\right] \tag{23}
\end{align*}
$$

Thus

$$
\begin{equation*}
\psi_{t} \psi=\operatorname{Hess} \rho_{N}(v, v)+\left\langle\operatorname{grad} \rho_{N}, \nabla_{v} v\right\rangle+\left\langle\operatorname{grad} \rho_{N}, \alpha(v, v)\right\rangle \tag{24}
\end{equation*}
$$

Since $\langle\nu, \nu\rangle=1$, we have at once that $\left\langle\nabla_{\nu} \nu, \nu\right\rangle=0$. As $\nabla_{\nu} \nu \in T_{x} M$, we have that

$$
\left\langle\operatorname{grad} \rho_{N}, \nabla_{\nu} \nu\right\rangle=\left\langle\operatorname{grad} R, \nabla_{\nu} \nu\right\rangle .
$$

By equation (21), we can write $\operatorname{grad} R(x)=\psi(\varphi(x)) \cdot \nu(\varphi(x))$, since $\operatorname{grad} R(x) \perp$ $T_{\varphi(x)} \Gamma_{\rho_{N}(y)},\left(\Gamma_{\rho_{N}(y)}=\varphi(M) \cap \partial B_{N}\left(\rho_{N}(y)\right)\right)$. Then

$$
\left\langle\operatorname{grad} \rho_{N}, \nabla_{v} v\right\rangle=\left\langle\operatorname{grad} R, \nabla_{v} \nu\right\rangle=\psi\left\langle v, \nabla_{v} \nu\right\rangle=0
$$

Writing

$$
\begin{equation*}
\nu(y)=\cos \beta(y) \operatorname{grad} \rho_{N}+\sin \beta(y) \omega \tag{25}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{grad} \rho_{N}(y)=\cos \beta \nu(y)+\sin \beta v^{*} \tag{26}
\end{equation*}
$$

where $\left\langle\omega, \operatorname{grad} \rho_{N}\right\rangle=0$ and $\left\langle v, \nu^{*}\right\rangle=0$, equation (24) becomes

$$
\begin{equation*}
\psi_{t} \psi=\sin ^{2} \beta \operatorname{Hess} \rho_{N}(\omega, \omega)+\sin \beta\left\langle\nu^{*}, \alpha(v, v)\right\rangle . \tag{27}
\end{equation*}
$$

From (25) we have that $\psi(y)=\cos \beta(y)$,

$$
\begin{equation*}
\psi_{t} \psi=\sqrt{1-\psi^{2}} \sqrt{1-\psi^{2}} \operatorname{Hess} \rho_{N}(\omega, \omega)+\sqrt{1-\psi^{2}}\left\langle\nu^{*}, \alpha(\nu, \nu)\right\rangle . \tag{28}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\frac{\psi_{t} \psi}{\sqrt{1-\psi^{2}}}=\sqrt{1-\psi^{2}} \operatorname{Hess} \rho_{N}(\omega, \omega)+\left\langle v^{*}, \alpha(v, \nu)\right\rangle \tag{29}
\end{equation*}
$$

Thus we arrive at the following differential equation:

$$
\begin{equation*}
-\left(\sqrt{1-\psi^{2}}\right)_{t}=\sqrt{1-\psi^{2}} \operatorname{Hess} \rho_{N}(\omega, \omega)+\left\langle v^{*}, \alpha(v, v)\right\rangle . \tag{30}
\end{equation*}
$$

The Hessian comparison theorem implies that

$$
\begin{equation*}
\operatorname{Hess} \rho_{N}(\omega, \omega) \geq \frac{C_{\kappa}}{S_{\kappa}}\left(\rho_{N}(\xi(t, y))\right) \tag{31}
\end{equation*}
$$

Substituting it in equation (30) the following inequality is obtained:

$$
\begin{equation*}
-\left(\sqrt{1-\psi^{2}}\right)_{t} \geq \sqrt{1-\psi^{2}} \frac{C_{\kappa}}{S_{\kappa}}\left(\rho_{N}(\xi(t, y))\right)+\left\langle v^{*}, \alpha(v, v)\right\rangle . \tag{32}
\end{equation*}
$$

