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A quantum hindsight on density 
functional theory for computation 
of materials properties
Lu J. Sham

The following article is based on the Materials Theory Award presentation given by Lu J. Sham 
“for pioneering contributions to the quantum theory of molecules and solids, especially the 
Kohn-Sham formulation of density functional theory,” at the 2019 MRS Fall Meeting in Boston, 
Mass.

Fundamental materials properties are determined by electrons under the potential energy 
from the nuclei, the electron mass, and their mutual repulsion. The variable from material to 
material is the ion potential. The logical procedure of computing electronic properties is to 
go from the potential to the electron distribution. This enables practical computation of the 
material properties ranging from atoms and molecules to solids. This method has blossomed 
due to the effort of numerous people. The concept is analogous to changing prediction of 
human population distribution from the landscape of hills and dales to determination of the 
landscape from a population distribution. In atomic systems,  quantum quirkiness allows 
this switch, but dictates that it is only one slice in the tomography of the quantum state. 
The author shares his experience in the development from this slice, but hews close to the 
powerful concept of switching the landscape with the population.

Introduction
For 55 years, density functional theory (DFT), founded by 
the fundamental Hohenberg–Kohn (HK) theorem1 and the 
practical Kohn–Sham (KS) equation,2 has flourished, due to 
advances in computation methods and applications to materi-
als properties. Advances in computation have been fueled by 
tremendous innovations in formulating the exchange and cor-
relation functional potentials in the KS equation empirically 
for large classes of systems and open computation program 
apps in the free spirit of the internet in its pioneering days. 
Further development of the theory and applications does not 
seem to be flattening.

In the early 1960s, single-electron-band structure compu-
tations had become reliable3 and the interacting electron gas 
treated by field-theoretic methods went beyond the Hartree–
Fock approximation to include correlation effects by, for 
example, the random phase approximation4 or the ring dia-
grams.5 There was the dichotomy of the former looking for a 
reliable effective potential for the single electron and the latter 
being limited to the jellium (a uniform background of positive 
charges) extended somewhat to simple metals. DFT then built 
a bridge to bring the exchange and correlation effects to the 
band calculation.

The DFT field has become too vast to review in a single 
article. I will use a thread of what I have been involved in 
to examine the field from a quantum perspective. This spans 
from the old quantum criterion of state coherence to the quan-
tum information era requirement of entanglement. The former 
drives, for example, density oscillations due to an impurity in 
a metal or the electron density shell structure in atoms, while 
the latter is concerned with what phenomena entanglement 
can drive. We examine how DFT elucidates such quantum 
phenomena in various systems.

Hohenberg–Kohn theorem and the state 
topography
The HK theorem1 forms the foundation of DFT. It allows 
the ground-state energy of a many-electron state to be deter-
mined by the knowledge of the electron-density distribution 
as a function of electron position instead of its potential. The 
use of the variational principle of the ground-state energy 
as a function of the density allows it to be determined for a 
given single-electron potential. This work reaches the pin-
nacle of the improvement of the Thomas–Fermi theory. The 
important point is the introduction of the Legendre trans-
formation from the potential v(r) to the density n(r). The 
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transformation has the convenience for computation that 
can be extended to other duality pairs. An example is next 
presented.

The complete characterization of a quantum state in an 
experiment requires tomography (i.e., a series of measure-
ments of non-commutative observables).6,7 From the quantum 
viewpoint, the dependence on the density is akin to a slice 
of the tomography. The variational equation of the ground-
state energy in terms of the density distribution alone cannot 
recover the loss of phase information in the electron-density 
distribution. Even in the case where the electron–electron 
interaction is neglected, attempts with gradient expansion 
cannot remedy this phase loss, as the history of numerous 
attempts to improve the Thomas–Fermi equations by adding 
higher-order gradient terms to find the shell structure of the 
electron in an atom had shown.

