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Inequalities for Partial Derivatives and their
Applications

Dinh _anh Duc, Nguyen Du Vi Nhan, and Nguyen Tong Xuan

Abstract. We present various weighted integral inequalities for partial derivatives acting on prod-
ucts and compositions of functions that are applied in order to establish some new Opial-type in-
equalities involving functions of several independent variables. We also demonstrate the usefulness
of our results in the ûeld of partial diòerential equations.

1 Introduction

Let u be absolutely continuous on [0, h] such that u(0) = u(h) = 0; then Opial’s
inequality [6] asserts that

(1.1) ∫

h

0
∣u(s)u′(s)∣ds ≤

h
4 ∫

h

0
∣u′(s)∣2ds.

In 1962, Bessack [2] showed the following result which implies (1.1) and is very useful
in applications. Let u be absolutely continuous on [0, h], and satisfy u(0) = 0; then

(1.2) ∫

h

0
∣u(s)u′(s)∣ds ≤

h
2 ∫

h

0
∣u′(s)∣2ds.

Inequalities (1.1) and (1.2), which are frequently used in the study of qualitative as
well as quantitative properties of solutions of initial value problems for diòerential
equations, havemotivated a large number of extensions, generalizations, variants, and
discrete analogues. A brief account of such inequalities can be found in [1].

In 1982, Yang [10] generalized Opial’s inequality to the case of two variables. For
u ∈ C(1,1)([a, T]× [c, S]) such that u(a, s) = u(t, c) = 0 for all (t, s) ∈ [a, T]× [c, S],
one has
(1.3)

∫

T

a
∫

S

c
∣u(t, s)

∂2u
∂t∂s

(t, s)∣dsdt ≤
(T − a)(S − c)

2 ∫

T

a
∫

S

c
∣
∂2u
∂t∂s

(t, s)∣
2
dsdt.

For practical application purposes inequality (1.3) has been improved as well as
generalized in several diòerent directions [3,4,7–9, 11–13]. Motivated by these works,
in this paper we prove some newOpial-type inequalities involving functions of n vari-
ables. To achieve our goal, we consider some weighted integral inequalities for partial
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derivatives acting on products and compositions of functions. As applications, we
study the uniqueness of the initial value problem and obtain upper bounds of solu-
tions of certain partial diòerential equations.

_roughout the paper, we denote by N the set of natural numbers, N = {1, 2, . . . }
and let N0 = N ∪ {0}. Let n and m be in N and let p > 1 and q > 1 be conjugate
exponents 1/p+ 1/q = 1. Denote by α = (α1 , . . . , αn) the multi-index, i.e., α j ∈ N0 , j =
1, . . . , n, and ∣α∣ = α1 + ⋅ ⋅ ⋅ + αn . Furthermore, we have the following abbreviations:

α! = α1! ⋅ ⋅ ⋅ αn!, α ∈ Nn
0 ,

(
α

β1 , . . . , βn
) =

α!
β1! ⋅ ⋅ ⋅ βn!

, α, β1 , . . . , βn ∈ Nn
0 ,

∑
α
f (α) =

α1

∑
k1=0

⋅ ⋅ ⋅
αn
∑

kn=0
f (k1 , . . . , kn), α ∈ Nn

0 .

As usual we denote by Rn the n-dimensional Euclidean space. _is is the set of
all n-tupels of real numbers x = (x1 , . . . , xn), x j ∈ R, j = 1, . . . , n, with the linear
operations x+y = (x1+ y1 , . . . , xn+ yn) and λx = (λx1 , . . . , λxn) for x = (x1 , . . . , xn),
y = (y1 , . . . , yn) ∈ Rn and λ ∈ R. In particular, let 0 = (0, . . . , 0) and 1 = (1, . . . , 1).

We shall write x < y when x j < y j for all j = 1, . . . , n. We interpret x ≤ y, x > y,
and x ≥ y, analogously. Let a = (a1 , . . . , an) and b = (b1 , . . . , bn) be in Rn such that
a < b. _en we set

Q = {x ∈ Rn
∶ a < x ≤ b},

Ω = {x ∈ Rn
∶ a ≤ x ≤ b},

Ωx = {t ∈ Rn
∶ a ≤ t ≤ x}, x ∈ Ω.

