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The rational topology of gauge groups

and of spaces of connections
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Abstract

Let P be a principal bundle with semisimple compact simply connected structure group G
over a compact simply connected four-manifold M . In this paper we give explicit formulas
for the rational homotopy groups and cohomology algebra of the gauge group and of the
space of (irreducible) connections modulo gauge transformations for any such bundle.

1. Introduction

Our aim in this paper is to compute the rational homotopy groups and the rational cohomology of
the gauge group and of the space of connections modulo gauge transformations for principal bundles
over four-manifolds. We assume that G is a semisimple compact simply connected Lie group and
that M is compact and simply connected.

Note that in some particular cases some of these computations have already been done. Namely,
Donaldson [Don86], whose original calculation precedes the book [DK90], computed the cohomology
structure of the quotients of spaces of connections for SU(2)-principal bundles over compact simply
connected four-manifolds, but the proof essentially uses the fact that the structure group is SU(2).

We propose here a general approach which appeals to Sullivan’s minimal model theory. We pro-
ceed as follows. First we compute the rational homotopy groups of the gauge group using the result
of Singer [Sin78] characterising the weak homotopy type of base-point-preserving gauge groups,
and the Whitehead–Milnor theorem [Mil58, Whi49] giving the homotopy type of a simply con-
nected four-manifold M . Then the corresponding fibrations between the gauge groups and spaces
of (irreducible) connections yield the rational homotopy groups of the quotients.

Having computed the rational homotopy groups of the quotients of spaces of connections, the
nilpotency of the space of connections modulo base point gauge transformations group will make
it possible to apply Sullivan’s minimal model theory for the cohomology computation. Since it will
turn out that these spaces have free cohomology algebras, it will immediately imply that they are
formal in the sense of Sullivan.

In the case of the gauge groups, the application of the Sullivan minimal model theory is possible
because they are H-spaces.

As examples we recover the calculation of the rational cohomology in the case when G = SU(2)
and also provide the calculation in the case when G = E8.
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Rational topology of gauge groups

1.1 General remarks
In this section we briefly recall some general facts on the topology of gauge groups and spaces of
connections. For definitions and detailed information on this topic we refer to [DK90].

Let π : P →M be a G-principal bundle, where G is a semisimple compact simply connected Lie
group and M a compact simply connected four-manifold. Let G be the group of gauge transforma-
tions of this principal bundle which induce the identity on the base.

Let A denote the space of all connections and A∗ the subspace of all irreducible connections on
the bundle P . We assume that A and G are equipped with certain Sobolev topologies. Usually one
fixes the Sobolev class L2

p−1 for A and L2
p for G, but since we will be interested only in homotopy-

invariant properties, the particular choice of p is not important, as long as p is large enough.
The action of G on A and A∗ is not free in general. In order to have a free action on A, it turns

out that one should consider those gauge transformations which fix one fiber. Such automorphisms
of P we denote by G0. Besides that, one also has the free action of the group G̃ = G/Z(G) on A∗,
where by Z(G) we denote the center of the group G. Note that Z(G) is finite, since we assume G
to be semisimple.

The corresponding quotients we denote B̃ = A/G0, B̃∗ = A∗/G0 and B∗ = A∗/G̃. Since in all
these cases we have free actions, one gets the corresponding fibrations

G0 → A→ B̃, (1)

G0 → A∗ → B̃∗, (2)

G̃ → A∗ → B∗. (3)

We are interested in the rational topology of these objects, i.e. firstly in a computation of their
rational homotopy groups, and secondly in a computation of their rational cohomology.

For these purposes the following observations are useful (see [DK90]).

