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Colimits of algebras revisited

Jiff Adamek

It has "been open for some time whether, given an algebraic

theory (triple, monad) TT in a cocomplete category K , also the

category K of TT-algebras must be cocomplete. We solve this

in the negative by exhibiting a free algebraic theory TT in the

category Gfua. of graphs such thatt Gha. is not cocomplete.

Further, we improve somewhat the well-known colimit theorem of

Barr and Linton by showing that the base category need not be

complete.

I. Categories of algebras ...

I.I . Is it true that an arbitrary theory of continuous (or ordered or

compact, and so on) algebras allows the formation of sums? More generally:

given an algebraic theory TT in a "decent" cocomplete category K , is it

true that the category K of TT-algebras is also cocomplete? While

analogous questions about limits are elementary [the forgetful functor

K -*• K always creates limits) , colimits present an interesting problem.

Various sufficient conditions (which cover all of the important cases, in

fact) have been found. For example, Linton proved in [7]:

THEOREM (Linton). If K has sums and K has coequalizers then K

is cooomplete.

1.2. Other conditions involve factorization systems. Let us recall

(for example from [5] or [9]) that a factorization system (E, M) in a

category K consists of classes E, M of morphisms subject to the

following conditions:
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4 34 J i rf Adamek

(i) all M-morphisms are monos, all E-morphisms are epis;

(ii) M and E are sub categories, that is, closed to

composition, both containing all isomorphisms;

(iii) K = M.E , that is every morphism / has a factorization

f = m.e with e € E and m 6 M ;

(iv) diagonal fill-in: for every commutative square

with e € E , m € M , there exists a (diagonal) morphism

d , making both triangles commute.

Factorization systems have a lot of natural properties, easy to

verify, such as the following:

(v) E contains all coequalizers (this is an exercise in [5]);

(vi) opposite an E-morphism in a pushout there is an

E-morphism (see [9]);

(vii) a multiple pushout of E-morphisms consists of

E-morphisms (this is proved, more generally, in IV.1

below).

1.3. The following important theorem has been proved by Linton [7]

and, in a different way, by Barr [4].

THEOREM (Barr and Linton). Let K be a category with a

factorization system (E, M) which is

(a) complete,

(b) cocomplete,

(c) E-cowell-powered.

Let "IT = (T, u, n) be an algebraic theory which preserves E ; that is

suah that e d E implies Te € E . Then the category K is cocomplete.
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(Neither Barr nor Linton used the above definition of a factorization

system; but we show in Section IV that their definitions are equivalent to

ours. Linton supposed that IT preserves also M .)

1.4. Two of the assumptions in the above colimit theorem can be felt

as not entirely natural: completeness (cannot we do without it in a

colimit theorem?) and preservation of E (is it necessary to assume things

not only about K but also about TT ?). The aim of the present paper is

to show that completeness is redundant (see Section II) while preservation

of E is not (see Section III).

Let us remark that Barr exhibits in [4] another colimit theorem: if

IT has rank then K is cocomplete. This covers all "natural" theories

TT . Thus, it is no surprise that the counterexample in Section III

consists of an ugly algebraic theorem TT (in a nice category K , though).

II. ... are often cocomplete ...

I I.I . We shall consider not only TT-algebras of an algebraic theory

but, more generally, F-algebras of an arbitrary endofunctor F : K •* K .

An F-algebra is a pair U , a) , consisting of an object A of K and a

morphism a : FA -*• A (subject to no axioms). Given two F-algebras

(A, a) and (B, 8) , by an F-homomorphism f : (A, a) •*• (B, 8) is meant

a K-morphism f : A -*• B such that f.a = 6 .Ff . We denote by K(F) the

category of F-algebras and F-homomorphisms.

Thus, given an algebraic theory TT = (T, y, n) in K the category

K of TT-algebras is a full subcategory of the category K(T) of

T-algebras.

11.2. Categories K(F) were used by Barr [4] for the study of free

algebraic theories - this study was then applied by Arbib and Manes [3] to

automata in categories. The latter call F an input process provided that

the forgetful functor K(F) •*• K has a left adjoint, in other words,

provided that each object A in K generates a free F-algebra.

Explicitly, this free F-algebra consists of an F-algebra {A , <p ) and a

A ff
morphism s : A -»• A in K. which is universal in the following sense.