The problem does not lie in the slowly varying approxima-
tion. The quantum effect of density oscillations as a function 
of position has been demonstrated by computation using the 
slowly varying WKBJ approximation of the wave function of 
the Schrödinger equation.8 The quantum effect is driven by 
the confinement effect to produce a standing wave from the 
turning point (where the potential equals the electron energy). 
Interestingly, the wave behavior is determined mostly by the 
energy states close to the highest occupied states. There, the 
connection between the oscillatory functions and the decaying 
functions are not determined by sinusoidal and the exponential 
waves, but more accurately, by the corresponding oscillating 
and decaying Bessel function solutions of the linear portion 
of the potential bracketing the turning point.9 The method of 
finding oscillations also applies to nuclear matter density.10 
This is also the cause of the Friedel oscillations11 due to an 
impurity potential in a metal being the state of energy just 
below the Fermi level.

Quantum phase transition via DFT
The quantum phase transition (QPT)12,13 is a critical change 
in the ground-state properties of a material system. It can 
be observed at very low temperatures. Consider a material’s 
Hamiltonian,

	 ˆ ˆ ˆ ,H H H l l= + = ∑0 ext  λ Â 	 (1)

where l is the lattice site and Â is an observable driven by the 
external field parameter λl. QPT is usually characterized by 
the change of the ground-state energy as a nonanalytic point 
on varying the field parameters (i.e., external forces), in the 
Hamiltonian, (e.g., a first-order QPT at a finite discontinuity 
and a second-order one at a discontinuous derivative).

An extension of the Hohenberg–Kohn theorem is to make 
a Legendre transformation of the ground-state energy as 
a function of the field parameters λl to its conjugate pairs, 
viz. the set of ground-state expectation values al = 〈Â〉. If we 
regard the set of {al} as the results of simultaneous quantum 

measurements of the observables Â, the set of the observables 
has to be commutative. The rule permits a certain amount of 
latitude, such as having noncommutative pairs, the spin com-
ponents ˆ ˆS Sl l

x y, or two-site operators {Âl Âl+c} for all l sites and 
a constant, c. A simple connection between the λl representa-
tion and the {al} representation is by the Hellmann–Feynman 
theorem for the ground-state energy E,

	

∂
∂

= ∂
∂

= =E H
A a

l l
jλ λ

ˆ
ˆ ,

	
(2)

where 〈 . . .〉 denotes a ground-state expectation value.
One method to detect the QPT point is to use a measure of 

the quantum entanglement of the material system. The entan-
glement between two qubits, for example, two states of each 
of a pair of spins, is the correlation between two spins at any 
distance apart. Consider the singlet or one triplet state of the 
two spins,

	 | | | | | .ψ∓ ∓〉 = ↑〉 ↓〉 ↓〉 ↑〉     1 2 1 2 	 (3)

The two spins are entangled. If the first spin is measured 
to be up, then the second spin has to be down and vice versa. 
This can happen even if one spin is half a world apart from 
the other, described famously by Einstein as “spooky action 
at a distance.” In a many-body system, the entanglement may 
be considered to be bipartite (between two parts) or multi-
partite (between multiple parts). The bipartite can be even 
just one qubit with the rest of the system. The quantitative 
entanglement measure may be the entropy or simplified to 
just an appropriate log function as a function of the field 
parameters {λl},

	
L E El l l

( ) • .2 1= − ∇ ∇  	 (4)

The entanglement measure with the field parameter varia-
tion may be used to detect QPT.14 We showed12 that the use of 
the conjugate partner {al} in the Legendre transformation was 
not only possible, but could cover the whole range, rather than 
being confined to the critical region near the phase transition 
point as was done with field parameters. Equation 4 was used 
to express the entanglement measure.

A model with existing theory and experiment is the trans-
verse-field Ising model in which Ĥ0 is the Ising model of anti-
parallel spin pairs in one direction and Ĥ1 has the magnetic 
field normal to that direction. The density functional numeri-
cal computation led to a clear indication of the critical point 
at the linear model with 1000 sites. The use of other entangle-
ment measures also confirmed the QPT point.

