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Colimits of algebras revisited
Jiri Adamek

It has been open for some time whether, given an algebraic

theory (triple, monad) T in a cocomplete category K , also the

category KTr of TM-algebras must be cocomplete. We solve this
in the negative by exhibiting a free algebraic theory T in the

category Gra of graphs such that GhaTr is not cocomplete.
Further, we improve somewhat the well-known colimit theorem of
Barr and Linton by showing that the base category need not be

complete.

I. Categories of algebras ...

I.1. Is it true that an arbitrary theory of continuous (or ordered or
compact, and so on) algebras allows the formation of sums? More generally:

given an algebraic theory T in a "decent" cocomplete category K , is it
true that the category Kn- of T-algebras is also cocomplete? While

analogous questions about limits are elementary (the forgetful functor

m

K" » K always creates limits), colimits present an interesting problem.
Various sufficient conditions (which cover all of the important cases, in

fact) have been found. For example, Linton proved in [7]:

THEOREM (Linton). If K has sums and Kﬂ- has coequalizers then KTr

18 cocomplete.

1.2. Other conditions involve factorization systems. Let us recall
(for example from [5] or [9]) that a factorization system (E, M) in a
category K consists of classes E, M orf morphisms subject to the

following conditions:
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(i) al1 M-morphisms are monos, all E-morphisms are epis;

(ii) M and E are subcategories, that is, closed to

composition, both containing all isomorphisms;

(iii) K
f

(iv) diagonal fill-in:

M.E , that is every morphism f has a factorization

m.e with e € E and m € M

for every commutative square

with e € E, m € M , there exists a (diagonal) morphism

d , making both triangles commute.

Factorization systems have a lot of natural properties, easy to

verify, such as the following:

(v) E

(vi) opposite an
E-morphism (see [9]);

(vii) a multiple pushout of E-morphisms consists of

E-morphism in a pushout there is an

contains all coequalizers {(this is an exercise in [5]);

E-morphisms (this is proved, more generally, in IV.1

below).

1.3. The following important theorem has been proved by Linton 71

and, in a different way, by Barr [4].

THEOREM

(Barr and Linton).

factorization system (E, M) which is

(a) complete,

(b) cocomplete,

(¢) E-cowell-powered.

Let T= (T, u, n)

such that e € E implies Te € E .

be an algebraic theory which preserves

Then the category K]T
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(Neither Barr nor Linton used the above definition of a factorization
system; but we show in Section IV that their definitions are equivalent to

ours. Linton supposed that T preserves also M .)

1.4. Two of the assumptions in the above colimit theorem can be felt
as not entirely natural: completeness (cannot we do without it in a
colimit theorem?) and preservation of E (is it necessary to assume things
not only about K but also about T ?). The aim of the present paper is
to show that completeness is redundant (see Section II) while preservation

of E is not (see Section III).
Let us remark that Barr exhibits in [4] another colimit theorem: if

T has rank then KTT is cocomplete. This covers all "natural" theories
T . Thus, it is no surprise that the counterexample in Section III

consists of an ugly algebraic theorem T (in a nice category K , though).

II. ... are often cocomplete ...

II.1. We shall consider not only TM-algebras of an algebraic theory
but, more generally, F-algebras of an arbitrary endofunctor F : K+ K .
An F-algebra is a pair (4, a) , consisting of an object 4 of K and a
morphism o : FA + A (subject to no axioms). Given two PF-algebras
(4, ) and (B, B) , by an F-homomorphism f : (A, o) = (B, B) is meant
a K-morphism f : A4 + B such that f.o =B8.Ff . We denote by K(F) the

category of F-algebras and F-homomorphisms.

Thus, given an algebraic theory W= (7, u, n) in K the category

KTr of T-algebras is a full subcategory of the category K(T) of

T-algebras.

I1.2. Categories K(F) were used by Barr [4] for the study of free
algebraic theories - this study was then applied by Arbib and Manes [3] to
automata in categories. The latter call F an input process provided that
the forgetful functor K(F) + K has a left adjoint, in other words,
provided that each object A4 in K generates a free F-algebra.

. . # A
Explicitly, this free F-algebra consists of an F-algebra (A , ® ] and a

morphism s"l : A > A# in K which is universal in the following sense.
Given an F-algebra (B, B) , for every morphism f : A > B there is a

# A)

A
unique F-homomorphism f# : (A N -+ (B, 8) with f = f#.s
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For each input process F there arises an algebraic theory T

(freely generated by F ) with

TA =A# 5
uA : A## > A# is the unique F-homomorphism
#
@, ) (0, o) i WA=

A

Barr [4] proves that, under additional assumptions on K , these are the

only free algebraic theories in K .