1.2 Remarks
i) A is contractible, since it is an affine space.

ii) πj(A∗) = 0 as A∗ is weakly homotopy equivalent to A.

iii) B̃∗ is weakly homotopy equivalent to B̃.

iv) G̃ = G/Z(G) and hence we have a fibration Z(G) → G → G̃ which gives an exact homotopy
sequence

· · · → πj(Z(G))→ πj(G)→ πj(G̃)→ πj−1(Z(G))→ · · · .
Since Z(G) is finite we have that, πj(Z(G)) = 0 for j � 1 and, therefore,

πj(G) = πj(G̃) for j � 2.

For j = 1 we have the exact sequence

0→ π1(G)→ π1(G̃)→ Z(G)→ π0(G)→ π0(G̃). (4)

v) G = G/G0 and we have also the fibration G0 → G → G, which implies the exact sequence

πj+1(G)→ πj(G0)→ πj(G)→ πj(G). (5)

1.3 Algebraic topology tools

We recall here some well known facts from algebraic topology which will be useful for our purposes
(see [Swi75]).
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Let M = X ∪f CY be a cofibration, i.e. intuitively we glue the base of the cone CY to X
by means of f . Denote by SX the suspension of X which we may regard as being the quotient
(I ×X)/({0} ×X ∪ I × {x0} ∪ {1} ×X). Then the sequence

(Y, ∗) f→ (X, ∗) j→ (M, ∗) k
′
→ (SY, ∗) Sf→ (SX, ∗) Sj→ (SM, ∗)→ · · ·

· · · Snf→ (SnY, ∗) Snf→ (SnX, ∗) Snj→ (SnM, ∗)→ · · ·
is coexact. This means that the mapping functor Map(−, G) will turn this sequence into an exact
sequence

[Y ;G]
f∗
← [X;G]

j∗← [M ;G] k
′∗← [SY ;G]

Sf∗
← [SX;G]

Sj∗← [SM ;G]← · · · . (6)

The following obvious observation will be useful for our further computation.

Lemma 1.
πj(Map∗(M,G)) = [SjM ;G], j ∈ N. (7)

2. Rational homotopy groups of gauge groups and of spaces of connections

Let M be a compact simply connected four-dimensional manifold. Then, by the result of Whitehead
and Milnor [Mil58, Whi49], we know that M is homotopically a cofibration, i.e. M =∨

b2(M) S2 ∪h D4. It means that, up to homotopy, M is obtained by attaching a four-cell to the
wedge of two-spheres by an attaching map h : S3 → ∨

b2(M) S2. Since D4 = CS3 and SSk = Sk+1,
we can apply what was said in § 1.3 to this cofibration and get the following exact sequence:

[S3;G]←
[ ∨

b2(M)

S2;G
]
← [M ;G]← [S4;G]←

[ ∨
b2(M)

S3;G
]
← · · ·

← [Sn+3;G]←
[ ∨

b2(M)

Sn+2;G
]
← [SnM ;G]← · · · ,

which is actually

π3(G)←
⊕

b2(M)

π2(G)← [M ;G]← π4(G)←
⊕

b2(M)

π3(G)← · · · (8)

← πn+3(G)←
⊕

b2(M)

πn+2(G)← [SnM ;G]← · · · .

We are able to compute first the rational homotopy groups of G0 because of the following
theorem of Singer [Sin78], which, among other things, proves that the weak homotopy type of G0 is
independent of P .

Theorem 1. If G is a compact simply connected semisimple Lie group, then for dim M � 4 we
have that

G0 ∼ Map∗(M,G), (9)
i.e. G0 is weakly homotopic to the space Map∗(M,G).

In particular, Theorem 1 gives that in the case of four-dimensional manifolds we have that

πj(G0) = πj(Map∗(M,G)),

for any j ∈ N.
Let us first recall some well known facts on the rational cohomology of connected compact Lie

groups.