Denoting by $R(t, y)$ the restriction of $R=\rho_{N} \circ \varphi$ to $\varphi^{-1}(\xi(t, y))$ we have

$$
R(t, y)=R\left(\varphi^{-1}(\xi(t, y))\right)=\rho_{N}(\xi(t, y))
$$

On the other hand we have that

$$
\begin{equation*}
R_{t}=\left\langle\operatorname{grad} R, \frac{1}{\psi} v\right\rangle=\left\langle\psi v, \frac{1}{\psi} v\right\rangle=1 ; \tag{33}
\end{equation*}
$$

then

$$
\begin{equation*}
R(t, y)=t+r_{0} . \tag{34}
\end{equation*}
$$

Writing $\frac{C_{k}}{S_{k}}\left(\rho_{N}(\xi(t, y))\right)=\frac{C_{k}}{S_{k}}\left(t+r_{0}\right)$ in (32) we have

$$
\begin{equation*}
-\left(\sqrt{1-\psi^{2}}\right)_{t} \geq \sqrt{1-\psi^{2}} \frac{C_{\kappa}}{S_{\kappa}}\left(t+r_{0}\right)+\left\langle v^{*}, \alpha(v, v)\right\rangle . \tag{35}
\end{equation*}
$$

Multiplying (35) by $S_{\kappa}\left(t+r_{0}\right)$, the following is obtained:

$$
-\left[S_{\kappa}\left(t+r_{0}\right)\left(\sqrt{1-\psi^{2}}\right)_{t}+C_{\kappa}\left(t+r_{0}\right) \sqrt{1-\psi^{2}}\right] \geq S_{k}\left(t+r_{0}\right)\left\langle v^{*}, \alpha(v, v)\right\rangle
$$

The last inequality can be written as

$$
\begin{equation*}
\left[S_{\kappa}\left(t+r_{0}\right) \sqrt{1-\psi^{2}}\right]_{t} \leq-S_{\kappa}\left(t+r_{0}\right)\left\langle v^{*}, \alpha(v, v)\right\rangle \tag{36}
\end{equation*}
$$

Integrating (36) from 0 to t the resulting inequality is as follows:

$$
S_{\kappa}\left(t+r_{0}\right) \sin \beta(\xi(t, y)) \leq S_{\kappa}\left(r_{0}\right) \sin \beta(y)+\int_{0}^{t}-S_{k}\left(s+r_{0}\right)\left\langle v^{*}, \alpha(v, v)\right\rangle d s
$$

Thus

$$
\begin{equation*}
\sin \beta(\xi(t, y)) \leq \frac{S_{\kappa}\left(r_{0}\right)}{S_{k}\left(t+r_{0}\right)} \sin \beta(y)+\frac{1}{S_{\kappa}\left(t+r_{0}\right)} \int_{0}^{t} S_{\kappa}\left(s+r_{0}\right)\left(-\left\langle v^{*}, \alpha(v, v)\right\rangle\right) d s \tag{37}
\end{equation*}
$$

Since $a(M)<1$,

$$
\begin{aligned}
-\left\langle v^{*}, \alpha(v, v)\right\rangle(\xi(s, y)) & \leq\|\alpha(\xi(s, y))\| \leq c \frac{C_{\kappa}}{S_{\kappa}}\left(\rho_{M}(\xi(s, y))\right) \\
& \leq c \frac{C_{\kappa}}{S_{\kappa}}\left(\rho_{N}(\xi(s, y))\right)=c \frac{C_{\kappa}}{S_{\kappa}}\left(s+r_{0}\right)
\end{aligned}
$$

for every $s \geq 0$. Substituting in (37), we have

$$
\begin{align*}
\sin \beta(\xi(t, y)) & \leq \frac{S_{\kappa}\left(r_{0}\right)}{S_{\kappa}\left(t+r_{0}\right)} \sin \beta(y)+\frac{c}{S_{\kappa}\left(t+r_{0}\right)} \int_{0}^{t} C_{\kappa}\left(s+r_{0}\right) d s \\
& =\frac{S_{\kappa}\left(r_{0}\right)}{S_{\kappa}\left(t+r_{0}\right)} \sin \beta(y)+\frac{c}{S_{\kappa}\left(t+r_{0}\right)}\left(S_{\kappa}\left(t+r_{0}\right)-S_{\kappa}\left(r_{0}\right)\right) \\
& =\frac{S_{\kappa}\left(r_{0}\right)}{S_{\kappa}\left(t+r_{0}\right)}(\sin \beta(y)-c)+c<1 \tag{38}
\end{align*}
$$

