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Abstract

We investigate the Zagreb index, one of the topological indices, of random recursive
trees in this paper. Through a recurrence equation, the first two moments of Zn, the
Zagreb index of a random recursive tree of size n, are obtained. We also show that the
random process {Zn − E[Zn], n ≥ 1} is a martingale. Then the asymptotic normality of
the Zagreb index of a random recursive tree is given by an application of the martingale
central limit theorem. Finally, two other topological indices are also discussed in passing.
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1. Introduction

Many chemists who derive and use molecular complexity indices employ concepts and
terminology from (chemical) graph theory in their work (see, for example, Harary (1972) and
Trinajstić (1992)), where graphs are generated from molecules by replacing atoms with vertices
and bonds with edges, or represent only bare molecular skeletons, that is, molecular skeletons
without hydrogen atoms.

The Zagreb index of a (molecular) graph is defined as the sum of the squares of the
degrees of all vertices in the graph. This index, one of the topological indices of a graph,
was introduced by chemists Gutman and Trinajstić (1972). Nikolić et al. (2000) studied the
mathematical properties of the Zagreb index. Recently, the Zagreb index and its variants have
been used to study molecular complexity, chirality, ZE isomerism, and heterosystems, whilst
the overall Zagreb indices exhibited a potential applicability for deriving multilinear regression
models (see, for example, Nikolić et al. (2003b)). The Zagreb index has also been used in
the studies of quantitative structure-property/activity relationships (QSPR/QSAR) (see, for
example, Devillersand and Balaban (1999, p. 28)). For its connection with several topological
indices and more background, we refer the reader to Nikolić et al. (2003a) and the references
therein.

Since the structures of many molecules are tree like, our interest here is to study the Zagreb
index of random trees. For a tree T of size n, Li et al. (2003) studied the extreme values of the
Zagreb index of T : it reaches the minimum value 4n − 6 if and only if T is a path on n nodes,
and reaches the maximum value n(n − 1) if and only if T is a star on n nodes.
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Several other topological indices of random trees have been studied by many authors. We
refer the reader toAli Khan and Neininger (2007), Janson (2003), Janson and Chassaing (2004),
and Neininger (2002) for the Wiener index, and to Clark and Moon (2000), Feng et al. (2008),
and Hollas (2005) for the Randić index. Our aim in this paper is to consider the probabilistic
behaviors of the Zagreb index for random recursive trees.

A random recursive tree is an outgrowth from a single node labeled 1. Progressively, nodes
are added in stages: at the nth stage a node in the existing tree is chosen at random as the parent
of the nth entrant (labeled n). In this context random means that all nodes in the tree of size
n − 1 are equally likely to be the parent of n. The model of random recursive trees induces a
uniform distribution on the trees of order n: all (n − 1)! recursive trees of size n are generated
with equal probability. The random recursive tree is a naturally growing structure that underlies
many stochastic phenomena and algorithms. For numerous applications of random recursive
trees, we refer the reader to Smythe and Mahmoud (1994).

The paper is organized as follows. We first show a recurrence for the Zagreb indices of
random recursive trees, from which a martingale is constructed and the mean and variance of
the Zagreb index are given. Then the asymptotic normality of the Zagreb index of a random
recursive tree is proved as the size of the tree grows to infinity. Finally, two topological indices
which are closely related to the Zagreb index are mentioned in passing.

2. The martingale and the moments

For convenience, we denote by Hn the nth harmonic number, i.e.