The KS equation
The missing observable of importance in the density func-
tional variational equation is the momentum that does not 
commute with the position. The KS equation2 can thus be 
seen as an attempt to restore this quantum feature while 
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keeping the density functional nature of the observables in 
the Hamiltonian that commute with the density observable. 
The ground-state energy, E, was divided into two functional 
components,

	 E T n V ns= +[ ] [ ] ,	 (5)

where Ts[n] is the kinetic energy functional of the density n 
borrowed from the single-particle case, and V [n] includes 
both the single-particle potential and all of the interaction 
effects, usually divided into the electrostatic form of the 
Coulomb interaction energy and the exchange-correlation 
term that includes the kinetic energy contribution,

	
V d rv n d r d r E nxc[ ] (r) (r) .n

n n= + + [ ]∫∫∫ 3 3 3

2
( ) ′ ′

− ′
r

(r) (r )

r r    	
(6)

This division follows the practice of the homogeneous 
electron gas case and has the energy functional form of a sin-
gle electron with the Schrödinger equation,

	
− ∇ ψ ε ψh

m
v j j j
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2
+
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
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	 (7)

where the effective potential is derived from the functional 
derivative of V [n],
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and the density is given by the orbitals,

	
n j

j

N

( ) ( ) .r r  = ∑ ψ
2

	
(10)

The previously discussed process of going from the classi-
cal variational equation to the quantum Schrödinger equation 
is clearly not a derivation, rather, it depends on the reverse 
procedure from a system of independent electrons to its varia-
tional density functional equation. From the viewpoint of the 
tomography analogy, Equation 5 is a convenient split-up for 
the quantum leap. The process of deriving from the many-
electron theory the exchange-correlation potential vxc[n(r)] for 
a given v(r) is then possible (see next section).

The KS paper2 provided the local density approximation 
(LDA) for vxc[n(r)] by assuming that the functional Exc[n(r)] 
is given by the homogeneous gas expression with the density 
dependent on the position r. The LDA, including the spin part, 
has been used for quite a few solid-state systems, particularly 
simple metals and surfaces, but has been found to not work 
well for molecules in particular. This shortcoming spurred the 
innovation of numerous exchange-correlation functionals bet-
ter suited to being used for molecules.15

The field-theoretic approach
The tool used to find the single-electron property under the 
influence of both the single-electron potential v(r) and the 
interaction with other electrons is the Green’s function in 
energy, G(r,r′;E).16 Green’s function is governed by the Dyson 
equation,

	

− − ∇ ′; ″ ∑ ″ ″ ′

−δ ′

E v G de
2 3+  +

=
∫( ) ( ,

,
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r r

E G E) ( , ) (r ,r ; )

( ), 	

(11)

where ve is an “effective potential” for this equation, Σ(r,r′) is 
the self-energy or mass operator. The choice of ve is flexible. 
For example: we could take ve to be (1) zero, (2) v the ion 
potential, or (3) veff in Equation 8. The self-energy contains 
the interaction between two electrons and compensates for any 
single-particle potential taken by ve.

The field-theoretic approach is a perturbative one in 
which Green’s function is expanded as a power series in the 
self-energy as the perturbation connected by the unperturbed 
Green’s function, G0(r,r′; E), governed only by ve. A pole of 
the full Green function in the complex energy plane is taken to 
be a quasiparticle with the real part of its complex E value as 
the quasiparticle energy and the imaginary part its decay rate. 
Near the Fermi level of a metal, the decay rate is long and the 
quasiparticles behave like independent particles.

The quasiparticle energy in the inhomogeneous 
electron gas 
The single-electron energies from the KS equation are not 
truly those of the quasiparticles. To find an approximation for 
the quasiparticle energy,16 the same philosophy of LDA for the 
ground state is applied to the self-energy. The self-energy is 
split into the one-particle potential, including the electrostatic 
potential (the Hartree potential) vht and the exchange and cor-
relation part of the homogeneous electron gas Mh.

	
∑ ′ δ − ′ − ′ −( , ) (r) ( ) M ; .r r r r r r= + +











v ht h E v ht

r r2

2 	
(12)

For the two-point function of the self-energy at r and r′, 
we use the mean 1/2(r+r′) as the location of the neighborhood 
and the half distance between the two points as the radius. 
The energy zero of the local electron gas is the local Hartree 
potential. The homogeneous electron gas approximation is 
justified by the argument that, for the homogeneous electron 
gas, the dominant part of Mh is in the neighborhood of a small 
diameter of |r−r′| ∼ 1/kF, the inverse of the local Fermi vector. 
We follow the Wigner distribution assignment of the neigh-
borhood17 for a similar cause. In the Wigner case, the classical 
state probability in thermal equilibrium was a partition func-
tion of the particle momentum and position. For the quantum 
system, he replaced the state probability with the noncommu-
tative operators of position and momentum and constructed 
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the famous Wigner probability function in terms of the sum 
and difference of two points in position.