for all $t \geq 0$. Therefore, along the integral curve $t \mapsto \xi(t, y)$, there are no critical points for the function $R(x)=\rho_{N}(\varphi(x))$ outside the geodesic ball $B_{N}\left(r_{0}\right)$. The flow ξ_{t} maps $\partial B_{N}\left(r_{0}\right)$ diffeomorphically into $\partial B_{N}\left(r_{0}+t\right)$, for all $t \geq 0$. This shows that M has finite topology (see also [6]). This concludes the proof of Theorem 1.2. For the sake of clarity we show that $\frac{S_{k}\left(r_{0}\right)}{S_{k}\left(t+r_{0}\right)}(\sin \beta(y)-c)+c<1$. Let $h(t)=\frac{S_{k}\left(r_{0}\right)}{S_{\kappa}\left(t+r_{0}\right)}(\sin \beta(y)-c)+c$. We have that $h(0)=\sin \beta<1$ and $h^{\prime}(t)=-\frac{C_{k}\left(t+r_{0}\right) S_{\kappa}\left(r_{0}\right)}{\left.S_{k}^{2}\left(t+r_{0}\right)\right)}(\sin \beta-c)$. If $\sin \beta \geq c$, then $h^{\prime}(t) \leq 0$ and $h(t) \leq h(0)$. If $\sin \beta<c$, suppose by contradiction that there exists a $T>0$ such that $h(T)>1$. This implies that $0>S_{\kappa}\left(r_{0}\right)(\sin \beta-c)>(1-c) S_{\kappa}\left(T+r_{0}\right)>0$.
4. Proof of Theorem 1.4. The first ingredient for the proof of Theorem 1.4 is the well-known Barta's theorem [2] stated here for the sake of completeness.

Theorem 4.1 (Barta). Let Ω be a bounded open of a Riemannian manifold with piecewise smooth boundary. Let $f \in C^{2}(\Omega) \cap C^{0}(\bar{\Omega})$ with $f \mid \Omega>0$ and $f \mid \partial \Omega=0$. The first Dirichlet eigenvalue $\lambda_{1}(\Omega)$ has the following bounds:

$$
\begin{equation*}
\sup _{\Omega}\left(-\frac{\Delta f}{f}\right) \geq \lambda_{1}(\Omega) \geq \inf _{\Omega}\left(\frac{-\Delta f}{f}\right) \tag{39}
\end{equation*}
$$

with equality in (4) if and only iff is the first eigenfunction of Ω.

Let $\varphi: M \hookrightarrow N$ be an isometric immersion with tamed second fundamental form of a complete m-manifold M into a Hadamard n-manifold N with sectional curvature $\mu \leq K_{N} \leq 0$. Let $x_{0} \in M, y_{0}=\varphi\left(x_{0}\right) \in N$, and let $\rho_{N}(y)=\operatorname{dist}_{N}\left(y_{0}, y\right)$ be the distance function on N and $\rho_{N} \circ \varphi$ the extrinsic distance on M. By the proof of Theorem (1.2) there is an $r_{0}>0$ such that there is no critical point $x \in M \backslash \varphi^{-1}\left(B_{N}\left(r_{0}\right)\right)$ for $\rho_{N} \circ \varphi$, where $B_{N}\left(r_{0}\right)$ is the geodesic ball in N centred at y_{0} with radius r_{0}. Let $R>r_{0}$, and let $\Omega \subset \varphi^{-1}\left(B_{N}(R)\right)$ be a connected component. Since φ is proper we have that Ω is bounded with boundary $\partial \Omega$ that we may suppose to be piecewise smooth. Let $v: B_{\mathbb{N}^{N}(\mu)}(R) \rightarrow \mathbb{R}$ be a positive first eigenfunction of the geodesic ball of radius R in the l-dimensional simply connected space form $\mathbb{N}^{l}(\mu)$ of constant sectional curvature μ, where l is to be determined. The function v is radial, i.e. $v(x)=v(|x|)$, and satisfies the following differential equation:

$$
\begin{equation*}
v^{\prime \prime}(t)+(l-1) \frac{C_{\mu}}{S_{\mu}}(t) v^{\prime}(t)+\lambda_{1}\left(B_{\mathbb{N}^{\prime}(\mu)}(R)\right) v(t)=0, \quad \forall t \in[0, R], \tag{40}
\end{equation*}
$$

with initial data $v(0)=1, v^{\prime}(0)=0$. Moreover, $v^{\prime}(t)<0$ for all $t \in(0, R] ; S_{\mu}$ and C_{μ} are defined in (1) and $\lambda_{1}\left(B_{\mathbb{N}^{\prime}(\mu)}(R)\right)$ is the first Dirichlet eigenvalue of the geodesic ball $B_{\mathbb{N}^{\prime}(\mu)}(R) \subset \mathbb{N}^{l}(\mu)$ with radius R. Define $\tilde{v}: B_{N}(R) \rightarrow \mathbb{R}$ by $\tilde{v}(y)=v \circ \rho_{N}(y)$ and $f: \Omega \rightarrow \mathbb{R}$ by $f(x)=\tilde{v} \circ \varphi(x)$. By Barta's theorem we have $\lambda_{1}(\Omega) \leq \sup _{\Omega}(-\Delta f / f)$. The Laplacian Δf at a point $x \in M$ is given by

$$
\begin{aligned}
\Delta_{M} f(x) & =\left[\sum_{i=1}^{m} \operatorname{Hess} \tilde{v}\left(e_{i}, e_{i}\right)+\langle\operatorname{grad} \tilde{v}, \vec{H}\rangle\right](\varphi(x)) \\
& =\sum_{i=1}^{m}\left[v^{\prime \prime}\left(\rho_{N}\right)\left\langle\operatorname{grad} \rho_{N}, e_{i}\right\rangle^{2}+v^{\prime}\left(\rho_{N}\right) \operatorname{Hess} \rho_{N}\left(e_{i}, e_{i}\right)\right]+v^{\prime}(\rho)\left\langle\operatorname{grad} \rho_{N}, \vec{H}\right\rangle,
\end{aligned}
$$

where Hess \tilde{v} is the Hessian of \tilde{v} in the metric of N and $\left\{e_{i}\right\}_{i=1}^{m}$ is an orthonormal basis for $T_{x} M$ at which we made the identification $\varphi_{*} e_{i}=e_{i}$. We are going to give an upper bound for $(-\Delta f / f)$ on $\varphi^{-1}\left(B_{N}(R)\right)$. Let $x \in \varphi^{-1}\left(B_{N}(R)\right)$, and choose an orthonormal basis $\left\{e_{1}, \ldots, e_{m}\right\}$ for $T_{x} M$ such that $\left\{e_{2}, \ldots, e_{m}\right\}$ are tangent to the distance sphere $\partial B_{N}(r(x))$ of radius $r(x)=\rho_{N}(\varphi(x))$ and $e_{1}=\left\langle e_{1}, \operatorname{grad}_{N} \bar{\rho}\right\rangle \operatorname{grad}_{N} \bar{\rho}+\left\langle e_{1}, \partial / \partial \theta\right\rangle \partial / \partial \theta$, where $|\partial / \partial \theta|=1, \partial / \partial \theta \perp \operatorname{grad}_{N} \bar{\rho}$. To simplify the notation set $t=\rho_{N}(\varphi(x)), \Delta_{M}=\Delta$. Then

$$
\begin{align*}
\Delta f(x)= & \sum_{i=1}^{m}\left[v^{\prime \prime}(t)\left\langle\operatorname{grad} \rho_{N}, e_{i}\right\rangle^{2}+v^{\prime}(t) \operatorname{Hess} \rho_{N}\left(e_{i}, e_{i}\right)\right]+v^{\prime}(t)\left\langle\operatorname{grad} \rho_{N}, \vec{H}\right\rangle \\
= & v^{\prime \prime}(t)\left\langle\operatorname{grad} \rho_{N}, e_{1}\right\rangle^{2}+v^{\prime}(t)\left\langle e_{1}, \partial / \partial \theta\right\rangle^{2} \operatorname{Hess} \rho_{N}(\partial / \partial \theta, \partial / \partial \theta) \\
& +\sum_{i=2}^{m} v^{\prime}(t) \operatorname{Hess} \rho_{N}\left(e_{i}, e_{i}\right)+v^{\prime}(t)\left\langle\operatorname{grad} \rho_{N}, \vec{H}\right\rangle . \tag{41}
\end{align*}
$$