Given an F-algebra (B, 8) , for every morphism f : A •*• B there is a

/
U A\ rM A

: [A , ip J -*• (5, 8) with f - j .s
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For each input process F there arises an algebraic theory TT

(freely generated by F ) with

TA = A ;

A #§ §
\l : A -*• A is the unique f-homomorphism

(J# A**\ (J A^ _ . A A
[A , cp J •+ [A , <p J w i t h u . s = 1A ;

A , J
n = sA : A •* A

Barr [4] proves that, under additional assumptions on K , these are the

only free algebraic theories in K .

PROPOSITION (Barr). Let F be an input process and let ¥ be the

corresponding free algebraic theory. Then the categories K(F) and

K are vsomorphic.

I I . 3 . When aiming a t a cocompleteness theorem for categories K , we

can r e s t r i c t our a t tent ion to coequalizers in K ( i . l ) ; i t turns out

t h a t , sufficiently often, we can work with coequalizers in K{T) :

LEMMA. Let K be a category with a factorization system (E, M) ,

let TT= (T, u, n) be an algebraic theory, preserving E . Then for every

coequalizer in K{T) ,

(A, a) -£• (B, 6) -£* (C, y)

such that (B, B) is a ~fi-algebra, also (C, y) is a "U-algebra.

TProof. Let E denote the class of a l l T-homomorphisms with under-

T t T T\
lying morphism in E ; analogously M . Then [E , M J i s a
factorization system in K(T) ; see [9 ] , S.^ . l? . Hence, by 1.2 (v) ,

2
k (. E . By hypothesis, also Tk € E , T k (. E , and so on.

To show that (C, Y) i s indeed a TT-algebra, consider the following

diagrams, which clear ly commute:
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•*• C

* c

By the f i r s t one, (y.r) ) .k = k , hence y.T) = 1 (k i s epi) . By the

second one, [y .\f) .T2k = (y.Ty).T2k ; hence Y -V = Y Ty [T\ is ep i ) .

11.4. The following theorem is proved in [2] in a different manner,

as a part of a more general study of colimits in K(F) . (An iterative

colimit-construction is exhibited there, generalizing that used in

universal algebra.) We present a straightforward proof. The help of

Vaclav Koubek with this proof is gratefully acknowledged.

THEOREM. Let K be a cocomplete category with a factorization

system (E, M) ; let K be E-cowell-powered. Then for every functor

F •. K •* K which preserves E , the category K(F) has ooequalizers.

Proof. Let / , g : {A, a) •* (B, 8) be arbi trary F-homomorphisms.
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Denote by ft the class of all E-epis t : B •*• T in K with the

following property:

for every F-homomorphism h : {B , B ) •+• (C , y ) with h .f = h .̂

there exists h,.^:T-*-C in K such that h = h, yt .

Since K is cocomplete and E-cowell-powered, the diagram Q has a

colimit (multiple pushout)

U ) ro = f o r e a c h

Each t E S is in E , hence [by 1.2 (vii)) each *\y_\ is in E ; thus

tQ€ E and Ft (. E .

Fix a homomorphism 7i : (B, (3 ) •*• (C, y ) wi th h .f = h .g . Then we

have a bound of fl : h, » : T -* C (t € ft) . Thus t h e r e e x i s t s

a unique h- : T -*• C with

(2) K.r,^ = h and

Consider the pushout of Ft and

-* S .
0 p

CLAIM . q is an isomorphism. It suffices to show that <?•£,->

then by (l), *„ = r( ->.q.t , which implies 1 = rr + i .q since t^tQ = r, t •> -q-tQ r t -j .
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i s epi) and so q i s a s p l i t mono as we l l as an E-epi (opposi te f t € E

in a pushout , see 1.2 (v i ) ) - t h u s , q i s an isomorphism. To show

q-t- € fi we f i r s t remark t h a t , s ince q £ E and t 6 E we have

q-tn (. E . Secondly, consider any homomorphism ft : (B, 6) -»• (C, y) with

h.f = h.g : we have hQ.tQ = h by (2) and ft. 3 = y .Fh , hence

fco.(to.e) = y.Fh = [y.FhQ).FtQ .

This implies that the pair ft ; (y-Fft-J factorizes through q; p above;

that is, there is a unique morphism, denoted by hr \ from R to C ,

with hQ = hr -\ -q and y-Fh =hr -i.p . The first implies

h =hr , \.{q.t ) , by (2). Thus, <7-tn € fi and q is an isomorphism.

Let us show that the f-homomorphism t~ : (5, 6) -* l̂ 1-, q .pi is a

coequalizer of / and g in K(F) .