264

https://doi.org/10.1112/S0010437X04000818 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X04000818


Rational topology of gauge groups

Remark 1. The classical Hopf theorem [Bor53] gives that the cohomology algebra of a compact
connected Lie group is an exterior algebra over odd-degree generators, i.e. H∗(G) =

∧
(z1, . . . , zn),

where n = rkG and deg zi = 2ki − 1. Here rkG is the rank of the group G, i.e. the dimension of
the maximal torus in G, and the numbers ki, 1 � i � n, are so-called exponents of the group G.
Because of formality, rational homotopy theory then gives that rkπ2k(G) = 0, that rkπ2k−1(G) = 0
if k is not an exponent for G, while for a k being an exponent for G we have that rkπ2k−1(G) =
b2k−1(G) = ν(k). Here by ν(k) we denote the multiplicity of the exponent k. Obviously, it is satisfied
that rkG =

∑
j∈N rkπj(G).

Remark 2. Since π2j(G) are finite, Theorem 1 and the sequence (8) imply that π0(G0) is finite.

Remark 3. Since we are interested in the rational homotopy groups of these spaces, we need to
consider the sequence (8) tensored by Q. Since π1(G0) is abelian, we can also tensor π1(G0) by Q.
Namely, G0 is a topological group and, thus, all its connected components are homeomorphic, so
we can fix the component Ge

0 corresponding to the identity automorphism. It is obviously also a
topological group and, thus, homotopically simple.1

Proposition 1. The ranks of the homotopy groups of the group G0 are given by

rkπj(G0) = b2(M) rk πj+2(G) + rkπj+4(G), j ∈ N. (10)

Proof. Applying Theorem 1 to the sequence (8) we have that

· · · ← πj+3(G) ⊗Q←
⊕

b2(M)

πj+2(G)⊗Q← πj(G0)⊗Q← πj+4(G)⊗Q · · · . (11)

Since for j even we know that πj(G) ⊗ Q = 0, the sequence (11) immediately implies that
πj(G0)⊗Q = 0 for j even.

Therefore, we will assume that j is odd. Then from the sequence (11) we can extract the following
short exact sequence

0← b2(M)πj+2(G)⊗Q← πj(G0)⊗Q← πj+4(G)⊗Q← 0.

This gives that
rkπj(G0) = b2(M) rk πj+2(G) + rkπj+4(G). (12)

Proposition 2. The ranks of the homotopy groups of the group G are given by

rkπj(G) = b2(M) rkπj+2(G) + rkπj+4(G) + rkπj(G), j ∈ N. (13)

Proof. For the same reasons as in the case of the group G0 we are able to tensor the sequence (5)
by Q. Thus, tensoring the sequence (5) by Q we get the exact sequence

πj+1(G) ⊗Q→ πj(G0)⊗Q→ πj(G)⊗Q→ πj(G)⊗Q→ πj−1(G0)⊗Q. (14)

First, for j even, this sequence implies that πj(G)⊗Q = 0.
Therefore we assume j to be odd. Then the sequence (14) and Proposition 1 give the following

short exact sequence:

0→ πj(G0)⊗Q→ πj(G)⊗Q→ πj(G)⊗Q→ 0.

This implies that

rkπj(G) = rkπj(G) + rkπj(G0) (15)
= b2(M) rk πj+2(G) + rkπj+4(G) + rkπj(G).

1Meaning that its fundamental group is abelian and acts trivially on its higher homotopy groups.
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Remark 4. Since we assume G to be semisimple, the sequences (4) and (5) give that for all j ∈ N

πj(G̃)⊗Q = πj(G)⊗Q,

and by Proposition 2 we have computed the rational homotopy groups for G̃.
Corollary 1. The rational homotopy groups for B̃, B̃∗ and B∗ are given by

i) rkπj(B̃) = rkπj(B̃∗) = b2(M) rk πj+1(G) + rkπj+3(G), j � 1,

ii) rkπj(B∗) = b2(M) rk πj+1(G) + rkπj+3(G) + rkπj−1(G), j � 1.

Proof. Since the homotopy groups of the total spaces in the fibrations (1), (2) and (3) are trivial
we get that

πj(B̃)⊗Q = πj(B̃∗)⊗Q = πj−1(G0)⊗Q,

πj(B∗)⊗Q = πj−1(G̃)⊗Q.