Thus from (41)

$$
\begin{align*}
-\frac{\Delta f}{f}(x)= & -\frac{v^{\prime \prime}}{v}(t)\left\langle\operatorname{grad} \rho_{N}, e_{1}\right\rangle^{2}-\frac{v^{\prime}}{v}(t)\left\langle e_{1}, \partial / \partial \theta\right\rangle^{2} \operatorname{Hess} \rho_{N}(\partial / \partial \theta, \partial / \partial \theta) \\
& -\sum_{i=2}^{m} \frac{v^{\prime}}{v}(t) \operatorname{Hess} \rho_{N}\left(e_{i}, e_{i}\right)-\frac{v^{\prime}}{v}(t)\left\langle\operatorname{grad} \rho_{N}, \vec{H}\right\rangle \tag{42}
\end{align*}
$$

Equation (40) says that

$$
-\frac{v^{\prime \prime}}{v}(t)=(l-1) \frac{C_{\mu}}{S_{\mu}} \frac{v^{\prime}}{v}(t)+\lambda_{1}\left(B_{\mathbb{N}^{\prime}(\mu)}(R)\right)
$$

By the Hessian comparison theorem and the fact $v^{\prime} / v \leq 0$ we have from equation (42) the following inequality:

$$
\begin{align*}
-\frac{\Delta f}{f}(x) \leq & \left.\lambda_{1}\left(B_{\mathbb{N}^{\prime}(\mu)}(R)\right)\right]\left[1-\left\langle e_{1}, \partial / \partial \theta\right\rangle^{2}\right] \\
& -\frac{C_{\mu}}{S_{\mu}}(t) \frac{v^{\prime}}{v}(t)\left[m-l+l\left\langle e_{1}, \partial / \partial \theta\right\rangle^{2}+\frac{S_{\mu}}{C_{\mu}}\|\vec{H}\|\right] \tag{43}
\end{align*}
$$

On the other hand the mean curvature vector \vec{H} at $\varphi(x)$ has the norm

$$
\|\vec{H}\|(\varphi(x)) \leq\|\alpha\|(\varphi(x)) \leq c \cdot\left(C_{\kappa} / S_{\kappa}\right)\left(\rho_{M}(x)\right) \leq c \cdot\left(C_{\kappa} / S_{\kappa}\right)\left(\rho_{N}(\varphi(x))\right)
$$

We have that for any given $a(M)<c<1$ there exist $r_{0}=r_{0}(c)>0$ such that there is no critical point $x \in M \backslash \varphi^{-1}\left(B_{N}\left(r_{0}\right)\right)$ for $\rho_{N} \circ \varphi$. A critical point x satisfies $\left\langle e_{1}, \partial / \partial \theta\right\rangle(\varphi(x))=1$ (see equation (25), where $\left\langle e_{1}, \partial / \partial \theta\right\rangle(\varphi(x))=\sin \beta(\varphi(x))$). Inequality (38) shows that for any $x \in M \backslash \varphi^{-1}\left(B_{N}\left(r_{0}\right)\right)$ we have ($\kappa=0$ in our case)

$$
\begin{align*}
\left\langle e_{1}, \partial / \partial \theta\right\rangle(\varphi(x)) & \left.\leq \frac{r_{0}}{\rho_{N}(\varphi(x))+r_{0}}\left(\sup _{z \in \varphi^{-1}\left(\partial B_{N}\left(r_{0}\right)\right)} \sin \beta(\varphi(z))\right)-c\right)+c \\
& \leq \frac{r_{0}}{r_{0}+r_{0}}(1-c)+c \\
& =\frac{1+c}{2} . \tag{44}
\end{align*}
$$

We have then from (43) and (44) the following inequality:

$$
-\frac{\Delta f}{f}(x) \leq \lambda_{1}\left(B_{\mathbb{N}^{\prime}(\mu)}(R)\right)-\frac{C_{\mu}}{S_{\mu}}(t) \frac{v^{\prime}}{v}(t)\left[m-l+\frac{l}{4}(1+c)^{2}+c\right] .
$$

