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We revisit the dynamics of a thick liquid film flowing down a vertical fibre. Instead
of deriving a long-wave model, we directly solve the Navier–Stokes equations using a
domain mapping technique and the exact steady travelling wave solutions are explored
using a dynamical systems theory approach. Three distinct flow regimes, labelled ‘a’, ‘b’
and ‘c’, observed in previous experiments (Kliakhandler et al., J. Fluid Mech., vol. 429,
2001, pp. 381–390) are investigated. Flow regime ‘a’ refers to a steady flow state in which
large droplets are separated by a long thin film. Flow regime ‘b’ is a necklace-like flow.
In flow regime ‘c’, a cyclic process of droplet coalescence and breakup was observed.
By matching the mean flow rates of the travelling wave solutions and experimental data,
our travelling wave solutions show an excellent agreement with flow regimes ‘a’ and ‘b’.
The time-periodic flow regime ‘c’ is compared with direct numerical simulation of the
Navier–Stokes equations. A snapshot of the simulation shows a remarkable similarity to
an experimental image and the discrepancy of mean wave speed and maximal wave height
between our numerical simulation and experimental data is negligible.

Key words: thin films

1. Introduction

In the first chapter of the monograph Perspectives in Fluid Dynamics, Batchelor, Moffatt
& Worster (2000) selected the research of ‘liquid film flows’ as one of the ten interesting
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research fields. Liquid film flows have important applications in industrial systems, such as
lubrication, protecting a flat surface (Oron, Davis & Bankoff 1997) or a cylindrical surface
(Quéré 1999). A liquid film coating a cylindrical surface is of particular interest, which is
widely encountered in nature and industrial applications, e.g. liquid beads on spider silk,
water collection, desalination and manufacture of nanofibres (Ju et al. 2012; Sadeghpour
et al. 2019; Tu et al. 2019). This gravity-driven flow exhibits rich interesting dynamical
phenomena due to the well-known Plateau–Rayleigh mechanism, for instance, absolute
and convective instability (Duprat et al. 2007). Recently, the coating flows on cylindrical
fibres in more complicated situations, e.g. with an electric field (Wray, Papageorgiou &
Matar 2013) or heated fibres (Ding et al. 2019), have been examined to understand droplet
formation under the modified Plateau–Rayleigh mechanism.

The coating flow on a vertical fibre is particularly connected with drawing a fibre out
of a liquid bath, and the experimental study was pioneered by Quéré (1999). He observed
that thick films on the fibre will break up into large droplets quickly, while the formation
of liquid beads can be arrested by the mean flow when the film is thin. For thin liquid
film flows, simple models based on the long-wave assumption were used to investigate the
linear and nonlinear dynamics, which demonstrated that the flow is unstable due to the
azimuthal curvature (Frenkel 1992; Kalliadasis & Chang 1994; Chang & Demekhin 1999;
Yu & Hinch 2013). In recent years, more interest has been concentrated on thick film flow.
Kliakhandler, Davis & Bankoff (2001) reported that there are three distinct flow regimes,
labelled as ‘a’, ‘b’ and ‘c’, which are all axisymmetric when the coated fibre is placed
vertically (see the sketch in figure 1). The droplets in flow regime ‘a’ are separated by a
long thin film, which propagate at a constant speed. Flow regime ‘b’ is a necklace-like
flow, in which the droplets are closely spaced. Flow regime ‘c’ occurs at very low flow
rate, and a large droplet is observed to coexist with several tiny beads. Recent experimental
studies demonstrated that these flow regimes can be significantly changed by the nozzle
shape or tilting of the fibre (Sadeghpour, Zeng & Ju 2017; Schwartz & Cender 2016). For
instance, the nozzle size can change the droplet spacing as well as the absolute-convective
instability; and tilting the fibre can immediately make the flow non-axisymmetric.

