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Abstract

In a glass furnace solid batches of material are fed into a chamber and radiation
heating applied. An individual batch is melted over the course of several minutes
to form molten glass. A travelling front within the batch designates the progress of
the melting, a process characterized by multiple radiation reflections. This results
in an effective conductivity within the melting zone that is significantly larger than
that in the unmelted batch. Approximations based on these disparate conductivities
enable accurate explicit expressions for the almost constant melting front speed and
the associated temperature profile to be derived. Our results compare favourably with
existing numerical simulations of the process, with the advantage of being both analytic
and relatively simple. These predictions may be useful in suggesting how a furnace
might be most effectively controlled under varying batch conditions, as well as ensuring
the quality of the glass sheets produced.

2010 Mathematics subject classification: 80.
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1. Introduction
Glass furnaces are complex pieces of equipment that typically need to operate
continuously over the lifetime of a factory in order to avoid catastrophic glass
solidification. Ongoing careful monitoring is essential to ensure the quality of the
final product, and this necessitates understanding the chemical and physical processes
occurring within the furnace. Here our interest will principally be with the latter, but
in order to make headway, it is important to note some basic chemistry; the most
fundamental fact we need to remember is that the main component of glass is silica
(SiO2), which under natural conditions occurs as sand. The silica structure consists of
strong SiO4 tetrahedra joined by chemical bridges. When a suitable fluxing material is
added to the crystalline material, it breaks the bridges, leading to a weaker interaction
between the silicon atoms. This modifies the network and results in the transparent
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Figure 1. Diagram of a glass furnace. Radiative heating from ceiling flames together with direct heating
from combustion gases melt the floating batch. Molten glass overflows into a second chamber to the right.

substance we recognize as glass. The reaction is endothermic and can only occur at
high temperatures.

In a typical industrial furnace, a solid batch of material, consisting principally of
ground silica of depth of a few centimetres, is fed at a speed of about 1 m s−1 into
the furnace. The chamber, which may be as large as 30 m long, 10 m wide and 4 m
high, contains about 1000 tonnes of already molten glass as shown in Figure 1. The
incoming batch floats on top of the molten glass. The batch material is guided into
the furnace by a moving barrier which has the effect that the batch enters in distinct
mounds rather than as a continuous feed. After entry the floating layer often splits
into two separate piles attached to the side walls of the furnace, and radiation from
flames located at the top of the furnace gradually melts the batch, thereby yielding
liquid glass. The floating layers of the input batch extend approximately 20 m into
the furnace before they are completely melted. Typical temperatures of the molten
glass are of the order of 1500 ◦C, and particles stay within the molten glass bath for
about 10–15 h. The excess glass in the furnace overflows into a second chamber where
the temperature is reduced to about 1400 ◦C, which is the appropriate temperature for
glass production using the Pilkington tin float process, now described. The molten
glass from the second chamber is fed onto a long tray of depth 0.5 m and width 7 m
containing molten tin of depth a few centimetres. The liquid glass spreads out over
the molten tin, forming a sheet (typically 7–10 mm thick) which solidifies as it travels
along, and is drawn off as a solid glass sheet which is subsequently cut into appropriate
sizes. More details of the operation of a furnace can be found in any of the articles
[1, 4, 10], while an excellent mathematical analysis of the whole process is given by
Howell [3].

Our concern here is with the development of a simplified mathematical model of the
melting of the batch which does not require us to delve into the complications of the
underlying chemistry. We shall consider an idealized batch of uniform thickness that
is introduced into a furnace at a constant speed and which floats on top of previously
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Figure 2. The melting of an element of the batch. Two distinct regions are separated by a front located at
z = s(t): the lower zone z < s(t) consists of unmelted batch, and the upper region z > s(t) contains melted
or partially melted batch.

melted glass. Radiation from the flames above increases the temperature of the batch,
and melting commences at its uppermost surface when its temperature achieves the
melting value (1123 K). Depending on morphology and surface tension characteristics
of the freshly formed melted glass, it will either remain on the surface or may drain
over the top of the batch or through the batch.