PROPOSITION (Barr). Let F be an input process and let T be the

corresponding free algebraic theory. Then the categories K(F) and
K-IT are isomorphic.
I11.3. When aiming at a cocompleteness theorem for categories KTr , We

can restrict our attention to coequalizers in K“- (I.1); it turns out

that, sufficiently often, we can work with coequalizers in K(T)

LEMMA. Let K be a category with a factorization system (E, M) ,
let W= (T, u, n) be an algebraic theory, preserving E . Then for every
coequalizer in K(T) ,

i
(4, @) =3 (5, 8) Ko, v
such that (B, B) is a Tralgebra, also (C, y) is a T-algebra.

Proof. Let ET denote the class of all 7T-homomorphisms with under-

lying morphism in [ ; analogously MT . Then (ET, MT) is a
factorization system in K(T) ; see [9], 3.4.17. Hence, by I.2 (v),

k € E . By hypothesis, also Tk € E , T2k ¢ £ , and so on.

To show that (C, Y) is indeed a Tl-algebra, consider the following

diagrams, which clearly commute:
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Cc « k B
nB 1
nc TB —Y——-» B
Tk
k
4
c ” c ,
°c Iy 1
N Tk
7°8 — TB Y
uC uB B
! l
TB B > B z -+ C
Tk k
| ]
c v > C

By the first one, (y.nc] .k = k , hence Y.nC =1 (k is epi). By the
second one, (Y.uc).Tzk = (Y.TV).Tek ; hence Y.uC =Y TY (Tzk is epi].
11.4. The following theorem is proved in [Z2] in a different manner,

as a part of a more general study of colimits in K(F) . (An iterative

colimit-construction is exhibited there, generalizing that used in
universal algebra.) We present a straightforward proof. The help of

Vaclav Koubek with this proof is gratefully acknowledged.

THEOREM. Let K be a cocomplete category with a factorization
system (E, M) ; let K be E-cowell-powered. Then for every functor
F : K+ K which preserves E , the category K(F) has coequalizers.

Proof. Let f, g : (4, a) = (B, B) be arbitrary F-homomorphisms.
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Denote by © +the class of all E-epis ¢ : B> T in K with the

following property:

for every F-homomorphism % : (B,B)~ (C,Yy) with A.f =h.g
there exists h(t) : > C in K such that & =h(t)'t

Since K 1is cocomplete and E-cowell-powered, the diagram £ has a

colimit {multiple pushout)

(1) ro = vyt B> Ty (r,y :T> T, for each t ¢Q)

0] t 0

Each ¢t € @ is in E , hence {by I.2 (vii)] each r is in E ; thus

t)

P
tOE E and LtOGE

Fix a homomorphism & : (B, B) » (C,y) with h.f =h.g . Then we

have a bound of  : h( :T>C (t €Q) . Thus there exists

t)

FB —+ B + >
/ , ~
i A T
IR0
[V Lo

e —

Y

[P

a unique hO : TO - C with

(2) h -

0 (t € Q) and ho.t =h .

(¢) 0

Consider the pushout of Fto and to.B

tO.B

B —— > T

0
R

FT ————————>
Y 4

CLAIM. g is an isomorphism. It suffices to show that q.to €

).q since to

then by (1), t. =r .q.t which implies 1 =r
Y 0~ "g.t,) T 0> P (a-%,
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is epi) and so g 1is a split mono as well as an E-epi (opposite Ft E

0 €
in a pushout, see I.2 (vi)) - thus, ¢ is an isomorphism. To show

q.to €  we first remark that, since g € E and to ¢ E we have

q-ty € E . Secondly, consider any homomorphism % : (B, B) - (C, y) with

h.f =h.g : we have ho.to =h by (2) and %.B = vY.Fh , hence
ho.(to.s) = y.Fh = (y.FhO) Ft

This implies that the pair ho; (Y.Fho) factorizes through ¢g; p above;

that is, there is a unique morphism, denoted by h( from R to C ,

q-t,)

with h, =" .q and vY.Fh_  =h .p - The first implies
0 7 Fgutg) S VPR T, )P p
no= h{q-to)'[q'to) , by {(2). Thus, q-ty € @ and g is an isomorphism.