To investigate the dynamics of the three flow regimes, previous works employed a
reduced-order model based on the long-wave assumption. When considering a very weak
flow, i.e. inertia is negligible, a simple one-equation model governing the film thickness or
the film radius was used to investigate the bead-like flows (Kliakhandler et al. 2001; Craster
& Matar 2006; Ding & Willis 2019). To explore the mechanism underlying the effect of the
nozzle on the flow regimes, Ji et al. (2019) proposed a more complicated single-equation
model by including the wall-slip effect and van der Waals attractions. By treating the van
der Waals attractions as a stabilizing term in their model, the predicted dynamics showed
good agreements with experiments. However, still unclear is the stabilizing mechanism of
the van der Waals attractions, which, typically, play a destabilizing role and can cause the
finite-time rupture of the liquid film (Ding et al. 2019). Without this stabilizing term, it
was claimed by Craster & Matar (2006) and Ruyer-Quil et al. (2008) that the nonlinear
dynamics of flow regime ‘a’ can be well predicted by long-wave models. Nevertheless,
the ‘excellent’ agreement is questionable because it is not verified if the flow rates of
the computed steady travelling wave solutions match the experiments. All these models
(Kliakhandler et al. 2001; Craster & Matar 2006; Ding & Willis 2019), however, failed to
capture the dynamics of flow regime ‘b’ which is essentially a short-wave regime. And
the gap between experimental measurement and theoretical prediction by travelling wave
solutions of these reduced-order models for the wave speed of flow regime ‘c’ is large (a
discrepancy of ∼30 %). Although using a relative periodic solution for flow regime ‘c’
914 A30-2
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Coating flows down a vertical fibre

‘a’ ‘b’ ‘c’

Figure 1. Sketch of the three different flow regimes ‘a’, ‘b’ and ‘c’ in experiments. Solid lines are the fibres.
The droplets in flow regime ‘a’ are propagating at a constant speed. Droplets in flow regime ‘b’ are closely
spaced and resemble a necklace structure. Flow regime ‘c’ is unsteady due to the coalescence and breakup
interactions between the large droplet and small beads.

can correctly predict the dynamic behaviour (droplet coalescence and breakup process),
the improvement in the predicted wave speed is not significant. A plausible reason for
the inaccurate prediction of the wave speed of flow regime ‘c’ by the single-equation
model is the neglected inertial term, which can be important because of the large size
of the droplet. Ruyer-Quil et al. (2008) and Novbari & Oron (2009) took inertia into
consideration and proposed a weighted residual model – a two-equation model – that
aims at improving the prediction of the nonlinear dynamics when the Reynolds number
is moderate. However, the two-equation model also failed to predict the correct dynamics
of flow regimes ‘b’ and ‘c’. But the two-equation model was more successful for thin
liquid films on an inclined plane in that it compares well with the full Navier–Stokes
equations and experiments (Denner et al. 2018; Tomlin, Cimpeanu & Papageorgiou 2020).
This perhaps is because the wavelengths in these problems are typically long. It should be
stressed that the single-equation model or the two-equation model becomes immediately
‘wrong’ because the long-wave assumption breaks down when the film is thick, e.g. flow
regime ‘b’. In addition, in some industrial applications, fluid inertia cannot be neglected
and the droplet spacing is short, e.g. desalination (Sadeghpour et al. 2019); the reduced
models cannot be applied and an accurate prediction of the flow dynamics is in demand.