In order to develop and analyse the model, the remainder of the paper is organized in
the following manner. Presently, in Section 2, we elaborate on the details of the model
summarized in the preceding paragraph and derive a simple but nonetheless accurate
description of the problem. Some asymptotic solutions are derived in Section 3, and
our studies conclude with some remarks in Section 4.

2. Development of the model

Our model consists of an element of the batch which is supposed to be of depth
h. With the coordinate z measured vertically upward from the surface of the already
melted glass, the batch occupies the region 0 < z < h and at time t = 0 enters the
furnace. The batch begins to melt from its top and when t > 0 the extent of the melt
has descended to the front at z = s(t); see Figure 2. This front divides the batch into
two zones. In the lower zone, z < s(t), which we will designate zone 1, the batch is
still intact. In the upper zone, s(t) < z < h (zone 2), melting is either complete or under
way, so that this zone consists of a mixture of solid and melted particles. The flame at
the top of the furnace is supposed to radiate at an effective temperature TR, whilst the
upper surface of the batch is bathed in gas at temperature Tg.

Roughly 80% of the emitted radiation at temperature TR intercepts the batch and
is absorbed; the remainder is reflected or lost to the environment. At the location z
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within the melting region (zone 2), the incoming radiation that intercepts intact
sand particles will partially reflect and absorb; in particular, no radiation will be
transmitted through the sand. On the other hand, any already (partially) melted glassy
component is semi-transparent to incoming radiation and, thus, incident radiation
passes through this layer to be absorbed and reflected at lower levels. Some of
the secondary reflections from lower levels will intercept sand particles, resulting
in tertiary reflections and absorptions and associated melting. Moreover, the sand
particles and the heated glass will re-radiate in all directions and conduction will
transfer heat between layers. Any bubbles produced within the melting batch will also
act as scatterers of radiation, especially within the glassy upper layers. There will be a
layer of pure glass (completely converted batch) at the top, z = h, with the fraction of
batch that has been melted falling as z decreases to the front at s(t).

The field equations (known as the semi-transparent batch model) for the
temperatures in the two regions (T1(z, t), T2(z, t)) were derived by Wu and Viskanta
[11]. If the densities, specific heats and conductivities within the two zones are denoted
by (ρi, ci, ki), for i = 1, 2, then

ρ1c1
∂T1

∂t
=
∂

∂z

(
k1(T )

∂T1

∂z

)
for z < s(t),

ρ2c2

[
∂T2

∂t
+

{(
1 −

ρ1

ρ2

)ds
dt
∂T2

∂z

}]
=
∂

∂z

(
k2(T )

∂T2

∂z

)
−
∂F
∂z

+ H2 for z > s(t).

In the second equation, F(z, t) denotes the total radiative flux, and H2(z, t) is the (local)
enthalpy change due to melting. The bracketed term {·} on the left-hand side of the
second equation takes into account the volumetric change associated with the moving
front. Boundary conditions need to be specified at the bottom z = 0 and top z = h of
the batch, and state change (Stefan) conditions applied at the front s(t).

The specific heats ci are temperature invariant within the individual regions but take
different values in the two zones, so c1 , c2. The density within the melt is a function
of the degree of conversion that has taken place and, although it affects the position of
the upper surface of the melt relative to a fixed frame, it does not play a role in fixing
the front speed so will be treated as a constant here. Unfortunately, though taking
the specific heats and densities as constants is a reasonable approximation, the same
cannot be said for the conductivities which strongly vary with the temperature. The
conductivity of sand increases exponentially by a factor of about 2 over the relevant
temperature range of interest, and experiments described by Schick et al. [7] and
Shibata et al. [8] suggest that

k1(T ) = k10 exp
(
γ
( T
T0
− 1

))
, (2.1)

where k10 = 0.3116 W m−1 K−1 is the conductivity at room temperature T0 ≈ 300 K,
and γ = 0.275 is the conductivity variation parameter.