Now, Propositions 1 and 2 and Remark 4 give the statement.

3. Rational cohomology of gauge groups and of spaces of connections

3.1 Rational cohomology of gauge groups
As we already said in the proof of Proposition 2, the identity component Ge of the gauge group
G is a homotopically simple space. By Proposition 2 it is of finite type and has only odd-degree
nontrivial rational homotopy groups.

Now we can apply Sullivan’s minimal model theory, since, more generally, for nilpotent spaces2 of
finite type it works well. Namely, for a nilpotent space X of finite type, minimal model theory gives
that the degrees of and the numbers of generators in its minimal model are given by its nontrivial
rational homotopy groups (see [Leh77]). More precisely, if µ(X) denotes the minimal model for X
then the number of its generators µj(X) of degree j is equal to rkπj(X).

In our case this gives that the minimal model for Ge has only odd-degree generators. On the other
hand, for H-spaces of finite type the Hopf theorem [Bor53] implies that their cohomology algebra is
a free commutative algebra. Therefore, H∗(Ge) is an exterior algebra of odd-degree generators. In
particular this gives that Ge is formal in the sense of Sullivan and its minimal model coincides with its
cohomology algebra. Moreover, H∗(Ge) has generators of degree 2j−1 if and only if rkπ2j−1(G) �= 0.

Obviously, the cohomology algebra H∗(G) is equal to the sum of |π0(G)| copies of Ge, i.e.

H∗(G) =
⊕

|π0(G)|
H∗(Ge). (16)

Remark 5. If for the structure group G we have that π4(G) = 0, then the sequence (8) implies that
G0 is connected. That is the case, say, when G = SU(n), n � 3, G = Spin(n), n � 6, or G is a simply
connected Lie group of exceptional type. Obviously, the same is true for the groups G and G0.

Equation (16) and Proposition 2 immediately give the following theorem.

Theorem 2. If G is a compact simply connected semisimple Lie group, then H∗(Ge) is an exterior
algebra in (b2(M)+2) rk G−1 odd-degree generators. The number of generators of degree j is equal
to b2(M) rk πj+2(G) + rkπj+4(G) + rkπj(G).

2They are given by the condition that the fundamental group is nilpotent and acts nilpotently on higher homotopy
groups.
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3.2 Rational cohomology of B̃ and of B̃∗
Theorem 3. The rational cohomology algebra of B̃ is a polynomial algebra in (b2(M)+ 1) rk G− 1
generators of even degree. The number of generators of degree j is equal to

b2(M) rk πj+1(G) + rkπj+3(G).

We give a general proof which works for any semisimple compact simply connected Lie group G.
As we point out in Remark 7 below, under some additional assumptions on the group G, the proof
is much simpler.

Proof of Theorem 3. By the result of [AB82] and [Don86], we know that B̃ has the weak homotopy
type of Map∗(M,BG)P , where the latter denotes the homotopy class of Map∗(M,BG) corresponding
to the maps inducing the bundle P . Since M and BG are connected, the result of Hilton [Hil84] im-
plies that any connected component of the space Map∗(M,BG) is nilpotent. Hence, Map∗(X,BG)P
is also nilpotent. As B̃ is weakly homotopy equivalent to Map∗(X,BG)P , it implies that B̃ is also
nilpotent. Moreover, by Corollary 1 we know that B̃ is of finite type, so we can apply Sullivan’s
minimal model theory. It gives that for all j

rkπj(B̃) = dim(µ(B̃))j ,

and thus

µ(B̃) = Q[x1, . . . , xp],
where xi correspond to the nontrivial rational homotopy groups of B̃. Since, by Corollary 1,
πj(B̃) ⊗ Q = 0 for j odd, we have that all xi are of even degree. This implies that the differ-
ential in this minimal model has to be zero. Since by the definition of the minimal model we have
that H∗(µ(B̃)) ∼= H∗(B̃), it follows that

H∗(B̃, Q) = Q[x1, . . . , xp]. (17)

By Corollary 1 the number of generators of degree j (j � 1) is b2(M) rk πj+1(G)+rk πj+3(G). Then,
if we sum these numbers, we get that the number of generators in H∗(B̃, Q) is (b2(M)+1) rk G−1.

