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NON DECAY OF THE TOTAL ENERGY FOR

THE WAVE EQUATION WITH THE DISSIPATIVE

TERM OF SPATIAL ANISOTROPY

MISHIO KAWASHITA∗, HIDEO NAKAZAWA and HIDEO SOGA**

Abstract. We consider the behavior of the total energy for the wave equation
with the dissipative term. When the dissipative term works well uniformly in
every direction, several authors obtain uniform decay estimates of the total
energy. On the other hand, if the dissipative term is small enough uniformly
in every direction, it is known that there exists a solution whose total energy
does not decay. We examine the case that the dissipative term vanishes only in
a neighborhood of a half-line. We introduce a uniform decay property, which
is a natural generalization of the uniform decay estimates, and show that this
property does not hold in our case. We prove this by constructing asymptotic
solutions supported in the place where the dissipative term vanishes.

§1. Introduction

In the present paper we are concerned with the wave equation of the

form

∂2
t w − ∆w + b(x)∂tw = 0 in (0,∞) × R

N ,(1.1)

w(0, x) = w0(x), ∂tw(0, x) = w1(x) on R
N ,(1.2)

where N ≥ 1 and b( · ) ∈ B∞(RN ) = {f ∈ C∞(RN ) ; sup |∂α
x f(x)| < +∞ for

any multi-index α}. As is well known, for any data {w0, w1} ∈ H2(RN ) ×
H1(RN ) there exists a unique solution w(t, · ) of (1.1)–(1.2) in the class

w(t, · ) ∈ C0([0,∞);H2(RN )) ∩ C1([0,∞);H1(RN )) ∩ C2([0,∞);L2(RN ))

satisfying

(1.3) ‖w(t)‖2
E +

∫ t

0

∫

RN

b(x)|∂tw(τ, x)|2 dxdτ = ‖w(0)‖2
E
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for any t ≥ 0. Here Hm(RN ) denotes the Sobolev space of order m and

‖ · ‖E denotes the total energy

‖u(t)‖2
E =

1

2

(

‖∂tu(t, · )‖2
L2(RN ) + ‖∇u(t, · )‖2

L2(RN )

)

.

If b(x) ≥ 0, then b(x)∂tw is dissipative and we find from (1.3) that

‖w(t)‖2
E ≤ ‖w(0)‖2

E for any t ≥ 0. Therefore a question naturally arises

whether the total energy decays or not as t tends to infinity. The decay and

non-decay problems have been studied by many authors, e.g., Matsumura

[2], Rauch-Taylor [9], Mochizuki [3], [4], [5] and Mochizuki-Nakazawa [6],

[7], Nakazawa [8] etc. These studies have clarified precisely relation be-

tween the decay property of the solutions and the decreasing condition of

the coefficient b(x) when the condition is uniform with respect to spatial

directions. Let us explain some of the results.

Mochizuki-Nakazawa [7] considers the equation in an exterior domain

Ω (⊂ R
N , N ≥ 3) with a smooth boundary star-shaped with respect to the

origin x = 0 (where the boundary condition is the Dirichlet one). They

assume that there exist positive constants R, b0 and b1 (b1 ≥ b0 > 1) such

that

b0(1 + t + |x|)−1 ≤ b(t, x) ≤ b1 for t ≥ 0, |x| ≥ R,

and show that the total energy decays uniformly as t tends to infinity, i.e.,

(1.4)

‖w(t)‖2
E ≤ C0(1 + t)−µ

{

‖w0‖
2
H1(Ω) + ‖w1‖

2
L2(Ω) + ‖(w0, w1)‖

2
Eϕ(Ω)

}

, t ≥ 0

for positive constants C0, µ with 1/2 < µ ≤ 1 and µ < b0/2 and the data

{w0, w1} ∈ H2(Ω)∩H1
0 (Ω)×H1

0 (Ω) satisfying ‖(w0, w1)‖
2
Eϕ(Ω) < ∞, where

‖(w0, w1)‖
2
Eϕ(Ω) =

∫

Ω
(1 + |x|)

{

|w1(x)|2 + |∇w0(x)|2
}

dx.