The normal thermal conductivity of melted glass is about k2 = 0.7 W m−1 K−1, and
is only weakly dependent on the temperature. However, the effect of the multiple

https://doi.org/10.1017/S1446181115000206 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181115000206


[5] Batch processing in a glass furnace 179

reflections and absorptions in the reacting batch layer significantly increases the heat
transfer through this layer. It can be shown (see Rosseland [6] or Siegel and Howell [9])
that the net effect of multiple reflections is to greatly enhance the thermal conductivity
from its molecular value k2 by a temperature-dependent radiation term to give an
effective conductivity

k2 eff = k2 + k2 rad � k2 where k2 rad =
16n2

3
σT 3

aR
; (2.2)

here n is the refractive index, aR is an absorption coefficient calculated from the
spectral absorption of the glass melt, and σ is the Stefan–Boltzmann constant. Using
numerical semi-transparent model simulations, Wu and Viskanta [11] obtained fitted
results for k2 eff(T ), giving the quadratic approximation

k2 eff = 5.39 − 0.0217 × T + 0.0000206 × T 2, (2.3)

which we write in a more useful form

k2 eff = k2m[1 − α(T − Tm) + β(T − Tm)2],

where k2m ≈ 7 is identified as the conductivity of the just-melted batch. Over the
temperature range of interest, from melting Tm (1123 K) to the gas temperature Tg

(1850 K), this quadratic function exhibits a negligible difference from the theoretical
cubic result (2.2). Moreover, the small value of the coefficient β suggests that a linear
approximation would be almost as good, and adopting this even simpler form leads to
some explicit analytic results.

We have already indicated that the radiative term F(z, t) is somewhat intricate,
and indeed, it involves incident, emission and absorption integrals with respect to
wavelength and over the partially converted melt depth. Furthermore, both F(z, t)
and the enthalpy term H2(z, t) depend on the fraction of the melt fb that is yet to
be converted. It is possible to avoid a detailed determination of fb(z, t) by making the
assumption that one can identify a temperature range ∆Tm over which melting occurs
and thereby associate a fractional melting temperature T f with each fb. Explicitly,

fb = fb0 + (1 − fb0)
T f − Tm

∆Tm

with ∆Tm ≈ 250 K. Even with this simplification, the analysis is daunting and
parameter estimation is somewhat problematic.

Wu and Viskanta [11] obtained numerical solutions of the above system for batch
elements of depth between 2 and 4 cm. They predicted overall melting times of
between 130 and 350 s, broadly consistent with observations. One difficulty associated
with the interpretation of these numerical simulations is to know how sensitive the
results may be to the parameter values used, especially when it is remembered that
some of these are at best only poorly estimated. It is with this background that our aim
is to simplify the model further while preserving the important aspects of the melting
of the batch.
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As it is not immediately obvious what is the most appropriate way to tackle our
problem, it is helpful to first examine some of the timescales involved. Sand is a poor
conductor, so one would expect the time required to raise the surface of the batch to
the melting point Tm to be relatively small. Classical theory [2] tells us that the rise
in the surface temperature of a semi-infinite body of conductivity k1 due to a constant
heat flux q into the surface is

Th =
q√

πρ1c1k1

√
t.

In our case, if we take the heat input as being due solely to flame radiation, this implies
that q = εσT 4

R where ε ≈ 0.7 is the emissivity. This then gives a pre-melting timescale
of some 8–20 s depending on the choice of k1 within the range given by (2.1). These
values are very much less than the melting time of the batch. Of course, the bottom of
the batch layer is in direct contact with the molten glass in the furnace at temperature
Tb ≈ 1500 K, so melting will be immediately initiated on the underside of the batch.

Conduction timescales can be estimated by noting that in the absence of melting the
time required for heat to conduct through a layer of thickness h is approximately

t1 = h2/κ1 where κ1 ≡ k1/(ρ1c1). (2.4)

Since the conductivity of sand increases from 0.35 to 0.66 W m−1 K−1 over the
temperature range of interest, this suggests a conduction time of some 15–30 min for a
2 cm layer. This is significantly longer than the observed time for melting (130–350 s),
so conduction through sand can be ruled out as a controlling factor of the overall
melting process. If we consider the molten silica glass (zone 2) and the effective k2
given by (2.3), then the molten batch behaves as a good conductor owing to radiative
exchanges.