Firstly, t .f = t~-g • indeed, consider the coequalizer o of f and

g in K ; a € E by 1.2 (v),and clearly c € £2 . Hence tQ = r, •. .o ,

which proves tQ-f ~ ̂ n-9 •

Secondly, for every homomorphism h : {B, 3) "* (C, y) with ft./ = h.g

we have ft : T. ->• C with ft = ?»„•*„ , by (2). This ft is unique,

because £ is epi. To conclude the proof we only have to show that ft

is a homomorphism; that is, that h~.\q .p] = y.Fh . We use (2) and the

fact that Ft- € E is epi, and that p.Ft = q.t-.3 (see the pushout

above) :

= ft.B

= y.Fh

11 .5 . COROLLARY. Let K and (E, M) be as in 11.h. Then for every
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algebraic theory "FT which preserves E , the category K is cocomplete.

Proof. By II.lt, the category K(T) has coequalizers, hence (by II.3)

so does K . By I . I this implies the cocompleteness.

COROLLARY. Let K be a ccwell-powered, cocomplete category. Then

for every algebraic theory It preserving epis, also K is cocomplete.

Proof. I t is proved in [5] (the dual to 3^.1) that K has a

factorizat ion system (E, M) with E equal to a l l epis , M equal to a l l

extremal monos.

11.6. The l a t t e r corollary i s proved ip [/] in the same way as in the

present paper. The f i r s t corollary was f i r s t formulated by Reiterman.

See [ 6 ] , where a completely different method is used (related to that used

in [2] to prove Theorem I I . k above).

I I I . . . . b u t n o t a l w a y s !

111.1. We denote by Gha. the category of graphs and compatible

mappings. A graph i s a pair A = <.A, K) consisting of a set A and a

subset K of A x A . A compatible mapping f : ( A , K> •+ < B, L) i s

a mapping f : A -*• B for which (x, y) € K implies [f(x), f(y)) Z L .

Gha. i s a complete and cocomplete concrete category, with underlying

functor GHJO. -*• S&t creating a l l l imits and colimits; i t i s also a well-

powered and cowell-powered category and i s , in one word, decent.

111.2. We shal l define an input process F in GhO. such that the

category Gha{F) of F-algebras is not cocomplete. Before doing t h i s , we

sha l l make a simple observation about P-algebras, where P : S*ut •+ Stt i s

the power-set functor (sending a set X to the power set PX = 'd and a

mapping / : X -*• Y to the mapping

Pf : A v-+ {f(a); a i A] ) .

We recall that an object 0 of a category is weak initial if for every

other object X there exists at least one morphism from 0 to X .

LEMMA. The category Sz£{P) of P-algebras has no weak initial

object.

Proof. I t is easy to see that Szt{P) is a complete category (with
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limits created by the forgetful functor Se£{P) -*• Set ). Thus the

existence of a weak initial object would imply the existence of an initial

object; see [S].

How let {A, a) be an initial P-algebra. Barr proves in [4] that

a is then an isomorphism. But there exists no isomorphism from a power

set PA to A , of course; a contradiction.

II1.3. We start by defining a functor F : Gha. •*• Gha. . First, for

every graph A = < A, K) , define a set

A ( 3 ) = {(x, y, z) € A x A x A; [x, y) f K and (y, z) € K] .

Given a compatible mapping f : A -*• B , define a mapping

/ ( 3 ) : (x, y, S)HH. [f(x), f(y), f(z)) .

Now d e f i n e F a s f o l l o w s : f o r each graph A p u t

FA = (PA^3\ MA\ where (X, Y) € M i f f X = 0 and 7 ^ 0 {x, Y <= A ^ 3 ' ) ;

f o r each c o m p a t i b l e map / : A •+• 3 put

Ff = P / ( 3 ) .

Clearly, Pf : FA -*• FB is compatible and F is a correctly defined

functor.

111.4. LEMMA. F is an input process.

Proof. For every graph A define a new graph

A# = A v FA

and notice that {FA)^ = 0 ; hence FAff = FA . Denote by <S : A -*• A# ,

cp : FA = FA ->• A the canonical injections. Then (A , <p ) is a free

F-algebra generated by A with universal morphism -4

Indeed, let (B, 3) be an F-algebra and let / : A -»• 8 be a

: A -• 8 by

(3) / - / = 6.F/ ,
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(10 / . s A = f .

S i n c e (FA) = 0 , c l e a r l y Ff = Ff, and s o ( 3 ) means t h a t

: (A , cp ) •+• ( 8 , 3 ) i s a n F-homomorphism; by ( U ) , j e x t e n d s _f .