A derivation of the density functional exchange 
and correlation potential 
Numerous authors have written that the exchange-correlation 
functional Exc[n] is “unknown.” In fact, a general expression 
may be derived from the many body theory for Exc[n].18 A coef-
ficient λ is attached to the interaction term in the Hamiltonian,

	
ˆ ˆ ˆ ,H H Hλ λ( ) = +  0 1 	 (13)

so that as λ is varied from 0 to 1, the total Hamiltonian will 
move from the independent particle one to the one with the 
full electron interaction. The noninteracting particle part Ĥ0 is 
designed to treating the full KS equation for the independent 
electrons under the influence of the total effective potential 
veff(r) in Equation 8. The interaction part Ĥ1 includes the usual 
interaction between two electrons minus the effective single-
particle potential term driven by veff(r) − v(r) so that the inter-
action effect in Ĥ0 is not double counted.

Following the field-theoretic procedure of Luttinger and 
Ward,19 the ground-state energy is given by the coupling con-
stant integral,

	
E E

d= + ∫0
0

1 λ
λ

λ
λ

,
	

(14)

where E0 is the ground-state energy of Ĥ0 and the angular 
brackets denote the exact ground-state expectation. From the 
infinite perturbation series in terms of Green’s function in the 
Feynman diagrams,20 the integral leads to,

	 E n i G G Yxc xc[ ] ( ) = − + + Tr ln      1 0Σ Σ ,	 (15)

where Tr denote the trace and Yxc is the exchange-corre-
lation part of the energy diagrams of the dressed Green 
function, G. The formula for the exchange and correlation 
vxc[n] then follows. Its validity depends on the validity of 
the perturbation series. The simplicity of the LDA is gone, 
but the complexity is necessary in a number of cases. An 
example is shown next.

The bandgap problem
The band structure computations solving the KS equation 
with the local density approximation2 were widely applied to 
the electron-band structures of materials. By the early 1980s, 
it was found that the computed semiconductor bandgaps were 
quite generally about 2/3 of the experimental values. Perdew 
and Levy21 and Sham and Schlüter22 pointed out the discon-
tinuity in the DFT, which was absent in LDA based on the 
metallic electron gas. The Sham–Schlüter argument was based 
on the Green’s function formulation in Equation 15 and was 
able to show a model result23 and, moreover, detailed computa-
tions. In collaboration with Lannoo, we studied the correction 
to the bandgap via a model study.24 With Godby, we computed 

the band structures of Group IV and III–V semiconductors 
beyond LDA, as detailed next.

The energy gap of an insulator by Green’s 
function method 
First, we precisely define the bandgap Eg.

	
E E E E Eg c v N N N N= − = − − − −[ ]+     ε ε 1 1[ ],	 (16)

where EM is the lowest state energy of M electrons. The gap is 
then divided into two parts,

	 Eg g xc= +ε  ∆ ,	 (17)

where εg is the bandgap defined by the KS eigenvalues and Δxc, 
the gap addition,

	

∆ δ
δ

− δ
δ

ψ
−

xc
xc xc

N
E

n

E

n
= 



+

+∫ [ ] [ ]
( ) ,

n n
N1

2

	
(18)

where the position r in the integral is understood. The suffixes 
+ and – denote the functional derivatives above and below N 
respectively and ψj(N) is the j-th KS orbital of the N particle 
state. The gap addition is solved by the Green’s function method.

Model study 
For a two-band plane-wave model in one dimension,23 the 
Hartree–Fock approximation, including only the exchange 
term, demonstrates a gap discrepancy comparable to the 
KS gap. When the correlation is added in the random phase 
approximation, which yields a dynamically screened interac-
tion between two electrons, the bandgap due to discontinuity 
Δxc is shown.24

Computation of band structures of common 
semiconductors 
Computations of the electron-band structures of semiconduc-
tors by Godby, Schlüter, and Sham used the Green’s func-
tion method described above. The dielectric screening and 
the self-energy were approximated by the random phase 
approximation.