We denote by Vol(Ω) the volume of the region Ω.
For any continuous real-valued function u deûned on Ω we denote by ∫Ω u(x)dx

the n-fold integral ∫
b1
a1
⋅ ⋅ ⋅ ∫

bn
an u(x1 , . . . , xn)dx1 ⋅ ⋅ ⋅ dxn , and for any x ∈ Ω, ∫Ωx

u(t)dt
is the n-fold integral ∫

x1
a1
⋅ ⋅ ⋅ ∫

xn
an u(t1 , . . . , tn)dt1 ⋅ ⋅ ⋅ dtn .

Let ∂ = (∂1 , . . . , ∂n), ∂ j = ∂/∂x j , where j = 1, . . . , n. _en we set

∂αu(x) = ∂∣α∣u(x)
∂xα1

1 ⋅ ⋅ ⋅ ∂xαnn
, α ∈ Nn

0 , x ∈ Rn .

Let α ≥ 1 be a multi-index, p > 1 and let ρ∶Ω → R be a (positive and con-
tinuous) weight. We represent by AC

α
p(Ω, ρ) the set of all functions u∶Ω → R of

class Cα(Ω) for which ∂k j
j u∣x j=a j = 0 for all 0 ≤ k j ≤ α j − 1, j = 1, . . . , n, and that

∫Ω ∣∂αu(x)∣pKα(b, x)ρ(x)dx < ∞, where

Kα(b, x) =
(b − x)α−1

(α − 1)!
=

n
∏
j=1

(b j − x j)
α j−1

(α j − 1)!
.
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2 Integral Inequalities for Partial Differential Operators Acting on
Products and Compositions of Functions

_eorem 2.1 Let ρ j , where j = 1, . . . ,m, be some weights on Ω. _en the function

ω(x) ∶= [∂α(
m
∏
j=1
∫

Ωx
Kα(x , t)ρ−q/p

j (t)dt)]
−p/q

is a weight on Q. Moreover, if u j ∈ AC
α
p(Ω, ρ j), where j = 1, . . . ,m, then

(2.1) ∫
Ω
∣∂α(

m
∏
j=1

u j(x)) ∣
p
Kα(b, x)ω(x)dx ≤

m
∏
j=1
∫

Ω
∣∂αu j(x)∣

p
Kα(b, x)ρ j(x)dx .

Unless m = 1, equality holds in (2.1) if and only if

(2.2) u j(x) = C j ∫
Ωx

Kα(x , t)ρ−q/p
j (t)dt , x ∈ Ω,

where C j , j = 1, . . . ,m, are real constants.

Proof Observe ûrst that ω is well deûned, positive, and continuous on Q. Since ρ j ,
where j = 1, . . . ,m, are positive and continuous on Ω, this follows from

∂α(
m
∏
j=1
∫

Ωx
Kα(x , t)ρ−q/p

j (t)dt) =

∑
β1+⋅⋅⋅+βm=α

(
α

β1 , . . . , βm
)

m
∏
j=1

∂β j(∫
Ωx

Kα(x , t)ρ−q/p
j (t)dt)

and

∂β j(∫
Ωx

Kα(x , t)ρ−q/p
j (t)dt) =

⎧⎪⎪
⎨
⎪⎪⎩

ρ−q/p
j (x), if β j = α,

∫Ωx
Kα−β j(x , t)ρ

−q/p
j (t)dt , otherwise.

We next claim that for 0 ≤ β ≤ α and j = 1, . . . ,m, we have

(2.3) ∣∂βu j(x)∣ ≤ (∂β ∫
Ωx

Kα(x , t)∣∂αu j(t)∣pρ j(t)dt)
1/p
×

(∂β ∫
Ωx

Kα(x , t)ρ−q/p
j (t)dt)

1/q
, x ∈ Ω.