To investigate the nonlinear dynamics when the reduced models are not valid, the
Navier–Stokes equations need to be solved using a proper numerical method, which can
also help to validate the working regimes of the reduced models. However, solving the
Navier–Stokes equations with a moving interface is challenging. In recent years, popular
numerical methods, such as the volume of fluid method, level set method and phase field
method, have been widely used to handle the moving boundary problem. These methods
solve a multi-phase flow problem by modelling the surface tension as a body force within
a very narrow layer that separates the liquid phase and air phase. The dynamics of the
air phase is coupled with the liquid phase, which cannot be neglected. For example,
the volume of fluid method has been applied to simulate a liquid film flowing on a flat
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plane (Denner et al. 2018; Tomlin et al. 2020) and a liquid film coating a vertical fibre
(Sadeghpour et al. 2017, 2019), when the fluid inertia cannot be neglected. An advantage
of the volume of fluid method, or phase field method, is that it can deal with the case when
the fluid interface cannot be described by a function, e.g. dripping of liquid films down
an inclined plane due to the Rayleigh–Taylor instability (Tomlin et al. 2020). However,
the reduced models were derived from a single-phase flow problem, which neglects
the dynamics of the air phase, and it is straightforward to compare the reduced model
with its prototype such that we can assess the validity of the long-wave assumption and
influence of the neglected streamwise diffusion. But if the dynamics of the air phase is
important (e.g. a turbulent air flow), we have to compare the model equations with the full
Navier–Stokes equations of a two-phase flow system. In our present study, we focus on
the Navier–Stokes equations of a single liquid phase flow and neglect the dynamics of the
air phase, such that the popular numerical methods of two-phase flows are not employed.
Investigating the nonlinear dynamics of a single liquid phase flow with a moving interface
requires a special numerical method. Over the past decades, the finite element method
(FEM) and domain mapping technique have been widely used. Bach & Villadsen (1984)
investigated a two-dimensional liquid film falling down a vertical wall and solved the
problem using the FEM in terms of the Lagrangian velocities. Using the FEM, Salamon,
Armstrong & Brown (1994) performed a comprehensive study of the travelling waves
in vertical thin films, which was compared against an asymptotic long-wave model and
a boundary layer model. Ramaswamy, Chippada & Joo (1996) used the FEM with an
arbitrary Lagrangian–Eulerian formulation to study the complex wave interactions in a
vertically falling film. Their numerical results showed that the tendency of the film to
break up can be arrested by wave merging and splitting processes. However, the grid
has to be updated at every time step using the FEM, which slows down the simulation.
Very recently, Richter & Bestehorn (2019) used a domain mapping method to simulate the
dynamics of a vibrating liquid film on a horizontal plane. The domain mapping method is
to map the time-varying domain into a time-independent rectangular domain, which has
been recently extended to a liquid film flowing down a rotating cylinder by Liu & Ding
(2020). The main advantage of the domain mapping method is that there is no need to
update the grid at every time step.

In the present paper, we revisit the problem of coating flows down a vertical fibre by
solving the Navier–Stokes equations without the assumption of long-wave dynamics. The
rest of the paper is organized as follows. Mathematical formulation and numerical method
are presented in § 2, which is followed by results and discussion in § 3. The travelling wave
solutions are explored using a dynamical systems theory approach, which are compared
with experimental studies of flow regimes ‘a’ and ‘b’. Flow regime ‘c’ is a time-periodic
travelling wave (or defined as relative periodic orbit by Ding & Willis (2019)) which cannot
be represented by a steady travelling wave. However, it is very challenging to find an exact
relative periodic orbit of the Navier–Stokes equations to compare with flow regime ‘c’.
Instead, we perform numerical simulation by designing an initial condition, which shows
that the system evolves into a time-periodic state and is in excellent agreement with the
experimental study. Conclusions are presented in § 4.

2. Mathematical formulation and numerical method

We consider a Newtonian fluid, of constant viscosity μ and density ρ, flowing down a
vertical fibre of radius r = a under gravity g. The air phase is assumed inviscid in the
present study and its dynamics is neglected. The surface tension is σ , which is constant
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Coating flows down a vertical fibre

in the present study. We directly start from the dimensionless governing equations by
choosing the mean radius R and the capillary length L = σ/ρgR as the radial and axial
length scales, V = ρgR2/μ as the velocity scale and L/V and ρgL as the time scale and
pressure scale.