Choose the least $l \in \mathbb{Z}_{+}$such that $m-l+l(1+c)^{2} / 4+c \leq 0$. With this choice of l we have for all $x \in \varphi^{-1}\left(B_{N}(R) \backslash B_{N}\left(r_{0}\right)\right)$ that

$$
\begin{equation*}
-\frac{\Delta f}{f}(x) \leq \lambda_{1}\left(B_{\mathbb{N}^{\prime}(\mu)}(R)\right) \tag{45}
\end{equation*}
$$

Now let $x \in \varphi^{-1}\left(B_{N}\left(r_{0}\right)\right)$. Since $1-\left\langle e_{1}, \partial / \partial \theta\right\rangle^{2} \leq 1$ and $-l+l\left\langle e_{1}, \partial / \partial \theta\right\rangle^{2} \leq 0$ we obtain from (43) the following inequality $\left(t=\rho_{N}(\varphi(x))\right.$):

$$
\begin{equation*}
\left.-\frac{\Delta f}{f}(x) \leq \lambda_{1}\left(B_{\mathbb{N}^{\prime}(\mu)}(R)\right)\right]-\frac{C_{\mu}}{S_{\mu}}(t) \frac{v^{\prime}}{v}(t)\left[m+\frac{S_{\mu}}{C_{\mu}}\|\vec{H}\|\right] . \tag{46}
\end{equation*}
$$

We need the following technical lemma.
Lemma 4.2. Let v be the function satisfying (40). Then $-v^{\prime}(t) / t \leq \lambda_{1}\left(B_{\mathbb{N}^{\prime}(\mu)}(R)\right)$ for all $t \in[0, R]$.

Proof. Consider the function $h:[0, R] \rightarrow \mathbb{R}$ given by $h(t)=\lambda \cdot t+v^{\prime}(t), \lambda=$ $\lambda_{1}\left(B_{\mathbb{N}^{\prime}(\mu)}(R)\right)$. We know that $v(0)=1, v^{\prime}(0)=0$ and $v^{\prime}(t) \leq 0$; besides v satisfies equation (40). Observe that

$$
0=v^{\prime \prime}(t)+(l-1) v^{\prime}+\lambda v \leq v^{\prime \prime}+\lambda .
$$

Thus $v^{\prime \prime} \geq-\lambda$ and $h^{\prime}(t)=\lambda+v^{\prime \prime} \geq 0$. Since $h(0)=0$ we have $h(t)=\lambda t+v^{\prime}(t) \geq 0$. This proves the lemma.

Since v is a non-increasing positive function we have $v(t) \geq v\left(r_{0}\right)$. Applying Lemma (4.2) we obtain

$$
\begin{align*}
-\frac{\Delta f}{f}(x) & \leq \lambda_{1}\left(B_{\mathbb{N}^{\prime}(\mu)}(R)\right)+\frac{t \cdot C_{\mu}(t)}{S_{\mu}(t)}\left(-\frac{v^{\prime}(t)}{t}\right) \cdot \frac{1}{v\left(r_{0}\right)}[m+c] \tag{47}\\
& \leq \lambda_{1}\left(B_{\mathbb{N}^{\prime}(\mu)}(R)\right)\left[1+r_{0} \frac{C_{\mu}}{S_{\mu}}\left(r_{0}\right) \cdot \frac{1}{v\left(r_{0}\right)}[m+c]\right] \tag{48}
\end{align*}
$$

Thus for all $x \in \varphi^{-1}\left(B_{N}(R)\right)$ we have

$$
\begin{aligned}
-(\Delta f / f)(x) & \leq \max \left\{1,\left[1+r_{0} \frac{C_{\mu}}{S_{\mu}}\left(r_{0}\right) \cdot \frac{1}{v\left(r_{0}\right)}[m+c]\right]\right\} \cdot \lambda_{1}\left(B_{\mathbb{N}^{\prime}(\mu)}(R)\right) \\
& =\left[1+r_{0} \frac{C_{\mu}}{S_{\mu}}\left(r_{0}\right) \cdot \frac{1}{v\left(r_{0}\right)}[m+c]\right] \cdot \lambda_{1}\left(B_{\mathbb{N}^{\prime}(\mu)}(R)\right)
\end{aligned}
$$