_e case β = α in (2.3) is trivial. Suppose that 0 ≤ β ≤ α and β /= α. Since u j ∈

AC
α
p(Ω, ρ j), it follows that

∣∂βu j(x)∣ = ∣∫
Ωx

Kα−β(x , t)∂αu j(t)dt∣

≤ ∫
Ωx

Kα−β(x , t)∣∂αu j(t)∣dt(2.4)

≤ (∫
Ωx

Kα−β(x , t)∣∂αu j(t)∣pρ j(t)dt)
1/p

(2.5)

× (∫
Ωx

Kα−β(x , t)ρ−q/p
j (t)dt)

1/q

by Hölder’s inequality, so we have (2.3).
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Now, by virtue of Leibniz’s rule, (2.3), and Hölder’s inequality, we have

∣∂α(
m
∏
j=1

u j(x)) ∣

≤ ∑
β1+⋅⋅⋅+βm=α

(
α

β1 , . . . , βm
)

m
∏
j=1

∣∂β ju j(x)∣

≤ ∑
β1+⋅⋅⋅+βm=α

(
α

β1 , . . . , βm
)

m
∏
j=1

(∂β j
∫

Ωx
Kα(x , t)∣∂αu j(t)∣

p
ρ j(t)dt)

1/p

× (∂β j
∫

Ωx
Kα(x , t)ρ−q/p

j (t)dt)
1/q

≤ [ ∑
β1+⋅⋅⋅+βm=α

(
α

β1 , . . . , βm
)

m
∏
j=1

∂β j
∫

Ωx
Kα(x , t)∣∂αu j(t)∣pρ j(t)dt]

1/p

× [ ∑
β1+⋅⋅⋅+βm=α

(
α

β1 , . . . , βm
)

m
∏
j=1

∂β j
∫

Ωx
Kα(x , t)ρ−q/p

j (t)dt]
1/q

= [∂α(
m
∏
j=1
∫

Ωx
Kα(x , t)∣∂αu j(t)∣

p
ρ j(t)dt)]

1/p

× [∂α(
m
∏
j=1
∫

Ωx
Kα(x , t)ρ−q/p

j (t)dt)]
1/q
,

and so

(2.6) ∣∂α(
m
∏
j=1

u j(x)) ∣
p
ω(x) ≤ ∂α(

m
∏
j=1
∫

Ωx
Kα(x , t)∣∂αu j(t)∣

p
ρ j(t)dt)

for all x ∈ Ω. Multiplying both sides of (2.6) by Kα(b, x) and then integrating with
respect to x over Ω yields (2.1), as required.

Unlessm = 1, the equality condition in (2.1) is implied by (2.3). So equalities in (2.4)
and (2.5) hold for all 0 ≤ β ≤ α and x ∈ Ω. Assume that ∂αu j /= 0 on Ω (otherwise, we
can take C j = 0). _en, from the equality condition of Hölder’s inequality, we have

∣∂βu j(x)∣ = ∫
Ωx

Kα−β(x , t)∣∂αu j(t)∣dt ,(2.7)

A j ∣∂αu j(t)∣pρ j(t) = B jρ
−q/p
j (t) a.e. t ∈ Ωx ,(2.8)

where A j and B j are real constants. By the continuity of ρ j on Ω, equations (2.7) and
(2.8) imply that there exist some real constants C j /= 0, where j = 1, . . . ,m, such that

∂αu j(t) = C jρ
−q/p
j (t), t ∈ Ωx .

We thus get (2.2). Conversely, direct computation shows that equality holds in (2.1) if
u j , j = 1, . . . ,m, are given by (2.2).

Next, we establish integral inequalities for partial diòerential operators acting on
compositions of functions. For k ∈ N and 0 < R ≤ ∞, we denote by Gk

R the class of all
functions G∶ (−R, R) → R satisfying the following conditions:
(a) G ∈ Ck(−R, R),
(b) G( j)(0) = 0 for all 0 ≤ j ≤ k − 1,
(c) ∣G(k)(x)∣ ≤ G(k)(∣x∣) for all x ∈ (−R, R), and
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(d) if x ≤ y1/pz1/q , 0 ≤ x , y, z < R, then 0 ≤ G(k)(x) ≤ [G(k)(y)]1/p[G(k)(z)]1/q .