In the present study, we restrict ourselves to axisymmetric flow and a two-dimensional
problem is considered. Then, choosing cylindrical coordinates, the dimensionless
governing equations are

∂ru + u
r

+ ∂zw = 0, (2.1)

ε4La(∂tu + u∂ru + w∂zu) = −∂rp + ε2
[
∂rru + ∂ru

r
− u

r2 + ε2∂zzu
]

, (2.2)

ε2La(∂tw + u∂rw + w∂zw) = 1 − ∂zp + ∂rrw + ∂rw
r

+ ε2∂zzw, (2.3)

where La = σρR/μ2 is the Laplace number, ε = R/L = ρgR2/σ is the Bond number and
u = uer + wez is the velocity.

At the surface r = S(z, t), the stress is balanced by the surface tension:

2ε2∂zS(∂ru − ∂zw) + [1 − ε2(∂zS)2](∂rw + ε2∂zu) = 0, (2.4)

−p − 2ε2[(∂rw + ε2∂zu)∂zS − ∂ru − ε2∂zw(∂zS)2]
1 + ε2(∂zS)2 = − 1

S[1 + ε2(∂zS)2]1/2

+ ε2∂zzS
[1 + ε2(∂zS)2]3/2 . (2.5)

The moving surface satisfies the following kinematic condition:

∂tS2 + 2∂z

∫ S

α

wr dr = 0, (2.6)

where α ≡ a/R is the dimensionless radius of the fibre. There is no slip and penetration at
the fibre wall.

To solve the Navier–Stokes equations (2.1)–(2.3) subject to a moving boundary at r =
S(z, t), we employ a domain mapping technique adapted from Richter & Bestehorn (2019)
(see Liu & Ding 2020):

t = t̃, z = z̃, r = h(z̃, t̃)r̃ + α, (2.7a–c)

where h = S − α is the thickness of the film. Hence, the domain of fluid is mapped into
a rectangular region r̃ × z̃ = [0, 1] × [0, l], where l is the axial length of the domain,
which is also the wavelength of a typical travelling wave in the present study. The
Chebyshev–Fourier spectral method was used to solve the problem. Ten Chebyshev modes
and 100 Fourier modes were utilized to ensure numerical accuracy in the present study.
Details of the numerical method can be found in the appendix of Liu & Ding (2020).
It should be mentioned that the present study considers a periodic domain such that the
nozzle effect and irregular bead coalescence dynamics in the convective instability regime
will not be characterized. To investigate these complex situations, one has to consider a
non-periodic long domain in the simulation (see Sadeghpour et al. 2017, 2019).
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The exact travelling wave solutions can be explored by tracking the recurrent solutions
in the system (Cvitanović et al. 2018):

X T(T, r̃, s + z̃) = X 0(0, r̃, z̃), (2.8)

where X encodes the variables (u, w, S). For travelling wave solutions, T is fixed at T = 1
in the present study. The spatial shift s defines how far the wave runs in the axial direction.
Hence, the wave speed c of the travelling wave is defined as c = s/T . This dynamical
systems theory approach has been widely used to find equilibria and periodic orbits in
turbulent flows (Viswanath 2007; Chandler & Kerswell 2013; Budanur et al. 2017) and in
liquid film flows (Ding & Willis 2019).

To improve the guess of (X 0(t̃, r̃, z̃), s), one has to solve the following equations (Ding
& Willis 2019):

∂X T

∂X 0
δX 0 + ∂X T

∂s
δs − δX 0 = − (X T − X 0) . (2.9)

To fix the shift distance s, we require δX 0 to have no component that shifts X 0 in the axial
direction:

δX 0
∂X 0

∂ z̃
= 0. (2.10)

We used a Jacobian free method to approximate (∂X T/∂X 0)δX 0 as

∂X T

∂X 0
δX 0 ≈ X T(t̃ + T, r̃, s + z̃; X 0 + ΔδX 0) − X T(t̃ + T, r̃, s + z̃; X 0)

Δ
, (2.11)

where Δ = 10−6‖X 0‖/‖δX 0‖ is a small empirical parameter. Equations (2.9) and (2.10)
constitute a linear algebraic system A x = b wherein x = (δX 0, δs)T and b = −(X T −
X 0, 0)T. The linear system can be solved using a GMRES method, which approximates the
solution in the Krylov subspace Kn = {b,A b,A 2b, . . . ,A n−1b}. Typically, 20 GMRES
iterations will yield a converged solution, i.e. the relative error ‖A x − b‖/‖b‖ < 10−3.
The Newton step is terminated when ‖X T − X 0‖/‖X 0‖ < 10−6. Our numerical method
has been validated against the long-wave model and tested near the cut-off wavenumber
predicted by linear stability, which showed that the predicted wave speed is in excellent
agreement with the linear stability analysis.