On the other hand, we can know from Nakazawa [8] that the above

condition of the coefficient b is nearly best possible: If there exist a non-

increasing and non-negative function a(r) ∈ L1(0,∞) such that b(x) ≤
a(|x|) in R

N , then the total energy of (1.1)–(1.2) does not decay in gen-

eral (i.e., there exist non-trivial data such that the total energy of the

corresponding solution for (1.1) does not decay), and there exists a free

solution w0(t, · ) (which is the solution of (1.1)–(1.2) with b(x) ≡ 0) such

that ‖w(t, · ) − w0(t, · )‖E → 0 as t tends to infinity.
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As is described above, the precise results are obtained in the case where

decreasing conditions on b(x) are assumed uniformly in spatial directions.

However, we do not know anything when the conditions are not uniform in

the directions. Our problem is as follows:

Does the total energy decay when the decay situation of the coefficient

b(x) is not uniform with respect to spatial direction?

We treat this decay problem by considering whether the uniform decay

estimate like (1.4) holds or not. To formulate the problem, we introduce

the following concept of the uniform decay which is a weak version of the

estimate (1.4):

Definition 1.1. (U. D. P. = Uniform Decay Property) We say that
the equations (1.1)–(1.2) have the uniform decay property if and only if for
any ε > 0, there exists T (ε) > 0 independent of data {w0, w1} such that
the inequality

(1.5) ‖w(t)‖2
E ≤ ε

(

‖w0‖
2
H1(RN ) + ‖w1‖

2
L2(RN ) + ‖(w0, w1)‖

2
Eϕ(RN )

)

holds for any t ≥ T (ε) and any solutions of (1.1)–(1.2) with data {w0, w1}
satisfying the finite norms in the right-hand side of (1.5).

Our main result is

Theorem 1.2. Let G be an unbounded domain defined as

G =
{

x ∈ R
N | |x − x0 − ((x − x0) · ω)ω| < δ, |x − x0| > R

}

for x0 ∈ R
N , ω ∈ SN−1, δ > 0 and R > 0. Assume that b(x) satisfies

(1.6) supp b(x) ⊂ R
N \ G.

Then the equations (1.1)–(1.2) do not have (U. D. P.).

Remark 1.3. It is possible to weaken the assumption (1.6) in Theo-
rem 1.2, i.e., if integration of b(x) on any ray (half line) in G is uniformly
finite, then the conclusion of the theorem is valid.

It is expected that the equations (1.1)–(1.2) have neither the uniform

decay property nor the decay one if the assumption in Theorem 1.2 is satis-

fied. Unfortunately we cannot prove this expectation by our methods. Us-

ing asymptotic solutions, we can construct solutions to the equations (1.1)–

(1.2) whose energy propagates along the direction ω and hence remaing in
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the region G. These solutions are sufficient to obtain Theorem 1.2; however,

it seems difficult for us to verify the expectation using our solutions.

The content of the paper is as follows: In Section 2, we construct the

asymptotic solution for (1.1) with some specified data. Using the L∞-

estimate of this solution, we derive the estimate of the total energy for

the genuine solution of (1.1) in Section 3. In the final section we prove

Theorem 1.2.

§2. Construction of asymptotic solutions

Let f(x) be a function satisfying

f( · ) ∈ C∞
0 (RN ), suppf(x) ⊂ G

and let k > 0 be a parameter. We shall construct the solution of (1.1) with

data {0, f(x)eikω·x}. For this purpose, we construct the asymptotic solution

v(t, x; k) satisfying

(

∂2
t − ∆ + b(x)∂t

)

v(t, x; k) = O
(

(tβk−1)n
)

,(2.1)

v(0, x; k) = O
(

k−n
)

,(2.2)

∂tv(0, x; k) − f(x)eikω·x = O
(

k−n
)

,(2.3)

for a constant β > 0 and an integer n large enough, where O(µ−m) means

that the supremum norm in x is estimated by the parameter µ−m (as µ →

∞). Ikawa [1] explains the procedures of the construction. For precise

description of them, see Section 3 of [1].