Last, we consider the expected melting time should radiation alone provide the
latent heat to melt the batch. In this case, the time required would be

tR =
ρ1(∆hm)h

εσ(T 4
R − T 4

m)
, (2.5)

where ∆hm is the latent heat per unit mass required to convert sand into molten glass.
In writing down tR the re-radiation from the front at the melting temperature Tm has
been accounted for. With characteristic values this formula implies a melting time of
some 30–50 s for a 2 cm batch layer. Moreover, since both the radiative input from the
flames and the conductive and convective heat transfer from the gas in contact with the
batch help to melt it, the dimensionless grouping

K =
k2 eff(Tg − Tm)

εσ(T 4
R − T 4

m)h

provides a useful measure for the comparative size of these heat inputs. We will,
henceforth, refer to K as the convective heat transfer parameter. For a 4 cm batch
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layer, using a range of values for k2 eff gives K in the range 0.2–1.1 for typical gas
temperatures. It is clear from this that heat transfer through hot gas contact can be as
large as the radiative heat input.

Of major importance for the melting process is the ratio of the heat required to raise
the temperature of the batch from its initial value T0 to the melting temperature Tm,
to the latent heat required to melt the batch, a ratio referred to as the Stefan number.
Using the parameters above (and ignoring the heat required to dry the batch), we find
that

S =
c1(Tm − T0)

∆hm
≈ 1.6,

which indicates that the sensible and latent heat requirements for the melting process
are of similar sizes.

We conclude from the above that the effect of multiple reflections within the melting
batch is to greatly increase the conductivity of the melt and thus significantly reduce
the expected melting time from about 1 h down to a few minutes. One would expect
the speed of the front to be much greater than the solid batch conduction speed and
also somewhat larger than the radiative melting speed. These observations motivate
the simplified system that is presented below.

2.1. The simplified model We develop our model by assuming that all absorption
and melting occurs in the vicinity of the front z = s(t), so that completely melted glass
lies above an unconverted batch below. Under such circumstances the appropriate
condition to impose at the front is the Stefan condition

εσ(T 4
R − T 4

m) + q1s − q2s = −ρ1∆hm
ds
dt
, (2.6)

where q2s = −k2 eff(Tm)(∂T2/∂z) is the heat flux from the front into the molten batch,
and q1s = −k1(Tm)(∂T1/∂z) is the heat flux from the unconverted batch into the front
(see Figure 2). Furthermore, the front must be at the melting temperature Tm which
necessitates the continuity condition

T1(z, t) = T2(z, t) = Tm at z = s(t). (2.7)

The Rosseland approximation (2.2) is a simplification of the radiative transport
equation for optically thick media, and with this enforced and local latent heat terms
relegated to the melting front, the heat equation in the melt (zone 2) becomes

ρ2c2

[
∂T2

∂t
+

{(
1 −

ρ1

ρ2

)ds
dt
∂T2

∂z

}]
=
∂

∂z

(
k2eff(T )

∂T2

∂z

)
for z > s(t), (2.8)

while the equation in the unmelted batch remains

ρ1c1
∂T1

∂t
=
∂

∂z

(
k1(T )

∂T1

∂z

)
for z < s(t). (2.9)

To complete the specification of the problem, we need to describe the heat exchange
between the melt and the gas at temperature Tg. This is modelled by a Robin condition

q2h = −k2 eff(Th(t))
∂T2(h)
∂z

= µ(Th(t) − Tg), (2.10)
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where Th(t) = T2(h, t) is identified as the surface temperature of the melt, q2h is the
heat flux through the surface of the melt and µ is the heat transfer coefficient. The gas
temperature Tg is determined by the furnace geometry and global heat conservation
considerations, but for present purposes it is sufficient to suppose that Tg is prescribed
and may be adjusted by suitable modifications to the furnace, for example, by altering
the gap between the molten glass and the flame.

This completes the specification of our problem. To summarize, above and below
the front z = s(t), equations (2.8) and (2.9) respectively hold, and across the front
the continuity of temperature (2.7) and the Stefan law (2.6) apply. Given these
simplifications, let us now seek an appropriate quasi-steady solution structure that
describes the melting process with a slowly moving front.