The u n i q u e n e s s o f j f o l l o w s from t h e f a c t t h a t ( 3 ) and (h) a r e a c t u a l l y

necessary.

III.5. We define a pair /, g : (A, a) •* (B, 3) of F-homomorphisms

of which we shall prove that they do not have a coequalizer in G>WL(F) .

L e t A =< { p , a), 0> a n d 8 =< { s , *} , { ( s ,

8 .

Clearly A ' = B = 0 , hence FA = FB = < {0}, 0> . Define a : FA -»- A

by a(0) = p ; 6 : F8 •+ 8 by g(0) = s .

Finally, define /, g : {p, q] •*• {s, t} by

/(p) = g(p) = f{q) = s and g-(q) = * .

Clearly, / is a homomorphism with f.a = & .Ff : 0i—>- s , analogously g .

111.6. Assuming that /, g have a coequalizer o : (8, 3) -»• (C, y)

in G/ta(F) , we shall find a weak initial object in SztiP) - a

contradie tion.

We have C = < C, K> . Put s" = e(s) (̂ =c(t) .because e./ = c . ^ ) .

Since c : B + C is compatible, clearly (s, s) € K .

Put

For every subset if c C put

C; (s, x)

X = { ( s , s , x ) ; a: € AT} € PC
3)
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We have y(X) Z C - l e t us show tha t , in fact , y{X) £ C . If X = 0 ,

then X = 0 and y(0)_ = .s. € CQ , because y .Fa = c .& and Fe(0) = 0 ;

thus

Y(0) = c ( B ( 0 ) ) = e ( s ) = i" .

I f X t 0 , t h e n £ * 0 and so ( 0 , J ) € #„ ( s e e I I I . 3 ) . S i n c e

Y : FC •> C i s compatible, t h i s y ie lds (y(0) , Y ( ^ ) ) € K ; t h a t i s ,

(s", y(^)) € X ; thus Y ( £ ) € CQ .

Now we define a P-algebra [C"n, Y) ty

y(X) = y(X) [X <= CQ) .

This P-algebra i s weak i n i t i a l .

Proof. Let (M, \I) be another P-a lgebra , tha t i s , a s e t M and a

mapping \i : PM -> M ; put m = p(0) . Define an F-algebra

(M, y*) : M = (M, {(.m , m) ; m € A/} > where u* : FM •+ M i s defined by

c (IT ') . . . • • • •

FM

Particularly, u*(0) = m . Thus h : (8, 6) •+ (M, y*) , defined by

his) = hit) = «i. , is an F-homomorphism. Since h.f = h.g , there exists

an F-homomorphism k : (C, y) -*• (M, \i*) such that k.o = h

particularly, k(s) = m .

The proof will be concluded when we show that the restriction

kn : C n -*• M of k is a P-homomorphism; that is, that ^n-Y
 = V-Pk .

Given X c C. we have
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kQ.y(X) = k.y(X) = \i* .

Furthermore, T̂ = { ( s , s , x ) ; x € X} implies

Fk(k) = {{mQ, mQ, k(x)) ; x € X)

and fe(x) = k Ax) for x € X (since X <z C ) ; thus

\i*.FkCx) =V{{kAx); x € X}) = ]i .PkQ(X) .

Thus [C., y) is a weak initial P-algetira, in contradiction to Lemma

III.2.

CONCLUSION . The free algebraic theory IT generated by the above

input process F in G>vx is such that Gha. is not complete.

Explicitly, ¥ = [T, y, n) with

A A
TA = A v FA [r\ : A -*• TA and <p : PA -> TA canonical)

and y : T A = (A V FA) V FA ->• TA i s defined on A as n and on both

copies of FA a s <p

IV. Appendix on factorizations

IV.1. Barr's right factorization systems. For the colimit theorem

of 1.3, Barr [4] uses a right factorization system, which is a pair (E, M)

as in 1.2, except that E-morphisms need not be epis. More precisely, a

right factorization system consists of a class E of morphisms and a class

M of monos such that conditions (ii)-(iv) of 1.2 are fulfilled.

There always exists a simple right factorization system: E equals

all morphisms, M equals all isomorphisms. In this case, K is seldom

E-cowell-powered (as required in the colimit theorem 1.3). We shall show

that this is no coincidence.

LEMMA. For each right factorization system (E, M) and each multiple

pushout
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f.

with for t

c

also

(t € T)

£ for t £ T .