For Si,25 vxc beyond LDA was calculated. The gap com-
puted with the Green’s function method is in good agreement 
with experiments. If the LDA gap is raised by the calculated 
discontinuity Δxc, then the energies at symmetry points of the 
Brillouin zone are quite similar to the LDA ones. This feature 
is not shared by the results for the III–V compounds.

For GaAs and AlAs,26 the quasiparticle energies computed 
at the symmetry points are in general in good agreement with 
experiments. One exception is the L point conduction minimum 
of AlAs. The paper suggested,26 with some optical data support, 
the discrepancy was due to the extrapolation of the experimen-
tal data from a range of alloys of AlxGa1−xAs to pure AlAs.

For the series of semiconductors, ranging from small to large 
measured bandgaps of Si, GaAs, AlAs, diamond,27 we exam-
ined the trends in the self-energies, the exchange-correlation 
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potentials vxc, and the gap discontinuities Δxc. The self-energies 
are in good agreement with the measured quasiparticle ener-
gies. Thus, the KS eigenvalues from the self-energy computa-
tion are distinct from the LDA values.

The self-energy Σ(r,r′;E) can be fit to the formula,

	
∑ ′; ≈ ′ − ′( , ) ( ) ( ),r r r r r rE f E

1

2
f g h+[ ] ( )( )

	
(19)

which confirms the KS deduction of short correlation dis-
tance |r − r′|, that led to the approximate self-energy form 
in Equation 12. Thus the energies can be well modeled by a 
simple functional form as a function of position.

Strong correlation in d and f electron materials
Materials containing active d and f electrons possess strong elec-
tron–electron correlations. Hubbard pointed out the origin as 
electron interaction within the same atom, providing the famous 
same-site interaction U for the much-used Hubbard model.28,29 
Since these electrons form narrow bands, LDA (including the 
spin extension) based on the homogeneous electron gas is inad-
equate. A possible route is to combine broadband computation 
using LDA with the narrow band by the hybridization model of 
Anderson30 extending the single local impurity to a lattice. In 
References 31−33, we took into account the effect of the local 
interaction by a fluctuation of second order in U. The approxi-
mation was first tested in a one-dimension model against the 
exact numerical Monte Carlo computation. Then we applied the 
combined method to study the 3d magnetic elements where the 
d electrons are treated as localized states. The resultant quasi-
particle energies with finite lifetimes provided an explanation 
for the origin of the spectral shape of photoelectron emissions 
and absorptions. By the same method, we found an explanation 
for the variation of the effective mass of “heavy fermions” in 
the uranium compound UX3 with three elements of the plati-
num group, including iridium and gold. This result cannot be 
obtained by varying the parameters in the Hubbard model alone.

Test of the second-order U fluctuation in a 1D model 
The test of the fluctuation of second order in U was carried 
out in a one-dimension model of a sinusoidal and half-filled 
d-band from the nearest neighbor hopping parameter, the d−f 
hybridization energy V and the f−f interaction U.31

For U = 4 and V = 0.375 in units of the noninteracting band-
width, the poles of the Green’s functions yield the quasiparticle 
energies and associated inverse lifetimes. There were four qua-
siparticle bands (spin-resolved). Two bands were close to the 
noninteracting bands with the d−f hybridization gap reduced 
drastically from the bare 2V value by the f state occupation. The 
highest and lowest states were the Hubbard states in bands.

The total energy driven by the U2 fluctuation agreed with 
the accurate Monte Carlo results for U = 0 to 3. Moreover, the 
small U limit by perturbation and the large U limit by small 
V/U approximation were both checked to be correct. Thus, a 
smooth interpolation between the two limits is also possible.