We set

(2.4) v(t, x; k) = eikϕ+(t,x)
n

∑

j=1

v+
j (t, x)(ik)−j − eikϕ−(t,x)

n
∑

j=1

v−j (t, x)(ik)−j ,

where

ϕ±(t, x) = ±t + ω · x,

and determine v±j (t, x) (j = 1, 2, . . . , n) as is described later. We rewrite
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(

∂2
t − ∆ + b(x)∂t

)

v in the following way:

Pv(t, x; k) = eikϕ+(t,x)

{

(ik)0K+v+
1 (t, x)(2.5)

+
n−1
∑

j=1

(ik)−j
(

K+v+
j+1(t, x) + Pv+

j (t, x)
)

+ (ik)−nPv+
n (t, x)

}

− eikϕ−(t,x)

{

(ik)0K−v−1 (t, x)

+

n−1
∑

j=1

(ik)−j
(

K−v−j+1(t, x) + Pv−j (t, x)
)

+ (ik)−nPv−n (t, x)

}

,

where

P = ∂2
t − ∆ + b(x)∂t, K± = ±2∂t − 2ω · ∇ ± b(x).

If we assume

(2.6)

{

K±v±1 (t, x) = 0,

K±v±j (t, x) = −Pv±j−1(t, x) (j = 2, 3, . . . , n),

then

Pv(t, x; k) = g(t, x; k)(2.7)

≡ (ik)−n
{

eikϕ+(t,x)Pv+
n (t, x) − eikϕ−(t,x)Pv−n (t, x)

}

.

For construction of the genuine solution of (1.1) with data {0,

f(x)eikω·x}, we define the function u(t, x; k) by

(2.8)











Pu(t, x; k) = −g(t, x; k),

u(0, x; k) = u0(x; k),

∂tu(0, x; k) = u1(x; k),

for appropriate functions u0 and u1. Then the function w(t, x; k) defined

by

(2.9) w(t, x; k) = v(t, x; k) + u(t, x; k)
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satisfies Pw(t, x; k) = 0. We choose the data u0 and u1 as follows: Let

v±j (0, x; k) (j = 1, 2, . . . , n) be the solution defined by

{

v+
1 (0, x) − v−1 (0, x) = 0,

v+
1 (0, x) + v−1 (0, x) = f(x),

(2.10)

{

v+
j (0, x) − v−j (0, x) = 0,

v+
j (0, x) + v−j (0, x) = −∂tv

+
j−1(0, x) + ∂tv

−
j−1(0, x),

(2.11)

for any j = 2, 3, . . . , n. Then (2.2) and (2.3) hold. Set

(2.12)

{

u0(x; k) = 0,

u1(x; k) = −(ik)−neikω·x
{

∂tv
+
n (0, x) − ∂tv

−
n (0, x)

}

and solve (2.8). Then the function w(t, x; k) defined by (2.9) is the genuine

solution of (1.1) with data {0, f(x)eikω·x}.

The solutions v±j (t, x) (j = 1, 2, . . . , n) are given by solving (2.6) with

data determined by (2.10) and (2.11). We can give the precise form of

v±j (t, x):

Lemma 2.1. Let v±j (t, x) be the solutions of (2.6) with the data (2.10)
and (2.11). Then we have

v±1 (t, x) =
f(x ± ωt)

2
exp

{

−
1

2

∫ t

0
b(x ± (t − s)ω) ds

}

,(2.13)

v±j (t, x) = v±j (0, x ± ωt) exp

{

−
1

2

∫ t

0
b(x ± (t − s)ω) ds

}

(2.14)

∓
1

2

∫ t

0
Pv±j−1(τ, x ± (t − τ)ω)

× exp

{

−
1

2

∫ t

τ

b(x ± (t − s)ω) ds

}

dτ

for any j = 2, 3, . . . , n.

§3. L∞-estimates of asymptotic solutions

In this section, we derive L∞-estimates of (2.13) and (2.14):

https://doi.org/10.1017/S0027763000008813 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000008813


NON DECAY OF THE ENERGY FOR THE DISSIPATIVE WAVE EQUATION 121

Lemma 3.1. Assume that b( · ) ∈ B∞(RN ) is non-negative and satisfies

(1.6). Then for each multi-index α there exists a positive constant Cα such

that the estimate

(3.1)
∣

∣∂α
(t,x)v

±
j (t, x)

∣

∣ ≤ Cα(1 + t)3(j−1)+|α|

holds for any t ≥ 0 and x ∈ R
N .