3. Quasi-steady solution
It is convenient to begin our study of the process with the melting zone 2 lying

above the front. It is helpful to nondimensionalize lengths on the batch depth h and
express time in terms of the radiation timescale tR defined in (2.5). Thus, we define
t = tR t̃ and write the temperature of the batch material

T2 = Tm + (Tg − Tm)T̃2,

so that T2 = Tm and T2 = Tg correspond to T̃2 = 0 and 1, respectively. Furthermore,
the input flux at the top of the batch is scaled on µ(Tg − Tm) and the conductivity on its
effective value k2m ≡ k2 eff(Tm) at the melting temperature. Consequently, we introduce
dimensionless flux and conductivity variables q̃2h and k̃2 as

q2h = µ(Tg − Tm) q̃2h and k2 eff(T2) = k2m k̃2(T̃2).
Assuming a quasi-steady profile and ignoring volumetric changes, the heat equation

(2.8) reduces to
∂

∂z

[̃
k2(T̃2)

∂T̃2

∂z

]
= 0,

and an integration followed by application of the surface condition (2.10) gives

−̃k2(T̃2)
∂T̃2

∂z
= T̃h − 1,

where T̃h is the scaled surface temperature which is yet to be determined. A second
integration and imposition of the requirement that T̃2 → 0 at the melting front z = s( t̃ )
yields ∫ T̃2

0
k̃2(w) dw = (T̃h − 1)(s( t̃ ) − z).

This equation implicitly determines the temperature field T̃2(z) through the melt;
necessarily T̃2(1) = T̃h, thereby requiring∫ T̃h

0
k̃2(w) dw = (T̃h − 1)(s( t̃ ) − 1), (3.1)

which can be solved for T̃h for any prescribed k̃2(T̃2).
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Figure 3. The scaled surface temperature of the melt as a function of the (scaled) location s( t̃ ). Result
corresponding to a gas temperature of 1850 K.

As was noted earlier in our discussion of (2.3), the tiny coefficient of the quadratic
term means that the variation of the conductivity over the temperature range is virtually
linear, so with minimal error we may write

k̃2(T̃2) = 1 + T̃2(̃k2g − 1),

where k̃2g ≡ k̃2(1) is the scaled conductivity of the melt at the gas temperature. The
consistency result (3.1) then gives

T̃h + 1
2 (̃k2g − 1)(T̃h)2 = (T̃h − 1)(s( t̃ ) − 1),

so that the surface temperature and associated heat flux are, respectively,

T̃h =
1

(̃k2g − 1)

[√
1 + (1 − s)

{
2̃k2g + 1 − s

}
− 2 + s

]
and q̃2h = (T̃h − 1).

Figure 3 displays the scaled surface temperature T̃h as a function of the location
of the front position s. Note that initially the temperature of the surface is Tm (so
T̃2 = 0), and it gradually increases to values closer to the gas temperature as melting
proceeds towards completion as s→ 0. It is also noted that q̃2h < 0, so that heat from
the combustion gases assists the melting of the batch.

Now we turn to the unmelted zone 1. Although we continue to scale lengths and
times in the same way as was used for zone 2, here it is convenient to adopt an
alternative notation for the temperature and the conductivity. The temperature of the
batch is written using the room temperature as the reference base, so that

T1 = T0 + (Tm − T0)T̂1(z, t̃ ).

With this form of the temperature, the definition (2.1) for the conductivity can be cast
as k1 = k10 exp(γ0T̂1) with γ0 ≡ γ(Tm − T0)/T0. Furthermore, it is helpful to scale the
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flux from the unconverted batch into the front, so that

q1 =

[k10(Tm − T0)
h

]
q̂1 with q̂1 = − exp(γ0T̂1)

∂T̂1

∂z
.