Let us show that the F-homomorphism to : (B, B) +>1TO, q—l.p) is a
coequalizer of f and g in K(F)
Firstly, to.f = to.g : indeed, consider the coequalizer ¢ of f and

g in K ; ¢ € E by I.2 (v),and clearly ¢ € Q . Hence ¢, = Po)C

) e)

which proves to.f = to.g

Secondly, for every homomorphism & : (B, B) - (C, y) with h.f = h.g

we have ho : TO > with h = ho.to , by (2). This ho is unique,

because to is epi. To conclude the proof we only have to show that ho

is a homomorphism; that is, that ho.(q—l.p) = Y.Fho . We use {2) and the
fact that Fto € E 1is epi, and that p.FtO = q.tO.B (see the pushout

above):

E’o' (q'l-p)] Pt

1]
=
o
—

h.B
Y.Fh
[Y.mo] Ft,

I11.5. COROLLARY. ILet K and (E, M) be as in II.k, Then for every
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algebraic theory T which preserves E , the category KTT 18 cocomplete.
Proof. By II.4, the category K(T) has coequalizers, hence {by II.3)
so does K“-. By I.1 this implies the cocompleteness.
COROLLARY. Let K be a cowell-powered, cocomplete category. Then
for every algebraic theory W preserving epis, also KTr is cocomplete.

Proof. It is proved in [5] (the dual to 34.1) that K has a
factorization system (E, M) with E equal to all epis, M equal to all

extremal monos.

I1.6. The latter corollary is proved ir [1] in the same way as in the
present paper. The first corollary was first formulated by Reiterman.
See [6], where a completely different method is used (related to that wused

in [2] to prove Theorem II.k4 above).

ITI. ... but not always!

II1.1. We denote by Gra the category of graphs and compatible
mappings. A graph is a pair A =(A4, X) consisting of 2 set 4 and a
subset X of A x A . A compatible mapping f : (4, K> »{(B, L) is
a mapping f : A + B for which (z, y) € K implies (f(x), ) €L

Gaa is a complete and cocomplete concrete category, with underlying
functor Gaa + Set creating all limits and colimits; it is also a well-

powered and cowell-powered category and is, in one word, decent.

I111.2. We shall define an input process F in Gra such that the
category Gra(F) of F-algebras is not cocomplete. Before doing this, we

shall make a simple observation about P-algebras, where P : Set » Sef 1is

the power-set functor (sending a set X to the power set PX = ZX and a
mapping f : X + Y to the mapping

Pf: Avr {fla); a € A} ).

We recall that an object O of a category is weak initial if for every

other object X there exists at least one morphism from O to X .

LEMMA. The category Set(P) of P-algebras has rno weak initial
object.

Proof. It is easy to see that Set(P) is a complete category (with
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limits created by the forgetful functor Sef(P) - Set ). Thus the
existence of a weak initial object would imply the existence of an initial

object; see [§].

Now let (4, o) be an initial P-algebra. Barr proves in [4] that
@ 1is then an isomorphism. But there exists no isomorphism from a power

set PA to A , of course; a contradiction.

11T1.3. We start by defining a functor F : Gha » Gha . First, for
every graph A =(4, K} , define a set

A(3) = {(x, y, 2) €4 x4 x4; (z,y) €K and (y, z) € K}

Given a compatible mapping f : A >~ B , define a mapping

P RN CY R E I

3z, g, 8 e (F@), Fly), fa)

Now define F as follows: for each graph A put
= {oa(3) . _ (3)y .
FA =(PA'", M,) where (X, Y) €M iff X =9 and Y # ¢ (x, ye A2}

for each compatible map f : A = B put

Ff =Pf(a)

Clearly, Pf(3)

functor.

: FA > FB is compatible and F is a correctly defined

I11.4. LEMMA., F <s an imput process.

Proof. For every graph A define a new graph

#

A" = A v FA

)

and notice that (FA)(3 =@ ; hence FA# = FA . Denote by AA : A > A# ,

wA : FA#

A R
= FA » A# the canonical injections. Then (A#, [0) ] is a free
P-algebra generated by A with universal morphism 4

Indeed, let (B, B) be an F-algebra and let f : A > B bea

. . . #
morphism (that is a compatible mapping). Define f# : A" > B vy

(3) Aot =srr,
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(1) Ao,

Since (F’A)(3) =@ , clearly Ff# = Ff, and so (3) means that
f# : (A#, ¢A) + (B, B) 1is an F-homomorphism; by (L), f# extends f .

The uniqueness of f# follows from the fact that (3) and (4) are actually

necessary .