3. Results and discussion

Note that the radial length scale R in previous studies (Kliakhandler et al. 2001; Craster &
Matar 2006) was determined using the mean flow rate:

Q = 1
2πl

∫ l

0

∫ 2π

0

∫ R

a
w̄r dr dθ dz, w̄ = ρg

4μ
[2R2 ln(r/a) − r2 + a2]. (3.1a,b)

The mean flow rate was measured by feeding back liquids into the upstream reservoir such
that the liquid depth in the reservoir was maintained (Kliakhandler et al. 2001). This radial
length R was considered as the initial mean radius of the liquid film in previous studies
(Kliakhandler et al. 2001; Craster & Matar 2006). Here, we found that R does not really
correspond to the initial mean radius of the liquid film, and the initial radius of the film
has a significant influence on the prediction of the wave speed and wave height. Previous
numerical studies have considered many other factors, such as the flow rate, the inlet
conditions and the shape of the nozzle (Duprat, Ruyer-Quil & Giorgiutti-Dauphiné 2009;
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Coating flows down a vertical fibre

Sadeghpour et al. 2017), that affect the predictive capacity of reduced models. However,
these studies failed to accurately predict the dynamics in different flow regimes, e.g. the
wave speeds of droplets in flow regimes ‘b’ and ‘c’. Actually, in the numerical simulations,
the flow rate Q is varying with time once the interface becomes unstable because of the
varying velocity profile and interface. This means that the flow rate Q at the laminar state
will be different from the average flow rate of a saturated travelling wave state. Hence,
there should be a special initial mean radius ( /= R) corresponding to the mean flow rate
measured in experiments. Actually, the initial mean radius of the film is an unknown
parameter in experiments (only the flow rate is given). Hence, to make a reasonable
comparison between the travelling wave solution and experimental measurements, the
flow rate of the travelling wave solution, rather than the initial laminar state, should be
consistent with experimental study. However, before examining the effect of initial mean
radius on the solution, we start from the situation that S̄(z, 0) = 1, i.e. the initial radius
of the film is equivalent to the radial length scale R, and compare our results of the
Navier–Stokes equations with the previous long-wave models.

The travelling wave solutions are tracked using a branch continuation method
(pseudo-arclength continuation method or parametric continuation method) starting from
the Hopf bifurcation of the base state X = (0, (2 ln(r/α) − r2 + α2)/4, 1)T. Figure 2
shows that the wave speed c and maximal wave amplitude increase with the wavelength
l. This is in agreement with the long-wave models that larger droplets are running faster.
Craster & Matar (2006) showed that there was a small capillary wave in front of the large
droplet in the travelling wave solutions of flow regimes ‘a’ and ‘c’, which can be reduced
by including the inertial effect using a weighted-residual model (Ruyer-Quil et al. 2008).
In the present study, we found that these small capillary waves are absent in front of the
large drops (see figure 2a,c), which is also because we included the inertial effect in the
present study. However, when La, a or ε is large, the small capillary wave will appear in
the travelling wave solution.