Hn =
n∑

j=1

1

j
, n ≥ 1,

with H0 = 0.
Let Zn be the Zagreb index of a random recursive tree of size n. Let Dk,n denote the degree

of node k in the random recursive tree of size n. We also define F n to be the σ -field generated
by the first n stages of the random recursive trees. Considering the insertion of node n at the
nth stage, we obtain

Zn = Zn−1 + (DUn,n−1 + 1)2 − D2
Un,n−1 + 1

= Zn−1 + 2DUn,n−1 + 2, (1)

where Un = ∑n−1
k=1 k 1(node k is the parent of node n) is uniformly distributed on the set

{1, 2, . . . , n − 1} and independent of Fn−1.
We can compute the moments of Zn by (1). Clearly,

E[Zn | Fn−1] = E[Zn | Dk,n−1, k = 1, 2, . . . , n − 1]

= Zn−1 + 2

n − 1

n−1∑
k=1

Dk,n−1 + 2.

Note that the sum of the degrees of all nodes in a tree of size n is 2(n − 1). Then we have

E[Zn | Fn−1] = Zn−1 + 6 − 4

n − 1
. (2)

https://doi.org/10.1239/jap/1324046027 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1324046027


On the Zagreb index of random recursive trees 1191

Thus,

E[Zn] = E[Zn−1] + 6 − 4

n − 1
.

With the initial values Z1 = 0 and Z2 = 2, the above recurrence equation has the solution

E[Zn] = 6n − 4Hn−1 − 6, n ≥ 1. (3)

Relation (2) also implies that

E[Zn − E[Zn] | Fn−1] = Zn−1 − E[Zn−1].
That is, the process {Zn − E[Zn], n ≥ 1} is a martingale. Let M1 = 0 and

Mn := Zn − Zn−1 − 6 + 4

n − 1
, n ≥ 2.

Then {Mn, n ≥ 1} is the martingale difference sequence of {Zn − E[Zn], n ≥ 1}. Hence,
E[Mn | Fn−1] = 0.

For the second moment of Zn, also computed by (1), we have

E[(Zn − Zn−1 − 2)2 | Fn−1] = 4 E[D2
Un,n−1 | Fn−1] = 4

n − 1
Zn−1. (4)

By noting that, for n ≥ 2,

E[(Zn − Zn−1 − 2)2 | Fn−1] = E

[(
Mn + 4 − 4

n − 1

)2 ∣∣∣∣ Fn−1

]

= E[M2
n | Fn−1] +

(
4 − 4

n − 1

)2

, (5)

we have

E[M2
n] = 4

n − 1
E[Zn−1] −

(
4 − 4

n − 1

)2

= 8 − 16Hn−2 − 8

n − 1
+ 16

(n − 1)2

= 8 + O

(
log n

n

)
, n ≥ 2. (6)

Since E[MiMj ] = 0 for any 1 ≤ i �= j ≤ n, we obtain

var[Zn] = E(Zn − E[Zn])2

= E

[ n∑
j=1

Mj

]2

=
n∑

j=1

E[M2
j ]

= 8n + O(log2 n), n ≥ 2.

We have thus proved the following result.
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Proposition 1. Let Zn be the Zagreb index of a random recursive tree of size n. Then the
process {Zn − E[Zn], n ≥ 1} is a martingale, and

E[Zn] = 6n − 4Hn−1 − 6 = 6n + O(log n),

var[Zn] = 8n + O(log2 n).

By Proposition 1 and Chebyshev’s inequality, it follows that Zn/ E[Zn] p−→ 1. This, together
with (3), yields the following weak law of large numbers of Zn.

Proposition 2. For Zn, the Zagreb index of a random recursive tree of size n, as n → ∞, we
have

Zn

n

p−→ 6.

Remark. A random recursive tree of size n is much ‘closer’ to a path of length n (with the
Zagreb index 4n − 6) than a star of size n (with the Zagreb index n(n − 1)), when n is large.
However, as expected, a random binary tree is a bit closer to a path than a random recursive tree
when their sizes grow (see Feng (2011)). The expected Zagreb index of a random binary search
tree of size n is 14n/3 + O(1), while that of a binary Catalan tree of size n is 9n/2 + O(1).

3. Asymptotic normality

For the asymptotic normality of Zn, we need the following two lemmas.