Since Theorem 3 gives that H∗(B̃) is a free algebra, it immediately implies the following corollary.

Corollary 2. The spaces B̃ and B̃∗ are formal in the sense of Sullivan.

Remark 6. We pointed out in § 1.2 that B̃∗ is weakly homotopy equivalent to B̃, hence they have
the same rational cohomology.

Remark 7. If for the structure group G we have that π4(G) = 0, then from Remark 5 and the
fibrations (1) and (2) it follows that the spaces B̃ and B̃∗ are simply connected. Therefore it follows
immediately that the generators in the minimal models for B̃ and B̃∗ are given by their nontrivial
rational homotopy groups.

3.3 Rational cohomology of B∗
Theorem 4. The rational cohomology algebra of B∗ is a polynomial algebra in even-degree
(b2(M) + 2) rkG− 1 generators. The number of generators of degree j is equal

b2(M) rkπj+1(G) + rkπj+3(G) + rkπj−1(G).

Proof. We can get B∗ as a base of the principal fibration B̃∗ → B∗ with a fiber G/Z(G). Note that,
since Z(G) is finite, the groups G and G/Z(G), and hence their classifying spaces, have the same
rational cohomology. Therefore, without loss of generality, we are not going to differentiate between
them.
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Since we are interested in the cohomology of B∗, it turns out to be much easier to apply the
Borel construction to this fibration in order to work with the total space of the fibration instead of
the base. This goes as follows. Let EG → BG be the universal fibration for the group G and denote
by B̃∗G the quotient B̃∗G = (B̃∗×EG)/G given by the diagonal action of the group G. Let us consider
the Serre fibration

B̃∗G → BG

with a fiber B̃∗. Obviously B̃∗G is weakly homotopy equivalent to B∗.
Let µ(B̃∗) and µ(BG) be the minimal models for B̃∗ and BG respectively. The fact that BG

is simply connected implies that (µ(B̃∗) ⊗ µ(BG), d) is a Sullivan model for B̃∗G (see [FHT00]).
Moreover, since all the generators in µ(B̃∗) and µ(BG) are of even degree, it follows that d = 0 and
(µ(B̃∗)⊗ µ(BG), d = 0) is the minimal model for B̃∗G and, hence, for B∗. It follows that

H∗(B∗) = H∗(B̃)⊗H∗(BG).

It is a well known fact [Bor53] that H∗(BG) is a polynomial algebra in rkG generators and the
number of its generators of degree j is equal to rkπj(G). Combining this with Theorem 3, the state-
ment follows.

Since Theorem 4 gives that H∗(B∗) is a free algebra, it implies the following corollary.

Corollary 3. The space B∗ is formal in the sense of Sullivan.

Remark 8. Again, if for the structure group G we have that π4(G) = 0, then B∗ is simply connected
and using Proposition 1 we immediately get its minimal model.

As a direct application of the above results we will get the rational cohomology of the gauge
group G and the proposition proved in [DK90] on rational cohomology of B̃ and B∗ for SU(2)
principal bundles over four-manifolds. We also provide the same calculation when the structure
group of the bundle is E8.

Example 1. Let G = SU(2). It has one exponent k = 2 of multiplicity 1 and, thus, π3(G)⊗Q = Q,
while all the other rational homotopy groups are trivial. Proposition 1 gives that

πj(G0)⊗Q = 0, for j � 2, π1(G0)⊗Q = Q b2(M).