Proof. Let Tτ (t, x) (0 ≤ τ ≤ t) be the function defined by

Tτ (t, x) =
1

2

∫ t

τ

b(x ± (t − s)ω) ds.

Then direct computation gives

∣

∣∂α
t,xTτ (t, x)

∣

∣ ≤ Cα(1 + t)

for some Cα > 0. Thus we have

(3.2)
∣

∣∂α
t,xe−Tτ (t,x)

∣

∣ ≤ Cα(1 + t)|α|

for another positive constant Cα. Note that

(3.3) ∂α
t,xv±1 (t, x)

=

{

(−1)|α|v±1 (0, x){∂tT0(t, x)}α0

N
∏

l=1

{∂xl
T0(t, x)}αl +R|α|(t, x)

}

e−T0(t,x),

where α = (α0, α
′) = (α0, α1, α2, . . . , αN ) and R|α|(t, x) is the function

containing multiplications of the derivatives of T0(t, x) at most of order m
with m ≤ |α′| − 1. Therefore we obtain (3.1) with j = 1 from (3.2). Next
we shall show (3.1) with j = 2. Putting

v2,1(t, x) = v±2 (0, x)e−T0(t,x),

v2,2(t, x) =

∫ t

0
Pv±1 (τ, x ± (t − τ)ω)e−Tτ (t,x) dτ,

we have v±2 (t, x) = v2,1(t, x) ∓ 1
2 v2,2(t, x). Thus we find from (3.2)

∣

∣∂α
(t,x)v2,1(t, x)

∣

∣ ≤ C|α|(1 + t)|α|.

https://doi.org/10.1017/S0027763000008813 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000008813


122 M. KAWASHITA, H. NAKAZAWA AND H. SOGA

Note that

∂m
t Tτ (t, x)

∣

∣

τ=t
=

{

0, (m = 0),
bm−1(x)

2 , (m ∈ N),

∂α′

x Tτ (t, x)
∣

∣

τ=t
= 0 for any α′,

where

b0(x) = b(x),

bm(x ± (t − s)ω) = ±ω · ∇bm−1(x ± (t − s)ω) (m ∈ N).

Then we obtain (3.1) with j = 2 by direct computation and induction. By
an argument similar to this we have (3.1) for all j = 1, 2, . . . , n.

As is easily seen (e.g., cf. Section 3 in Ikawa [1]), we have

Lemma 3.2. Assume that b( · ) ∈ B∞(RN ) is non-negative and satisfies

(1.6). Then we have

suppx v±j (t, x) ⊂
⋃

0≤τ≤t

{y ∓ τω | y ∈ suppx f(x)} ,(3.4)

diam
(

suppx Pv±j (t, x)
)

≤ C
{

diam
(

suppx f(x)
)

+ t
}

(3.5)

for some positive constant C, any t ≥ 0 and any j = 1, 2, . . . , n, where

diamD = maxx,y∈D |x − y|.

Let us give a lower bound to the asymptotic solutions v(t) = v(t, x; k):

Proposition 3.3. Assume that b( · ) ∈ B∞(RN ) is non-negative and

satisfies (1.6). Then there exists some positive constant Cn depending only

on n such that

(3.6) ‖v(t)‖2
E ≥

1

8
‖f‖2

E − Cn

{

n−1
∑

j=1

k−2j(1 + t)6j + k−2n(1 + t)6n−4

}

holds for any t > diam
(

suppx f(x)
)

.

Proof. Note that

∂tv(t, x) =
n

∑

j=0

(ik)−jpj(t, x)
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where

pj(t, x) =



























eikϕ+(t,x)v+
1 (t, x) + eikϕ−(t,x)v−1 (t, x) (j = 0),

eikϕ+(t,x){∂tv
+
j (t, x) + v+

j+1(t, x)}

+ eikϕ−(t,x){∂tv
−
j (t, x) + v−j+1(t, x)} (j = 1, 2, . . . , n − 1),

eikϕ+(t,x)∂tv
+
n (t, x) − eikϕ−(t,x)∂tv

−
n (t, x) (j = n).