Lemma 1. We have
1

n

n∑
j=1

Zj − E[Zj ]
j

p−→ 0. (7)

Proof. Since

n∑
j=1

Zj − E[Zj ]
j

=
n∑

j=1

1

j

j∑
i=1

Mi =
n∑

j=1

(Hn − Hj−1)Mj ,

by (6) we have, for n ≥ 2,

E

[ n∑
j=1

Zj − E[Zj ]
j

]2

=
n∑

j=1

(Hn − Hj−1)
2 E[M2

j ]

≤ (Hn − 1)2
n∑

j=1

E[M2
j ]

= 8n log2 n + O(log4 n).

Then (7) follows by Chebyshev’s inequality.

Lemma 2. For the maximum degree of the nodes in a random recursive tree of size n, as
n → ∞,

1√
n

max
1≤j≤n

Dj,n
p−→ 0.
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Proof. Define Iji = 1(node j is the parent of node i) for 1 ≤ j < i ≤ n. Then Iji ∼
Ber(1/(i − 1)), and the degree of node j in a random recursive tree of size n can be expressed
as

Dj,n =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

n∑
i=j+1

Iji if j = 1,

1 +
n∑

i=j+1

Iji if 2 ≤ j ≤ n.

Note that, for fixed j , the Iji , i = j + 1, . . . , n, are independent. Then by the inequality
(a + b)3 ≤ 4(a3 + b3) for any a, b ≥ 0 we have, for n ≥ 2,

E[D3
j,n] ≤ E

(
1 +

n∑
i=j+1

Iji

)3

≤ 4 + 4 E

( n∑
i=j+1

Iji

)3

≤ 4 + 4 E

[ n∑
i=j+1

(
Iji − 1

i − 1

)]3

+ 4

[ n∑
i=j+1

1

i − 1

]3

+ 12

[ n∑
i=j+1

1

i − 1

]
E

[ n∑
i=j+1

(
Iji − 1

i − 1

)]2

+ 12

[ n∑
i=j+1

1

i − 1

]2

E

[ n∑
i=j+1

(
Iji − 1

i − 1

)]

= 4 + 4
n∑

i=j+1

E

[
Iji − 1

i − 1

]3

+ O(log3 n)

+ O(log n)

n∑
i=j+1

E

[
Iji − 1

i − 1

]2

= O(log3 n).

Thus, for any ε > 0,

P
(

max
1≤j≤n

Dj,n > ε
√

n
)

≤
n∑

j=1

P(Dj,n > ε
√

n) ≤ 1

ε3n3/2

n∑
j=1

E[D3
j,n] → 0,

which completes the proof.

The result of the above lemma can be strengthened. Devroye and Lu (1995) showed that
max1≤j≤n Dj,n/ log2 n

p−→ 1. For more results concerning the maximum degree of the nodes
in a random recursive tree, we refer the reader to Goh and Schmutz (2002).

The following theorem is our main result.

Theorem 1. For Zn, the Zagreb index of a random recursive tree of size n, as n → ∞, we
have

Zn − 6n√
8n

d−→ N(0, 1).
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Proof. By (3) we only need to prove that

Zn − E[Zn]√
8n

d−→ N(0, 1).

Let

Xni = Mi√
8n

, i = 1, 2, . . . , n, n = 1, 2, . . . .

By Corollary 3.1 of Hall and Heyde (1980), it is sufficient to show that

n∑
i=1

E[X2
ni | Fi−1] p−→ 1, (8)

and, for any ε > 0,
n∑

i=1

E[X2
ni 1(|Xni | > ε) | Fi−1] p−→ 0. (9)

We check (8) first. By (4) and (5),

n∑
i=1

E[X2
ni | Fi−1] = 1

8n

n∑
i=1

E[M2
i | Fi−1]

= 1

2n

n−1∑
j=1

[
Zj

j
−

(
2 − 2

j

)2]

= 1

2n

n−1∑
j=1

Zj − E[Zj ]
j

+ 1

2n

n−1∑
j=1

[
E[Zj ]

j
−

(
2 − 2

j

)2]
.