Quasiparticle properties of Fe, Co, and Ni 
This transition magnetic series is a good candidate for the 
computational method previously described.32 The extended 
4s, 4p orbitals form broad bands that can be covered by the 
LDA (including spin). The 3d atomic orbital has about 90% 
of its wave function inside the Wigner–Seitz spherical cell and 
thus can be modeled by the Hubbard onsite interaction and 
hybridization with the broad bands. The two-step procedure 
was the same as in the 1D model, with two changes: in the first 
step an ab initio computation of the band structure replaced 
the model one; and in the second step, the two-particle cor-
relations were driven by the local interaction U and the addi-
tional exchange counterpart J involving all the d orbital and 
spin states in the same site. Each fluctuation computed was 
the difference between the two-particle correlation and the 
product of two mean expectation values from the first step. 
While the first-order terms in U, J can drive magnetism, the 
second-order terms change the 3d bandwidth and the effective 
electron mass and create additional features in the density of 
states and, therefore, the optical spectra. The calculated results 
showed that, while the ground-state properties such as partial 
occupation numbers and the Fermi surfaces from our inclu-
sion of the d electron correlation effects were similar to the 
LDA method, the significantly better results were in the quasi-
particle properties, such as the effective mass from the specific 
heat measurements and exchange splitting, and the quasipar-
ticle lifetime for the features in x-ray photoelectron spectra, 
spin-resolved angle-resolved photoemission spectra, and the 
inverse process called bremsstrahlung isochromat spectra.32

Trend of heavy fermion occurrence in UX3, X = Ir, 
Pt, Au 
The discovery in CeAl3 of a very large electron effective mass 
from the specific heat in the linear low-temperature regime 
of the coefficient γ = 1620 mJ/mole K2 spurred the finding 
of heavy fermions in numerous rare-earth intermetallic com-
pounds and theories.33,34 In Table I,35−38 the local interaction was 
taken at U = 2 eV for uranium39 for all three compounds being 
weakly dependent on the surroundings of a uranium atom.

The LDA results showed variation but no strong heavy 
mass effect. The inclusion of the correlation fluctuation 
showed a variation that matches the experimental data well. 
The contribution of the effective mass came from the electrons 

Table I.  Comparison of specific heat data with LDA and LDA plus 
local correlation results.

g (mJ/K2 per mole) UIr3 UPt3 UAu3*

Experiment 19.5 452 260

LDA 13.1 25.9 28.1

Plus local interaction 17 475 243

Experiment source Ref. 36 Ref. 37 Ref. 38

*The actual structure was claimed by Reference 36 to be U14Au51.
Note: LDA, local density approximation.
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near the Fermi level. The calculated results showed that the 
j = 5/2 peak covering the Fermi level was dominant over 
j = 7/2 about an eV above (j being the magnitude of the sum 
of the orbital angular momentum and spin). This determined 
the trend of the three compounds. It was also confirmed by the 
similar behavior in the pseudobinary alloys of UPd3 and URh3 
from the evidence by the de Haas–van Alphen measurement40 
and the resonant photoelectron emission.41

Summary
While the paradigm of finding out the landscape by the human 
population distribution may seem outlandish, since the tech-
nology of shaping the landscape is here, the use of the popula-
tion distribution is not a bad idea. The exchange of the roles 
between the potential and the density in the HK theorem may 
be viewed quite logically as the Legendre transformation. To 
demonstrate its power, I used the example of some quantum 
phase transitions (namely the phase transition at zero tempera-
ture) that make the Legendre transformation from the magnetic 
field at a spin site to the spin’s magnetization to calculate the 
quantum entanglement as a signature for the phase transition.

By the quantum viewpoint of the density distribution as one 
slice of the tomography measurement of the system, we see the 
limitation of the HK theorem and the KS effort in changing a 
part of the kinetic energy back to the quantum form in terms of 
the momentum operator that does not commute with the posi-
tion. KS equation is then a single-particle problem with all the 
electron interaction effects in the effective DFT potential.

The connection between the single electron without 
Coulomb interaction to the case with the interaction is 
expressed in terms of an infinite perturbation series. If the per-
turbation series is valid, then the effective potential is known 
and legitimate. A number of problems, such as the bandgap 
problem and good band structures, have in fact been solved.

In the strong electron interaction case, the theory is postu-
lated to be beyond the perturbation theory. Some of us have 
made efforts to combination the KS band structure part with 
strong coupling fluctuations. They have yielded some interesting 
observations of the existence of the strongly correlated phenom-
ena in some ferromagnets and heavy fermions but not others.

It would be interesting to see how much DFT can contrib-
ute to understanding the modern quantum materials.
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