We seek a travelling wave solution of the form T̂1 = T̂1(ζ) with ζ ≡ s(̃t) − z, subject
to T̂1(0) = 1 and T̂1(∞) = 0. These boundary conditions reflect the expectation that the
temperature T1 = Tm at the front, and it approaches the room temperature of the batch
far from the front. If this ansatz is substituted in the unmelted batch equation (2.9) and
the scalings applied, the result is

λṡ
∂T̂1

∂ζ
=

∂

∂ζ

(
exp(γ0T̂1)

∂T̂1

∂ζ

)
with λ =

[h2ρ1c1

k10tR

]
≡

t1
tR
, (3.2)

where ṡ is the front speed. Note that the parameter λ is the ratio of the conduction t1
(2.4) and radiation tR (2.5) timescales, which is expected to be large. Integration of
equation (3.2) yields

λṡT̂1 = exp(γ0T̂1)
∂T̂1

∂ζ
, (3.3)

which requires that T̂1 → 0 as ζ →∞. Evaluating this at the front ζ = 0, where T̂1 = 1,
gives

λṡ = −q̂1(0) ≡ −q̂1s,

so the unscaled heat input from the front into the unconverted batch is given by

−q1s = −

[k10(Tm − T0)
h

]
λṡ ≡ −

[hρ1c1(Tm − T0)
tR

]
ṡ

using (3.2). This result simply states that the sensible heat input (−q1s) required to raise
the temperature of sand to the melting temperature needs to be supplied by conduction
from the front.

Equation (3.3) can be integrated again to give

−λṡζ = Ei(γ0T̂1) − Ei(γ0), (3.4)

where Ei is the exponential integral function defined by Ei(x) ≡
∫ x
−∞

t−1et dt in which
the integral is taken to be the Cauchy principal value. For small T̂1, this solution is
given by T̂1 ≈ exp(−λṡζ), so heat from the travelling front penetrates a scaled distance
of order λ−1� 1 into the unreacted batch. Translated into dimensional terms, and using
the characteristic parameter values cited earlier, this suggests that for batch depths of
2–4 cm, the penetration length is roughly 5% of the batch height.

The temperature variation through the melting front as given by the solution of (3.4)
is depicted in Figure 4. The thermal profile is strongly dependent on the value of the
conductivity variation parameter γ0 (= γ(Tm − T0)/T0). We remark that γ0 ≈ 0.75 for
an input batch temperature of 300 K, and it increases as T0 decreases. The temperature
profile becomes sharper and thins as the batch input temperature grows, with the
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Figure 4. The scaled temperature variation T̂1(ζ) through the front for the two cases γ0 = 0.75 and γ0 = 4.

consequence that pre-heating a batch could significantly affect the heating history of a
particle.

Having modelled the various components of heat transfer into and out of the
front, what remains is the issue of the propagation speed of the front. This is settled
by examination of the Stefan condition (2.6) which, when cast in terms of the
dimensionless quantities, becomes

[µ(Tg − Tm)](T̃h − 1) −
[hρ1c1(Tm − T0)

tR

]
ṡ = [εσ(T 4

R − T 4
m)] +

[
ρ1∆hmh

tR

]
ṡ.

On recalling the definition of the radiative timescale tR given by (2.5), this reduces to
the ordinary differential equation

(1 + S)
ds
dt̃

= −1 +K(T̃h − 1), (3.5)

which depends on the Stefan number S and the convective heat transfer parameter K .
If it is recalled that the time has been scaled using tR, then further simplification can
be achieved by adopting the melting timescale tm = (1 + S)tR. If t̃ = (1 + S)t†, then

ds
dt†

= −1 +K(T̃h(s) − 1),

which is a separable equation for s(t†). We have previously noted that for realistic
values, K probably lies in the range between 0.2 and 1.1, with its precise value
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Figure 5. Movement of the front for the three values, K = 0, 0.5 and 1 (dashed, thin and thick lines,
respectively). The left-hand plot shows the scaled front speed |ṡ| as a function of location s within the
batch. The right-hand plot illustrates the evolution of the front location s as a function of scaled time t†.

depending on the combustion gas and effective radiation temperatures. Plots of the
front speed ṡ as a function of front location s and of this position as a function of t† are
given in Figure 5. WhenK = 0 there is no heat transfer from the combustion gases, so
that the front travels with constant speed, and the melting time is tm = tR. Increasing the
value of K corresponds to additional convective transfer from the combustion gases,
and the melting time almost halves due to convective heat transfer from the hot gas.
The implication is that reducing the depth of the furnace can significantly reduce the
batch melting time.