Further by Proposition 2, we get now that

π1(G)⊗Q = Q b2(M), π3(G)⊗Q = Q,

while all the other rational homotopy groups for G are trivial. The same is true for G̃.
Using Corollary 1 we get that the nontrivial rational homotopy groups for B̃ and B∗ are given

by

π2(B̃)⊗Q = Q b2(M),

π2(B∗)⊗Q = Q b2(M), π4(B∗)⊗Q = Q.

Then Theorem 3 says that the cohomology algebra for B̃ is given by

H∗(B̃) = Q[x1, . . . , xb2(M)], deg xi = 2.

Theorem 4 gives that the cohomology algebra for B∗ is

H∗(B∗) = Q[x1, . . . , xb2(M), y], deg xi = 2, deg y = 4.

Also, by Theorem 2 we have that

H∗(Ge) =
∧

(z1, . . . , zb2(M), w), deg zi = 1, deg w = 3.
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Example 2. It is also interesting to consider the case when G is a simply connected exceptional Lie
group such as E8. The nontrivial rational homotopy groups for E8 are given by π2k−1(E8)⊗Q = Q,
where k = 2, 8, 12, 14, 18, 20, 24, 30, since these are the exponents for E8. Proposition 1 gives that
the nontrivial rational homotopy groups for G0 are given by

πj(G0)⊗Q = Q, for j = 11, 19, 23, 31, 35, 43, 55;

πj(G0)⊗Q = Q b2(M), for j = 1, 13, 21, 25, 33, 37, 45, 57.

Then Proposition 2 gives that the nontrivial rational homotopy groups for G (and for G̃) are

πj(G)⊗Q = Q, for j = 3, 11, 15, 19, 27, 31, 39, 43, 47, 55, 59;
πj(G)⊗Q = Q⊕Q, for j = 23, 35;

πj(G) ⊗Q = Q b2(M), for j = 1, 13, 21, 25, 33, 37, 45, 57.

By Corollary 1 we see that the nontrivial rational homotopy groups for B̃ and B∗ are given by

πj(B̃)⊗Q = Q, for j = 12, 20, 24, 32, 36, 44, 56;

πj(B̃)⊗Q = Q b2(M), for j = 2, 14, 22, 26, 34, 38, 46, 58;
πj(B∗)⊗Q = Q, for j = 4, 12, 16, 20, 28, 32, 40, 44, 48, 56, 60;

πj(B∗)⊗Q = Q⊕Q, for j = 24, 36;

πj(B∗)⊗Q = Q b2(M), for j = 2, 14, 22, 26, 34, 38, 46, 58.

Then by Theorem 3, the cohomology algebra H∗(B̃) is a polynomial algebra in 8b2(M) + 7 gener-
ators whose degrees are given by the nontrivial rational homotopy groups for B̃. Analogously, by
Theorem 4 the cohomology algebra H∗(B∗) is a polynomial algebra in 8b2(M)+15 generators whose
degrees are given by the nontrivial rational homotopy groups for B∗. Finally, Theorem 2 gives that
the cohomology algebra H∗(Ge) is an exterior algebra in 8b2(M) + 15 generators whose degrees are
also given by the nontrivial rational homotopy groups for G.
Remark 9. Note that the results of this paper do not hold in general if one omits the assumption
that the structure group is simply connected. Namely, let us, for example, take P to be a U(3)-
principal bundle over S4. According to [AB82], B̃ has weak homotopy type of K(Z; 2)×K(Z; 2)×
K(Z; 4)×K(Z; 6). Therefore, the rational cohomology algebra for B̃ is given by

H∗(B̃) = Q[x1, x2, y, z],

where deg x1 = deg x2 = 2, deg y = 4 and deg z = 6.
On the other hand, Theorem 3 would give that the number of generators in H∗(B̃) is 2, and,

thus, it is not valid in this case. This also shows that, in Theorem 1 of Singer, the condition that
the group G is simply connected cannot be omitted.
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