Then (8) follows by Lemma 1 and (3).
Note that, by (1), for any ε > 0, we have, for sufficiently large n,

n∑
i=1

E[X2
ni 1(|Xni | > ε) | Fi−1]

= 1

8n

n∑
i=1

E[M2
i 1(|Mi | > ε

√
8n) | Fi−1]

= 1

2n

n∑
i=2

E

[(
DUi,i−1 − 2(i − 2)

i − 1

)2

1
(∣∣∣∣2DUi,i−1 − 4(i − 2)

i − 1

∣∣∣∣ > ε
√

8n

) ∣∣∣∣ Fi−1

]

≤ 1

2n

n∑
i=2

E[D2
Ui,i−1 1(DUi,i−1 > ε

√
n) | Fi−1]

+ 2

n

n∑
i=2

E[1(DUi,i−1 > ε
√

n) | Fi−1].

Thus, in order to prove (9), we only need to prove that, for any ε > 0,

1

n

n∑
i=2

E[D2
Ui,i−1 1(DUi,i−1 > ε

√
n) | Fi−1] p−→ 0 (10)
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and
1

n

n∑
i=2

E[1(DUi,i−1 > ε
√

n) | Fi−1] p−→ 0. (11)

Since
1

n

n∑
i=2

E[D2
Ui,i−1 1(DUi,i−1 > ε

√
n) | Fi−1]

= 1

n

n∑
i=2

1

i − 1

i−1∑
j=1

D2
j,i−1 1(Dj,i−1 > ε

√
n)

≤
(

1

n

n∑
i=2

1

i − 1

i−1∑
j=1

D2
j,i−1

)
1
(

max
1≤j≤n

Dj,n > ε
√

n
)
,

by Lemma 2, for any δ > 0, we have

P

(
1

n

n∑
i=2

E[D2
Ui,i−1 1(DUi,i−1 > ε

√
n) | Fi−1] > δ

)

≤ P

((
1

n

n∑
i=2

1

i − 1

i−1∑
j=1

D2
j,i−1

)
1
(

max
1≤j≤n

Dj,n > ε
√

n
)

> δ

)

≤ P
(

max
1≤j≤n

Dj,n > ε
√

n
)

→ 0.

Hence, (10) holds. Similarly,

1

n

n∑
i=2

E[1(DUi,i−1 > ε
√

n) | Fi−1] ≤ 1
(

max
1≤j≤n

Dj,n > ε
√

n
)
,

which, together with Lemma 2, implies (11). The proof of Theorem 1 is complete.

4. The Gordon–Scantlebury and Platt indices

A path in a graph is a sequence of adjacent edges, which do not pass through the same vertex
more than once, and the length of the path is the number of edges in it. The degree of an edge
is equal to the number of its adjacent edges. For a simple graph G, the Gordon–Scantlebury
index of G is equal to the number of paths of length two in G (see Gordon and Scantlebury
(1964)), and the Platt index is equal to the total sum of the degrees of all edges in G (see Platt
(1947)).

The Zagreb index is related to the Gordon–Scantlebury and Platt indices (see, for example,
Barysz et al. (1986)). Let ZG, SG, and PG be the Zagreb index, the Gordon–Scantlebury index,
and the Platt index of the graph G, respectively. Nikolić et al. (2003a) showed that

ZG = 2(SG + E(G)) and PG = 2SG,

where E(G) denotes the number of edges in G. Since the number of edges in a tree of size n

is obviously n − 1, we can directly establish parallel results for the Gordon–Scantlebury and
the Platt indices of a random recursive tree. We omit the details.
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Nikolić, S., Tolić, I. M., Trinajstić, N. and Baučić, I. (2000). On the Zagreb indices as complexity indices. Croatica

Chemica Acta 73, 909–921.
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