Proof. Choose £„ € T and let k = m.e be an E-M-factorization.

For every t (. T use the diagonal fill-in:

to obtain d, with d..f =
£

(hence d, is a bound of the pushout)

and m-d, = k . There exists a unique d with d. = d.k. {t € T) .

Then (m.d).k. = fe. (t € 7) ; hence m.d = 1 . Since m € M , m is a

mono as well as a split epi - thus m is an isomorphism. This shows that

k. = m.e is in E .
*0

PROPOSITION, ffuerj/ r i g ^ t factorization system ( E , M) i n a

cooomplete, E-cowell-powered category is a factorization system (that is>
all E-morphisms are epis).

Proof. Assume that K is a cocomplete category with a right
factorization system (E, M) . Given / : A -»• B in E which is not epi,
we shall show that K is not E-cowell-powered. Indeed, if K is
E-cowell-powered, there exist q. : B + Q. (i £ I , I a set) in E

such that each E-morphism with domain B is isomorphic to some q. .

Choose a cardinal \ such that card hom(B, Q.) < X for each i € J .
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b e t h e m u l t i P l e

B B

pushout of a T-indexed family of copies of / , where T i s a set of

power X . By the above lemma, L ( E for each t € T . To conclude the
t

proof it suffices to show that the k.'s are pairwise distinct: then
v

card hom(B, R) > X ; hence R is not isomorphic to any of Q. .

Since f is not epi, there exist distinct morphisms g , g : B •*• C

with g,-f = g2'f • Consider the following bound g : B •* C of the
v

above pushout: for a given tn € T , n = 1 ; else n = 2 . There
*0

exis t s a unique h : R -*• C with = h .k (t 6 T) . Sincet

g j: g , we have k, ± k for each £ # t . This shows that the

k.'s are pairwise distinct.

IV.2. Linton's factorization functors. Denote by K the morphism

category of K and by K the triangle category of K (objects are

tr iples (f; g, h) of K-morphisms with f = g .h ; morphisms are triples

(p, r, q) : (/; g, h) •+ (f; g', h') of K-morphisms with r.h = h' -p and

q.g = g' -q ) • There is a natural forgetful functor y : K •+ K (sending

( / ; g, h) to / ) .

Linton [7] uses a factorization functor, that is a functor

A : K2 -* K3

such that
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[1) Y o A = 1 ; for / : X •* Y in K2 , A(/) i s denoted by

(2) / is epi , / , is mono, for each f € K ;

(3) ( / )-L and (/,) are isomorphisms, for each / € K

PROPOSITION. (A) Given a factorisation functor A , the pair

[EA, Mj -with

f 2 . 1
E = if € K ; / , is an isomorphism> ,

M. = \f € K ; f is an isomorphism} _,

is a factorisation system in K .

(B) If A, A1 are naturally equivalent factorisation functors then

(C) For every factorization system (E, M) there exists a

factorization functor A , unique up to natural equivalence, with

(E, M) = (EA, Mj .

Proof. (A). Conditions ( i ) , ( i i i ) in 1.2 are evident. Condition
2

(iv) follows from the fact that (p, q) : e -*• m i s a morphism in K ;

hence we have A(p, q) : A{e) •* A(OT) in K
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Since y ° A = 1 , c learly A(p, q) = (p, r , q) for some morphism

r : I -*• I .making the above diagram commute. The diagonal morphism is
& 171

then

d = m^.T.el1 .

Finally, to verify condition (ii) it suffices to show that E and M are

closed to composition with isomorphisms; see [5], 33.3. Let us verify,

for example, that e € E implies e ° i € E whenever i is an

isomorphism; the rest is analogous. Consider [i , l] : e •*• e .i in

•.-1 .-1
K ; we have h[i , l) of the form [i , r, l) : A(e) ->• A(e ° i

Since (e ° i)-, ° r ° e, = 1 , we see that (e ° -i), is a split epi as

well as a mono by (2) above . Hence (e ° i ) ^ is an isomorphism; thus

e ° i € E .

fflj follows easily from the fact that both E and M are closed to
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composition with isomorphisms.

(C) . For every morphism f choose a fixed factorization / = A • /

with fa € E , fb € M . Put A(/) = (/; /fe, /J . Given a morphism

(p, <?) : f->• g in K ,

use the diagonal fill-in on the square above to find d and define

A(p, 4) = (p, d, <?) : A(/) •* A(g) .

2 3
This gives rise to a factorization functor A : K •*• K with E = E. and

M = M. . Uniqueness follows from (B).
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