We also noticed that there are some other important issues remaining unclarified in
flow regimes ‘a’ and ‘c’. For regime ‘a’, most previous theoretical works seemingly agree
well with experiment. However, we found that the wavelength of regime ‘a’ in some
theoretical works (e.g. Ruyer-Quil et al. 2008; Novbari & Oron 2009) is not the same
as the experimental value. In the experimental work by Kliakhandler et al. (2001), it was
reported that the distance between the two large beads was 30 mm, which was used by
Ruyer-Quil et al. (2008) and Novbari & Oron (2009). But as shown in images of regime
‘a’, it is apparent that the wavelength is approximately 22.5 mm, which is adopted in the
present study. The travelling wave solutions showed that the wave speeds predicted by
the Navier–Stokes equations for flow regimes ‘a’ and ‘c’ are faster than the wave speeds
predicted by Craster & Matar (2006), which is due to the inclusion of inertia (Novbari &
Oron 2009) (see table 1). The predicted wave speed c of regime ‘c’ by the Navier–Stokes
equations is slightly lower than that of Novbari & Oron (2009), because the streamwise
diffusion terms are retained in the present study, which can slow down the motion of
droplets (Ruyer-Quil et al. 2008; Ding & Willis 2019). The predicted wave speed of regime
‘b’ is better than that for all the previous reduced-order models, which is because the
long-wave assumption is not valid in this case. However, the predicted wave speeds of
flow regimes ‘b’ and ‘c’ are still much higher than the experimental values, which will be
examined later.

When the Bond number ε is not small and the Laplace number is large, neither the
single-equation model nor the two-equation model is valid. To explore the dynamics in
the regimes where these models do not apply, we solve the Navier–Stokes equations.
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Figure 2. (a) Wave speed c, (b) maximal wave height and (c) mean flow rate Q of the travelling wave
solutions versus the wavelength l. The dependent parameters are: (i) ε = 0.2915, α = 0.2551, La = 0.1633;
(ii) ε = 0.233, α = 0.2856, La = 0.1458; and (iii) ε = 0.178, α = 0.3262, La = 0.1276. (d) Typical flow fields
corresponding to the three cases (i), (ii) and (iii) are plotted in the moving travelling wave frame, in which (ii)
is periodically extended. The new coordinate is ζ = z/ε.

Regime ‘a’ Regime ‘b’ Regime ‘c’
(c, Smax) (c, Smax) (c, Smax)

Experiment (Kliakhandler et al. 2001) (1.1698, 1.76) (0.3200, 1.45) (0.9318, 1.89)
Craster & Matar (2006) (1.195, 1.796) (0.6560, 1.76) (1.36, 2.17)
Novbari & Oron (2009) (1.357, 1.61) (0.54, 1.53) (1.48, 1.88)
Present S̄ = 1 (1.234, 1.693) (0.507, 1.391) (1.3935, 1.976)
Q = Qexp (1.149, 1.655) (0.4437, 1.3432) (0.9656, 1.8416)

Table 1. Comparison between experimental measurements and different models. Here S̄ is the initial mean
thickness and Qexp is the flow rate in experiments.
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Figure 3. (a) The wave speed c versus the Laplace number La and (b) the maximal radius of the single-drop
solution versus the Laplace number La. The other dependent parameters are ε = 0.25 and the wavelength l = 6.
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Figure 4. (a) The wave speed c versus the Bond number ε and (b) the maximal radius of the single-drop
solution versus the Bond number ε. The other dependent parameters are La = 10 and the wavelength l = 6.

Figure 3 indicates that the droplet size increases as La increases, and thereby a slightly
faster running speed c, which agrees well with the prediction of the long-wave model of
Craster & Matar (2006) and Ding & Willis (2019). However, when the fibre radius is small,
e.g. a = 0.25, we observe a different phenomenon in that the wave speed can be slightly
reduced for a larger droplet when La � 12, which, perhaps, is due to the circulation flow
in the large droplet (Liu & Ding 2020). Furthermore, we examined the dependence of the
travelling wave solution on the Bond number ε by fixing the Laplace number at La = 10.
Clearly, for ε > 0.3, both the streamwise diffusion effect and inertial effect are important.
The destabilizing surface tension effect becomes weaker for larger ε. Both the wave height
and the wave speed become lower as ε increases (see figure 4), which suggests that the
strong streamwise diffusion effect and the weakened surface tension effect dominate the
inertial effect in the present case.