III.5. We define a pair f, g : (A, a) > (B, B) of F-homomorphisms
of which we shall prove that they do not have a coequalizer in Gra(F)

Let A =({p, q}, ® and B =({s, ¢}, {(s, £)P

/]

@ oceccccssvescs A
Ff,Fg f.9

@ vvevvccssescseh B

g

Clearly A(3) = 3(3) =¢ , hence FA =FB =<({¢}, @ . Define o : FA~+ A

by alg) =p; B : FB>B by B(g) =s
Finally, define f, g : {p, q} =~ {s, ¢t} Dby
flp) =glp) =f(g) =s and glq) = ¢ .
Clearly, f 1is a homomorphism with f.a =8.Ff : §+> s , analogously g .

I1I1.6. Assuming that f, g have a coequalizer ¢ : (B, B) - (C, ¥v)
in Gra(F) , we shall find a weak initial object in Set(P) - a

contradiction.

We have C =((C, K} . Put .—s—=c(s) (= e(t) , because c.f=c.g).

Since ¢ : B + C is compatible, clearly (E, s) €X .
Put

¢, = {z €0C; (s, ) € K}

For every subset X < C put

0

X=1{((s, 5, z); 2 € x} epc(3)
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We have Y(X) € C - let us show that, in fact, v(X) ¢ Co . If X=¢,
then X = g and y(p).=s ¢ CO’ because Y.Fe =c¢.B and Fe(@) =¢ ;
thus

v(@) = c(B(@)) =cls) =5 .

If X # @, then X¢# $ and so (@, 3\() € MC (see TII.3). Since
Y : FC > C is compatible, this yields (y(#), v(X)) € x ; that is,

(5, v(X)) €k ; thus Y(X) € ¢, -
Now we define a P-algebra (CO, ?) by
Yx) = y(X) (xc o)

This P-algebra is weak initial.

Proof. Let (M, p) be another P-algebra, that is, a set ¥ and a
mapping p : PM > M ; put my = u(@) . Define an F-algebra

(M, u*) : M =M, {(mo, m); m € M}) where p* : FM -+ M 1is defined by

w0 = ul{m € #; (my, mg, m) € x})

/N

¢ --...--....g-...-oo.oo-p G.m

0
Particularly, u*(g) = my - Thus 4 : (B, B) » (M, u*) , defined by
h(s) = h(t) = My » is an F-homomorphism. Since h.f = h.g , there exists

an F-homomorphism k : (C, y) = (M, u*) such that k.c = h -

m

particularly, k(s) 0

The proof will be concluded when we show that the restriction

ko : Co > M of k is a P-homomorphism; that is, that 7(0.? = u.Pko .

Given X C CO we have
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ko ¥ () = Ky(X) = u* Fk(x)

Furthermore, X = {(s, s, 2); x € X} implies

FK(X) = {(my, my, k(2))5 = € x}
and k(x) = ko(x) for z € X (since XcC s }; thus
ut (X = u({ky(@)s = € 1) = u.Pk (X)

Thus (Co, ;) is a weak initial P-algebra, in contradiction to Lemma
III.2.
CONCLUSION. The free algebraic theory T generated by the above

input process F in Gra 1is such that G&a“- is not complete.
BExplicitly, MW= (T, p, n) with

A

TA =A v FA {nA :A~>TA and ¢ :FA > TA canonical)

and uA : T%A = (AVv FA) v FA+TA is defined on A as nA and on both

copies of FA as wA

IV. Appendix on factorizations

IV.1. Barr's right factorization systems. For the colimit theorem
of 1.3, Barr [4] uses a right factorization system, which is a pair (E, M)
as in I.2, except that E-morphisms need not be epis. More precisely, a
right factorization system consists of a class E of morphisms and a class

M of monos such that conditions (ii)-(iv) of I.2 are fulfilled.

There always exists a simple right factorization system: E equals
all morphisms, M equals all isomorphisms. In this case, K is seldom
E-cowell-powered (as required in the colimit theorem I.3). We shall show

that this is no coincidence.