Remark 2.2 From [5, Remark 2.6] we notice that if G ∈ Gk
R , then G( j), where

j = 1, . . . , k, are non-negative and increasing on the interval (0, R). Moreover, if
j ≤ k, then Gk

R ⊂ G
j
R .

Example 2.3 _e function G(x) = ∣x∣p , where p ∈ [k,∞) ∪N0, belongs to Gk
∞
.

_eorem 2.4 Let G be a function of class G∣α∣R and let ρ be a weight on Ω such that
there exists a new weight

θ(x) = [∂αG(∫
Ωx

Kα(x , t)ρ−q/p
(t)dt)]

−p/q
, x ∈ Q .

Let u ∈ AC
α
p(Ω, ρ) be such that ∫Ω ∣∂αu(x)∣pKα(b, x)ρ(x)dx < R; then

(2.9) ∫
Ω
∣∂αG(u(x))∣ pKα(b, x)θ(x)dx ≤ G(∫

Ω
∣∂αu(x)∣ pKα(b, x)ρ(x)dx) .

Assume further that G(∣α∣) is strictly increasing on (0, R); then equality holds in (2.9)
only if there exists a real constant C such that

(2.10) u(x) = C ∫
Ωx

Kα(x , t)ρ−q/p
(t)dt , x ∈ Ω.

Proof For u ∈ AC
α
p(Ω, ρ) and 0 ≤ β ≤ α, we see from (2.3) that

(2.11) ∣∂βu(x)∣ ≤ [∂β(∫
Ωx

Kα(x , t)∣∂αu(t)∣pρ(t)dt)]
1/p

× [∂β(∫
Ωx

Kα(x , t)ρ−q/p
(t)dt)]

1/q
, x ∈ Ω.

According to (2.11) and Remark 2.2, we get

∣G(k)(u(x))∣ ≤ G(k)(∣u(x)∣)

≤ G(k)([∫
Ωx

Kα(x , t)∣∂αu(t)∣pρ(t)dt]
1/p

[∫
Ωx

Kα(x , t)ρ−q/p
(t)dt]

1/q
)

≤ [G(k)(∫
Ωx

Kα(x , t)∣∂αu(t)∣pρ(t)dt)]
1/p

× [G(k)(∫
Ωx

Kα(x , t)ρ−q/p
(t)dt)]

1/q

(2.12)

for 0 ≤ k ≤ ∣α∣ and x ∈ Ω. Notice that

(2.13) ∂αG(u(x)) =
n
∏
i=1

[∂ iu(x)]
α iG(∣α∣)(u(x)) + ⋅ ⋅ ⋅ + ∂αu(x)G′

(u(x)),
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where all coeõcients appearing in the sum are non-negative. Using (2.11) and (2.12)
in (2.13) and applying Hölder’s inequality we obtain

∣∂αG(u(x))∣ p ≤ ∂αG(∫
Ωx

Kα(x , t)∣∂αu(t)∣pρ(t)dt)

× [∂αG(∫
Ωx

Kα(x , t)ρ−q/p
(t)dt)]

p/q
,

and hence

(2.14) ∣∂αG(u(x))∣ pKα(b, x)θ(x) ≤

Kα(b, x)∂αG(∫
Ωx

Kα(x , t)∣∂αu(t)∣pρ(t)dt) , x ∈ Ω.

Integrating both sides of (2.14) with respect to x over Ω and using the monotonicity
of G we obtain (2.9).

IfG(∣α∣) is strictly increasing on (0, R), then so is G(k) for 0 ≤ k ≤ ∣α∣ − 1. _us, the
case of equality follows from (2.11) and (2.12). Hence, by an argument similar to that
used in the proof of _eorem 2.1 we derive u has the form (2.10), as required.

Combining _eorems 2.1 and 2.4 yields the following corollary.