To examine why the Navier–Stokes equations predict ‘worse’ dynamics of flow regimes
‘a’ and ‘c’ than the asymptotic model of Craster & Matar (2006), we calculated the mean
flow rate of the travelling wave solutions. Figure 2 shows that the flow rate Q clearly
varies with the wavelength l, demonstrating that the laminar flow rate is very different
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Figure 5. The mean flow rate Q versus the initial mean radius of the film S̄. The dependent parameters are
(a) ε = 0.2915, α = 0.2551, La = 0.1633 and (b) ε = 0.233, α = 0.2856, La = 0.1458. Dashed lines
correspond to the experimental values.

from the mean flow rate of travelling wave solutions. We calculated the flow rates of the
travelling wave solutions corresponding to the three different flow regimes and obtained
Q(a) = 0.1997, Q(b) = 0.1858 and Q(c) = 0.1661. It is clear that if we set the initial mean
radius at S̄ = 1, the mean flow rates of the travelling wave solutions are higher than the
experimental flow rates in which Q(a) = 0.1700, Q(b) = 0.1458 and Q(c) = 0.1185. This
clearly indicates the true initial mean value of S is less than S̄ = 1 and the true initial flow
rate of the unperturbed flow rate is different from the flow rate of a saturated flow. Hence, to
make a reasonable comparison between theoretical study and experimental measurement,
we have to adjust the initial value of S̄ such that the mean flow rate of the travelling wave
solution can be consistent with the experimental flow rate. In figure 5, we present the mean
flow rate versus the the initial value of S̄ for flow regimes ‘a’ and ‘b’ (the result for flow
regime ‘c’ is not presented because it is not a steady travelling wave solution). Obviously,
a small change in the initial mean radius S̄ will have a significant impact on the flow rate
of a steady travelling wave, which should be an important reason for the poor predictions
of the droplet speeds in flow regimes ‘a’, ‘b’ and ‘c’.

By doing a bisectional search of initial value of S̄, we are able to match the mean
flow rate of the travelling wave solutions and the experimental flow rates. The flow fields
are compared with the experimental photos in figure 6(a,b). Furthermore, as shown in
table 1, both the predicted wave speed and the wave height are improved over the above
study of initial condition S̄ = 1. The predicted wave speed of flow regime ‘a’ is reduced,
which is closer to the experimental value than that of Craster & Matar (2006). And the
predicted wave speed of the travelling wave solution for flow regime ‘b’ is improved to
c = 0.4437. The predicted wave speed of flow regime ‘b’ is still approximately 30 %
higher than the experimental value. A possible reason for this 30 % discrepancy is that
flow regime ‘b’ is not stable (Craster & Matar 2006), and hence a transient wave speed
was measured in experiments. Another possible reason is that the liquid was contaminated
during the experiments, and the influence of interfacial contaminants on dynamics should
be investigated in further work. A third possible reason is that the dynamics of the air phase
might be important in this regime, which cannot be neglected and the ‘full’ Navier–Stokes
equations of the air phase and the liquid phase should be solved.
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Figure 6. Comparison between the Navier–Stokes equations and experimental observations (adapted from
Kliakhandler et al. 2001). The dependent parameters are (a) ε = 0.2915, α = 0.2551, La = 0.1633; (b) ε =
0.233, α = 0.2856, La = 0.1458; (c) ε = 0.178, α = 0.3262, La = 0.1276. (a,b) Steady exact travelling wave
solutions; (c) obtained by an elaborated direct numerical simulation.