Since

suppf(x) ∩ supp b(x) = ∅,

we have

v−1 (t, x) =
f(x − ωt)

2

by (2.10)–(2.14). This gives

‖p0(t, · )‖
2
L2 ≥

1

4
‖f‖2

L2 .

Moreover, by Lemma 3.1 we find

|pj(t, x)| ≤ Ck−j(1 + t)3j (j = 1, 2, . . . , n − 1),

|pn(t, x)| ≤ C ′k−n(1 + t)3n−2

for some positive constants C and C ′. Thus we obtain the desired result.

Proposition 3.4. Assume that b( · ) ∈ B∞(RN ) is non-negative and

satisfies (1.6). Then there exists some positive constant C independent of

t and k such that the remainder term u(t, x; k) in (2.8) satisfies

(3.7) ‖u(t)‖2
E ≤ Ck−2n(1 + t)6n+N .

Proof. Since Pu = −g (see (2.8)), it follows from the usual energy
estimate that

‖u(t)‖2
E ≤ C

(

‖u(0)‖2
E + (1 + t)

∫ t

0
‖g(τ, · )‖2

L2 dτ
)

for some C > 0. Noting (2.12), Lemma 3.1 with t = 0 and Lemma 3.2, we
find

‖u(0)‖2 =
1

2
‖u1(0, · ; k)‖2

L2 ≤ Ck−2n
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for some C > 0. Moreover we have

‖g(τ, · )‖2
L2 ≤ Ck−2n

(

‖Pv+
n (τ, · )‖2

L2 + ‖Pv−n (τ, · )‖2
L2

)

for any τ ∈ [0, t] by (2.7). Finally we obtain from Lemma 3.1 and Lemma 3.2
that

‖Pv±n (τ, · )‖2
L2 =

∫

supp Pv±n (τ, · )
|Pv±n (τ, x)|2 dx ≤ C(1 + t)6n−2+N .

Combining these estimates we have the desired result.

§4. Proof of Theorem 1.2

Assume that (1.1) has (U. D. P.), i.e., for any ε > 0, there exists

T (ε) > 0 such that

(4.1) ‖w(t)‖2
E ≤ ε

(

‖w0‖
2
H1 + ‖w1‖

2
L2 + ‖(w0, w1)‖

2
Eϕ

)

for any t ≥ T (ε) and any solution w(t, x) of (1.1)–(1.2). Insert w(t, x) =

w(t, x; k) into (4.1) (see (2.9)). Since {w(0, x), ∂tw(0, x)} = {0, f(x)eikω·x},
the right-hand side of (4.1) is estimated by εC‖f‖2

L2 for some C > 0 where

we have used

‖(0, f(x)eikω·x)‖2
Eϕ

≤ C‖f‖2
L2

for some C > 0. On the other hand, using Propositions 3.3 and 3.4, we find

in (4.1)

(4.2) ‖w(t)‖2
E ≥

1

2
‖v(t, · )‖2

E − ‖u(t, · )‖2
E

≥
1

16
‖f‖2

L2 −Cn

{ n
∑

j=1

k−2j(1+ t)6j +k−2n(1+ t)6n−4 +k−2n(1+ t)6n+N

}

for any t > diam(supp f(x)) and for some Cn > 0 depending only on n.

Now choose t large enough as t ≥ T (ε) and t > diam(supp f(x)) and choose

k large enough as (1 + t)n+ N
6 ≤ k. Then we have

[right-hand side of (4.2)] ≥
1

16
‖f‖2

L2 − Cn

n
∑

j=1

k−j .

Moreover choose k as

1

16
‖f‖2

L2 − Cn

n
∑

j=1

k−j ≥
1

32
‖f‖2

L2 .
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Thus we obtain

‖w(t)‖2
E ≥

1

32
‖f‖2

L2 .

Therefore we have
1

32C
≤ ε,

and this is the contradiction.

Finally, we note that Remark 1.3 in Introduction can be verified only

by making a little more precise estimation in Proposition 3.3.
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