Corollary 2.5 Let G j ∈ G
∣α∣
R and ρ j , where j = 1, . . . ,m, be some weights on Ω such

that there exists a new weight

η(x) ∶= [∂α
m
∏
j=1

G j(∫
Ωx

Kα(x , t)ρ−q/p
j (t)dt)]

−p/q
, x ∈ Q .

Let u j ∈ AC
α
p(Ω, ρ j), where j = 1, . . . ,m, be such that

∫
Ω
∣∂αu j(x)∣

p
Kα(b, x)ρ j(x)dx < R;

then

(2.15) ∫
Ω
∣∂α(

m
∏
j=1

G j(u j(x))) ∣
p
Kα(b, x)η(x)dx ≤

m
∏
j=1

G j(∫
Ω
∣∂αu j(x)∣

p
Kα(b, x)ρ j(x)dx) .

If, in addition, we assume that G(∣α∣)j , where j = 1, . . . ,m, are strictly increasing on
(0, R), then equality holds in (2.15) only if

u j(x) = C j ∫
Ωx

Kα(x , t)ρ−q/p
j (t)dt , x ∈ Ω,

where C j , j = 1, . . . ,m, are real constants.

By virtue of Corollary 2.5 one can derive a new Opial-type inequality involving
functions of n variables as follows.
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Corollary 2.6 Let r, s > 0 be such that 1/p + 1/r = 1/s. Suppose that the hypotheses
in Corollary 2.5 are valid. _en, for a weight σ on Ω such that

K ∶= (∫
Ω
Kα(b, x)η−r/p

(x)σ r/s
(x)dx)

1/r
< ∞,

we have

(2.16) [∫
Ω
∣∂α(

m
∏
j=1

G j(u j(x))) ∣
s
Kα(b, x)σ(x)dx]

1/s
≤

K
m
∏
j=1

[G j(∫
Ω
∣∂αu j(x)∣

p
Kα(b, x)ρ j(x)dx)]

1/p
.

Assume further that G(∣α∣)j , where j = 1, . . . ,m, are strictly increasing on (0, R); then
equality holds in (2.16) only if

u j(x) = C j ∫
Ωx

Kα(x , t)ρ−q/p
j (t)dt , x ∈ Ω,

where C j , j = 1, . . . ,m, are real constants.

Proof Using Hölder’s inequality with conjugate exponents p/s and r/s yields

[∫
Ω
∣∂α(

m
∏
j=1

G j(u j(x))) ∣
s
Kα(b, x)σ(x)dx]

1/s
≤

K[∫
Ω
∣∂α(

m
∏
j=1

G j(u j(x))) ∣
p
Kα(b, x)η(x)dx]

1/p
,

which, in view of (2.15), gives (2.16).

Remark 2.7 Corollary 2.5 gives rise to further Opial-type inequalities for functions
of n variables:
● Let α = 1, m = 1, s = 1, p = r = 2, σ = ρ1 ≡ 1, G1(x) = x2, and u = u1 ∈ AC

1
2(Ω, 1).

One has

(2.17) ∫
Ω
∣∂1u2

(x)∣dx ≤ Vol(Ω)∫
Ω
∣∂1u(x)∣ 2dx .

Equality holds in (2.17) if and only if u has the form

u(x) = CVol(Ωx), x ∈ Ω,

where C is a real constant.
● Let α = 1, m = 1, s = 1, p = r = 2, ρ1 ≡ 1, G1(x) = x2, and u = u1 ∈ AC

1
2(Ω, 1); then

(2.16) reduces to

(2.18) ∫
Ω
∣∂1u2

(x)∣σ(x)dx ≤ K ∫
Ω
∣∂1u(x)∣ 2dx

provided

K ∶= (2n
∫

Ω
Vol(Ωx)σ 2

(x)dx)
1/2

< ∞.
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● If one sets α = 1, m = 1, s = 1, σ = ρ1 ≡ 1, G1(x) = ∣x∣p and u = u1 ∈ AC
1
p(Ω, 1), then

we have

(2.19) ∫
Ω
∣∂1∣u(x)∣p ∣dx ≤ [Vol(Ω)]

p−1
∫

Ω
∣∂1u(x)∣ pdx .