Then by Barta's theorem

$$
\lambda_{1}(\Omega) \leq\left[1+r_{0} \frac{C_{\mu}}{S_{\mu}}\left(r_{0}\right) \cdot \frac{1}{v\left(r_{0}\right)}[m+c]\right] \cdot \lambda_{1}\left(B_{\mathbb{N}^{\prime}(\mu)}(R)\right)
$$

Observe that $C=\left[1+r_{0} \frac{C_{\mu}}{S_{\mu}}\left(r_{0}\right) \cdot \frac{1}{v\left(r_{0}\right)}[m+c]\right]$ does not depend on R. So letting $R \rightarrow$ ∞ we have $\lambda^{*}(M) \leq C \lambda^{*}\left(\mathbb{N}^{l}(\mu)\right)$.

Corollary 4.3 (From the proof). Given $c, a(M)<c<1$, there exists $r_{0}=r_{0}(c)>$ $0, l=l(m, c) \in \mathbb{Z}_{+}$and $C=C(m, \mu, c)>0$ such that for any $R>r_{0}$ and any connected component Ω of $\varphi^{-1}\left(B_{N}(r)\right)$, then

$$
\lambda^{*}(\Omega) \leq C \cdot \lambda_{1}\left(B_{\mathbb{N}^{\prime}(\mu)}(R)\right) .
$$

REFERENCES

1. M. Anderson, The compactification of a minimal subamnifold by the Gauss map, Unpublished preprint (Institute Des Hautes Etudes Scientifiques (IHES), Bures-sur-Yvette, France, 1985).
2. J. Barta, Sur la vibration fundamental d'une membrane, C. R. Acad. Sci. 204 (1937), 472-473.
3. G. P. Bessa and J. Fabio Montenegro, An extension of Barta's theorem and geometric applications, Ann. Global Anal. Geom. 31(4) (2007), 345-362.
4. G. P. Bessa, L. P. Jorge and J. Fabio Montenegro, Complete submanifolds of \mathbb{R}^{n} with finite topology, Comm. Anal. Geom. 15(4) (2007), 725-732.
5. G. P. Bessa and M. Silvana Costa, Eigenvalue estimates for submanifolds with locally bounded mean curvature in $N \times \mathbb{R}$, Proc. Amer. Math. Soc. 137 (2009), 1093-1102.
6. J. Cheeger, Critical points of distance functions and applications to geometry, in Geometric topology: Recent developments, Lecture Notes in Mathematics, vol. 1504 (Morel J.-M., Takens F. and Teissier B., Editors) (Springer, Berlin, 1991), 1-38.
7. S. S. Chern and R. Osserman, Complete minimal surfaces in euclidean n-space, J. d'Anal. Math. 19 (1967), 15-34.
8. B. A. Dubrovin, A. T. Fomenko and S. P. Novikov, Modern geometry - methods and applications. Part II. The geometry and topology of manifolds (Axler S. and Ribet K. A., Editors) (Graduate Texts in Mathematics, vol. 104, Springer-Verlag, New York, Heidelberg, Tokyo, 1985, ISBN 0-387-96162-3).
9. L. P. Jorge and D. Koutroufiotis, An estimative for the curvature of bounded submanifolds, Amer. J. Math. 103 (1981), 711-725.
10. L. P. Jorge and W. Meeks III, The topology of complete minimal surfaces of finite total Gaussian curvature, Topology 22 (1983), 203-221.
11. F. Martín and S. Morales, A complete bounded minimal cylinder in \mathbb{R}^{3}, Michigan Math. J. 47(3) (2000), 499-514.
12. N. Nadirashvili, Hadamard's and Calabi-Yau's conjectures on negatively curved and minimal surfaces, Invent. Math. 126 (1996), 457-465.
13. G. Oliveira Filho, Compactification of minimal submanifolds of hyperbolic space, Comm. Anal. Geom. 1(1) (1993), 1-29.
14. R. Osserman, Global properties of minimal surfaces in \mathbb{E}^{3} and \mathbb{E}^{n}, Ann. Math. 80 (1964), 340-364.
15. R. Schoen and S. Yau, Lectures on differential geometry, Conference Proceedings and Lecture Notes in Geometry and Topology, vol. 1 (Yau S. T., Editor) (International Press, Somerville, MA, 1994).
16. B. White, Complete surfaces of finite total curvature, J. Diff. Geom. 26 (1987), 315-326.