We also note that when K , 0 the front speed falls slightly as melting proceeds
due to the changed effective conductivity of the melt. A useful approximation can be
obtained by simply averaging the right-hand side of (3.5) to give the constant front
speed of ∣∣∣∣∣ ds

dt†

∣∣∣∣∣ =
1 +KF (̃k2g)

1 + S
, (3.6)

where

F (̃k2g) = 1 +
1

2(̃k2g − 1)

[(√
2 + 2̃k2g +

√
1 + 2̃k2g

)
− 3

]
,

which implies that the effect of combustion gas on front speed is to increase it by the
factor 1 +KF (̃k2g).

4. Discussion and closing comments

The quantitative results obtained in this work complement the numerical
simulations previously obtained by Wu and Viskanta [11], but the results have the
advantage of being both relatively simple and explicit, and thus can provide better
understanding of the important processes involved. An appreciation of the key parts
of the complicated process of glass manufacture could enable quick operational
adjustments to be made on-site. Some of the highlights of our findings include the
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observation that the front speed through the melt seems to remain almost constant, and
that the heat transfer from the gas may have a profound effect on this progression. An
adjustment to the spacing between the flames and the batch can significantly affect the
melting time, as can an increase in the radiative input.

In this model we have neglected the lower front that can be expected to move
upwards through the batch. Since the bottom of the batch is in contact with melted
glass at a temperature greater than the melting point Tm, we would anticipate some
melting upwards. The temperature variations under the batch as it moves into the
furnace are relatively small, so that the heat transfer driving the lower front will remain
almost constant and the front speed is given by

ṡb = µ1
(Tb − Tm)
ρ2∆hm

,

where µ1 is the heat transfer coefficient. This front progresses relatively slowly
compared with the radiation-driven upper front and would be best measured or inferred
from observations. The temperature profile near this front is the same as that obtained
for the upper one; importantly, its thickness is small, and so the two fronts act almost
independently until they begin to overlap and interfere with each other. Theoretically
it should be possible to quantify this late stage of melting, but in our context such a
calculation would be completely academic and of no practical value since melting is
essentially complete once the fronts begin to merge.

The simplest possible model for the melting process would assume a direct transfer
of radiating heat from the flames to the melting front while ignoring conductive
heat transfer through the melt. This corresponds to the K = 0 limit of our melting
speed result (see (3.6)). However, we have seen that convective (or conductive) heat
transfer from the gas in contact with the batch surface, through the partially melted and
fizzing (due to bubbles) melt, modifies this result by a multiplicative factor 1 +KF .
Somewhat surprisingly, for typical practical input parameter values, the front speed
still remains reasonably constant as the front progresses through the batch, even though
the variations of surface temperature of the melt are quite large; see Figure 3.

We admit that there are many uncertainties not accounted for in this simple model;
for example, the Rosseland model (2.3) assumes a uniform distribution of scattering
points. Furthermore, practice batches consist of piles of material, rather than a uniform
depth layer as used in the model developed in this paper, and this might be significant
since the available batch surface area exposed to radiation will change near the end of
the melting process. Despite these obvious shortcomings, our analysis has identified
the important dimensionless groups S and K . Experimental tuning should result in
minor modifications of the results obtained, and plausibly provide a useful basis for
furnace control and design. Variations in batch properties can arise due to changed
sourcing or climatic conditions, and it is evident that different glasses require different
batch compositions. From the glass quality point of view, the thermal history of batch
particles determines the propensity of the batch to retain or shed bubbles of various
sizes into the molten glass bath, so the melting layer thermal structure results are likely
to be useful.
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Our modelling here has been concerned with the physical mechanism of the
production of glass at the exclusion of many of the chemical aspects of the problem.
Flaws (often bubbles) are always present in plate glass, and if they are sufficiently
large, can unacceptably corrupt its optical integrity. Sheets that are compromised in
this way have to be recycled, which is an unnecessary expense. The bubbles originate
from within the furnace, and some preliminary work on the formation, growth and
movement of bubbles within a furnace has been done. We hope to report the outcomes
of this work in due course.
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