Equality holds in (2.19) if and only if there is a real constant C such that u(x) =

CVol(Ωx), x ∈ Ω.

3 Applications

_is section deals with some applications of inequalities obtained in Remark 2.7 in
studying the partial diòerential equation

(3.1) ∂1u(x) = ζ(x , ⟨u⟩), x ∈ Ω,

with the initial conditions u∣x j=a j = 0 for j = 1, . . . , n, where

⟨u⟩ = (u, ∂(1,0,. . . ,0)u, ∂(0,1,. . . ,0)u, . . . , ∂(0,1,. . . ,1)u) ⊂ R2n−1 .

3.1 Uniqueness of the Initial Value Problem

If the function ζ satisûes a Lipschitz condition, i.e., there exists a non-negative con-
stant M such that for all (x , ⟨u⟩), (x , ⟨u⟩) ∈ Ω ×R2n−1,

(3.2) ∣ζ(x , ⟨u⟩) − ζ(x , ⟨u⟩)∣ ≤ M∣u(x) − u(x)∣,

then equation (3.1) has at most one solution on Ω. Notice that the constant M in
(3.2) can be replaced by a non-negative continuous function f (x) on Ω. We refer to
[1,12,13] for a more general and detailed discussion of this problem. However, we will
see in the following theorem that the Lipschitz condition (3.2) is only a suõcient but
not a necessary condition to prove the uniqueness of the solution of (3.1).

_eorem 3.1 Suppose that for (x , ⟨u⟩), (x , ⟨u⟩) ∈ Ω ×R2n−1 ,

(3.3) ∣ ζ(x , ⟨u⟩) − ζ(x , ⟨u⟩)∣ ≤ f (x)∣u(x) − u(x)∣ ,

where f is non-negative on Ω and there exists a positive number M such that

(3.4) Vol(Ωx)(∫
Ωx
f q(t)dt)

2q/p
≤ M , x ∈ Ω.

_en equation (3.1) has at most one solution on Ω.

Proof Assume that u and u are two solutions of (3.1). _en the function v ∶= u − u
satisûes

v(x) = ∫
Ωx

[ ζ( t , ⟨u⟩) − ζ( t , ⟨u⟩)]dt , x ∈ Ω.

By (3.3) and Hölder’s inequality, one has

∣v(x)∣ ≤ ∫
Ωx
f (t)∣v(t)∣dt ≤ (∫

Ωx
f q(t)dt)

1/q
(∫

Ωx
∣v(t)∣pdt)

1/p
,
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and so

∣v(x)∣2p ≤ (∫
Ωx
f q(t)dt)

p/q
∣v(x)∣p(∫

Ωx
∣v(t)∣pdt) , x ∈ Ω.

Since

∣v(x)∣p(∫
Ωx

∣v(t)∣pdt) ≤ ∂1(∫
Ωx

∣v(t)∣pdt)
2
,

it follows that

(3.5) ∣v(x)∣2p ≤ σ(x)∂1(∫
Ωx

∣v(t)∣pdt)
2
,

where

σ(x) ∶= (∫
Ωx
f q(t)dt)

p/q
, x ∈ Ω.

Let c ∈ Q be such that Vol(Ωc) < 2−n/M. _en we have

K ∶= (2n
∫

Ωc
Vol(Ωx)σ 2

(x)dx)
1/2

< 1, x ∈ Ωc ,

by (3.4). Integrating both sides of (3.5) with respect to x over Ωc and applying (2.18),
we obtain

∫
Ωc

∣v(x)∣2pdx ≤ K ∫
Ωc

∣v(x)∣2pdx ,

which yields v(x) = 0 on Ωc . If c ≤ b and c /= b, we can repeat the above arguments
to obtain v(x) = 0 on Ω. Hence, we have u = u on Ω.