Flow regime ‘c’ is a time-periodic state, which was suggested to be compared
with a relative periodic orbit rather than a travelling wave solution (Ding & Willis
2019). Although Ding & Willis (2019) predicted the cyclic coalescence and breakup
dynamical process in flow regime ‘c’, the mean flow rate of their solution does not
match the experimental result and the mean wave speed of their relative periodic orbit is
approximately 30 % higher than experiment. Unfortunately, we failed to obtain a converged
exact relative periodic solution of the Navier–Stokes equations. To obtain the time-periodic
state that can be compared with the experiment, we should start the simulation with
a specific initial condition. In fact, the solutions of the Navier–Stokes equations are
not unique. For the given parameters of flow regime ‘c’, other types of solutions do
exist, such as multi-hump steady travelling waves and relative periodic solutions with
different numbers of small beads (Ding & Willis 2019). Hence, in order to compare with
experiment, we designed a numerical experiment using the relative periodic solution of
Ding & Willis (2019) as initial condition (the flow rate is also averaged in a time period of
the solution: Q̄ = (1/T)

∫ T
0 Q dt). A time stepping study showed that the saturated solution

is time-periodic (see figure 7), and a typical profile of the interface shows a structure
remarkably similar to the experimental photo (see figure 6c). The cyclic process shows that
the large droplet catches up with and consumes its front small beads, and small droplets
are regenerated to the rear of the large droplet due to the Rayleigh–Plateau instability.
In addition, since the time-marching method converges to the periodic state, it implies
that the time-periodic solution is stable. Moreover, we computed the average wave speed
c of the time-periodic state and recorded the maximal wave height and found that the
relative error with the experimental data is approximately 3 %, showing that the result
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Figure 7. Spatial–temporal diagram of the interfacial thickness S, which indicates that the flow state is
time-periodic. The dependent parameters are ε = 0.178, α = 0.3262, La = 0.1276, i.e. the same as flow
regime ‘c’.

of the long-wave model has been significantly improved. Therefore, the present study
suggests that, to predict the nonlinear dynamics in different flow regimes, one can keep
the flow rate unchanged in the numerical simulation (this can be done by introducing a
free time-dependent parameter in the momentum equation, such that the flow rate at each
time step can be adjusted), and the flow rate should be fixed and controlled by a pump
rather than maintaining the fluid depth in the reservoir in experiments. When the flow rate
in the numerical study (either the Navier–Stokes equations or the reduced models) matches
the flow rate in the experiment, the dynamics can be predicted correctly.

4. Conclusions

This paper has revisited the dynamics of a thick film coating a vertical fibre. The
Navier–Stokes equations are solved using a domain mapping technique. A dynamical
systems theory approach has been employed to find the exact travelling wave solutions,
which were compared with experimental studies. We have shown that larger droplets move
faster and the small capillary wave in front of the large droplet, appearing in the solution
of long-wave models, can be eliminated in our solution of the Navier–Stokes equations.
Our numerical results also demonstrated that the wave speed and height can be enhanced
by the inertial effect but reduced by the streamwise diffusion effect.

A crucial observation by us was that the mean radius computed from the flow rate of a
saturated state, which was chosen as the initial mean radius of the liquid film in previous
studies, does not correspond to the true mean radius of the film at the initial state. We
found that even a small change in the initial radius of the film can have a significant
impact on the flow rates of the steady travelling wave solutions, which accounts for the
poor predictions of the wave speeds in experiments. By doing a bisectional search of the
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initial thickness of the film, we obtained travelling wave solutions of the same flow rates
as those in the experimental studies of Kliakhandler et al. (2001). Comparing with the
experimental data obtained by Kliakhandler et al. (2001), the travelling wave solutions
showed excellent agreements with experimental flow regimes ‘a’ and ‘b’. This suggests
that, when predicting the dynamics of a flow regime using a reduced model, it is important
to match the flow rate rather than the fluid volume between the predicted solution and
experiment.

The time-periodic state, flow regime ‘c’, is compared with a snapshot from a series
of time-stepping simulations, which also showed an excellent agreement with the
experimental study. The discrepancy of the mean wave speed and maximal height between
the numerical solution and the experimental data has been improved to 3 %. Interestingly,
our numerical simulation also showed that the coalescence and breakup process between
a large droplet and small beads is a cyclic and stable process.
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