LEMMA. For each right factorization system (E, M) and each multiple
pushout
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A
V4

with f, ¢t for t €7, also k,Z €E for t €T,
t t

(t e

Proof. Choose to €T and let kt =m.e be an E-M-factorization.
0

For every t € I use the diagonal fill-in:
A—F-—— R
7
tO
eJ
¥

s/
Ve

d
7/
/
s/
7/

|

ft

7/

/

t/

—— ey C

m

to obtain d, with d,.f, = e.f (hence d, 1is a bound of the pushout]
t tt to t

and m.dt =k There exists a unique d with dt =d.k, (t €T

£
Then (m.d) 'kt =k

t

+ (t €7) ; hence m.d =1 . Since m €M , m is a

mono as well as a split epi - thus m is an isomorphism. This shows that

k, =m.e is in E .
tO

PROPOSITION. Every right factorization system (E, M) ina
cocomplete, E-cowell-powered category is a factorization system (that is,

all E-morphisms are epis).

Proof. Assume that K 1is a cocomplete category with a right
factorization system (E, M) . Given f : A4+ B in E which is not epi,
we shall show that K is not E-cowell-powered. Indeed, if K is

E-cowell-powered, there exist q; : B » Qi (¢ €1, I aset) in E
such that each E-morphism with domain B is isomorphic to some qi

Choose a cardinal A such that card hom(B, Qi) < A for each 7 € I .
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Let be the multiple

AN
N

pushout of a 7T-indexed family of copies of f , where T is a set of

eoleer

(t eT)

power A . By the above lemma, kt € E for each ¢t € T . To conclude the

proof it suffices to show that the kt's are pairwise distinect: then

card hom(B, R) = A ; hence R is not isomorphic to any of Qi .

Since f 1s not epi, there exist distinct morphisms 91> 95 ¢ B > C
with gl.f = 92.f . Consider the following bound gnt : B> C of the
above pushout: for a given tO €T , nt =1 3; else nt = 2 . There

0
exists a unique h : R > C with g =hk, (t ¢ 7) . Since
t
#g ., we have k, # k, for each ¢_ # t . This shows that the
n, to t 0

k.'s are pairwise distinct.

2 .
IV.2. Linton's factorization functors. Denote by K~ +the morphism

3 the triangle category of K (objects are

category of K and by K
triples (f; g, &) of K-morphisms with f =g.h ; morphisms are triples
(p» v, q) : (f5 g, B) > (f's g', ') of K-morphisms with r.h =h'.p and

q-9g =g'-q ]. There is a natural forgetful functor vy : K3

(fs g, ) to f).

Linton [7] uses a factorization functor, that is a functor

(sending

such that
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(1) YoA=1; for f:X~+Y in K2, A(f) is denoted by

r—~L .y

f 5

(2) fa is epi, fb is mono, for each f € K2 5

(3) (fa]b and (‘fb)a are isomorphisms, for each f € K2 .

PROPOSITION. (A) Given a factorization functor A , the pair
[EA, MA) ‘with

EA = {f € K2; fb 18 an isomorphism} >
MA = {f € K2; £, i8 an isomorphism} R

is a factorization system in K .
(B) If A, A' are naturally equivalent factorization functors then

Ey = Eyy , and My = M

A Al

(C) For every factorization system (E, M) there exists a
factorization functor & , unique up to natural equivalence, with
(E, M) = (E,, M,)

Proof. (4). Conditions (i), (iii) in I.2 are evident. Condition
(iv) follows from the fact that (p, q) : e *m is a morphism in K2 ;

hence we have A(p, q) : Ale) » A(m) in K3 .
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Since y oA =1 , clearly Alp, q) = (p, », q) for some morphism
r : Ie -> Im , making the above diagram commute. The diagonal morphism is

then

1

d=m .r.eg .

a

Finally, to verify condition (ii) it suffices to show that E and M are
closed to composition with isomorphisms; see [5], 33.3. Let us verify,
for example, that e € E implies e o7 € E whenever % 1is an

isomorphism; the rest is analogous. Consider [i_l, 1) e *>e.r in

K2 ; we have A(i_l

3 -

, 1} of the form (i-l, r, 1) : Ale) > Ae © %) in

K

-1

Since (e © i)b opyo eil

=1 , we see that (e o i)b is a split epi as
well as a mono by (2) above . Hence (e © i)b is an isomorphism; thus
eo° i €L

(B) follows easily from the fact that both & and M are closed to
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composition with isomorphisms.
(C). For every morphism f choose a fixed factorization f = fb.f;
with f& €E, fb €M . Put A(F) = (F; fb, f;) . Given a morphism

(P, q) : f+g in K%,

use the diagonal fill-in on the square above to find d and define

Alp, q) = (p, d, q) : A(F) ~ A(g)

This gives rise to a factorization functor A : K2 - K3 with E = EA and

M= MA . Uniqueness follows from (B).
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