Example 3.2 Let δ ∈ (0, 1) and consider the partial diòerential equation

(3.6) ∂1u(x) = u(x)
[Vol(Ωx)]

δ , x ∈ Q ,

together with the initial conditions u∣x j=a j = 0 for j = 1, . . . , n. Since the func-
tion f (x) = 1/[Vol(Ωx)]

δ is unbounded on Q, it follows that ζ(x , ⟨u⟩) =

u(x)/[Vol(Ωx)]
δ does not satisfy the Lipschitz condition on Q. However, we see

that u ≡ 0 is the unique solution of the problem. Indeed, let q > 1 be such that qδ < 1.
_en

Vol(Ωx)(∫
Ωx
f q(t)dt)

2q/p
=

1
(1 − qδ)2nq/p [Vol(Ωx)]

1+2(1−qδ)q/p

≤
1

(1 − qδ)2nq/p [Vol(Ω)]
1+2(1−qδ)q/p

, x ∈ Ω.

Hence, by taking advantage of_eorem3.1 we claim that equation (3.6) has the unique
solution u ≡ 0 on Ω.
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3.2 Upper Bound of Solutions

Finally, we get an upper bound of the solutions of (3.1).

_eorem 3.3 Let δ > 1 and suppose that

(3.7) ∣ζ(x , ⟨u⟩)∣ ≤ f (x) + h(x)∣u(x)∣δ , x ∈ Ω,

where f and h are non-negative on Ω. We assume further that equation (3.1) has solu-
tions u ∈ AC

1
δ(Ω, 1). _en

(3.8) u(x) ≤ ∫
Ωx

[F 1−δ
(t) − (δ − 1)H(t)Vol(Ωt)]

1/(1−δ)
dt

as long as the right-hand side integral exists, where F(x) ∶= supt∈Ωx
f (t) and H(x) ∶=

supt∈Ωx
h(t)[Vol(Ωt)]

δ−1 for x ∈ Ω.

Proof Making use of (2.19) with p = δ we observe that

∣u(x)∣δ = ∫
Ωx

∂1∣u(t)∣δdt ≤ [Vol(Ωx)]
δ−1
∫

Ωx
∣∂1u(t)∣ δdt ,

and so, in view of (3.7), we obtain

(3.9) ∣∂1u(x)∣ ≤ f (x) + h(x)[Vol(Ωx)]
δ−1
∫

Ωx
∣∂1u(t)∣ δdt , x ∈ Ω.

Let s ∈ Ω be arbitrary, but ûxed. _en inequality (3.9) gives

(3.10) ∣∂1u(t)∣ ≤ F(s) +H(s)∫
Ω t

∣∂1u(y)∣ δdy, t ∈ Ωs .

Next, let R(t) be the right-hand side of (3.10), so that

(3.11) ∂1R(t) = H(s)∣∂1u(t)∣ δ ≤ H(s)Rδ(t), t ∈ Ωs ,

where R∣t j=a j = F(s) for j = 1, . . . , n. Since

∫
Ωw

∂1R(t)
Rδ(t)

dt ≥ 1
1 − δ

[R1−δ
(w) − F 1−δ

(s)]

it follows from (3.11) that
1

1 − δ
[R1−δ

(w) − F 1−δ
(s)] ≤ H(s)Vol(Ωw),

which, together with (3.10), yields

∣∂1u(w)∣ ≤ R(w) ≤ [F 1−δ
(s) − (δ − 1)H(s)Vol(Ωw)]

1/(1−δ)
, w ∈ Ωs .

In the above inequality replacing w by s and integrating both sides with respect to s
over Ωx for x ∈ Ω, we obtain (3.8).

We illustrate this in the following example.

Example 3.4 We consider the nonlinear partial diòerential equation

∂1u(x) = 1 +
u2(x)

1 + [Vol(Ωx)]2
, x ∈ Ω,
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with u∣x j=a j = 0 for all j = 1, . . . , n. Let f (x) = 1 and h(x) = 1/(1 + [Vol(Ωx)]
2). We

see that F(x) = 1 and H(x) = Vol(Ωx)/(1 + [Vol(Ωx)]
2). _erefore, as in (3.8),

u(x) ≤ ∫
Ωx

( 1 + [Vol(Ωt)]
2)dt = Vol(Ωx) +

1
3
[Vol(Ωx)]

3 , x ∈ Ω.
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