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CURVATURE AND RADIUS OF CURVATURE FOR 
FUNCTIONS WITH BOUNDED BOUNDARY ROTATION 

J. W. NOONAN 

1. Introduction. For k ^ 2 denote by Vk the class of functions / regular 
in U = {z : \z\ < 1} and having the representation 

(1.1) f(z) = J J e x p j - J ^ l o g ( l - &-")%(*)} d£ 

where fi is a real-valued function of bounded variation on [0, 2TT] with 

<//i(0 = 1, \dn(t)\ £ k/2. 
0 *JQ 

Vk is the class of functions with boundary rotation at most kir. 
The boundary rotation of a domain may be thought of as the total variation 

(under a complete circuit) of the argument of the boundary tangent vector, 
whenever such a tangent exists. (See [4] for a more detailed description.) It is 
clear geometrically that k ^ 2 and that V% is the class of functions mapping U 
onto a convex domain. 

Consider now any function / regular and locally schlicht in U, and consider 
the Jordan curve Tr = { fire1*) : 0 ^ \f/ ̂  2x}. Let s(r, \f/) measure arc length 
along Tr, and let <p(r, \f/) measure the angle between the positive real axis and 
the tangent vector to I \ at f(re^). Then the curvature of Tr at f(re^) is 
K(r> */s / ) = d<p/ds, and the radius of curvature is p(r, xfr, f ) = K(T, X//, f ) ~ 1 . 
It is known [2, p. 359] that with z = re1*, 

Re(l + zf(z)/f(z)) 
(1-3) K(r,*,f) = 

l«f7«l 
The problem of estimating K(T, ip, f ) for various classes of functions has 

attracted considerable attention. For example, if S^* denotes the class of 
functions starlike with respect to the origin, then it is known that the problem 

max max K(T, ^ , / ) 

is solved for each 0 < r < 1 by the function/(z) = z / ( l — z)2. (See [1, pp. 
599-601] for a partial history of this problem.) From the definitions of boundary 
rotation and curvature, it is evident that the two concepts are closely related. 
The purpose of this note is to establish sharp upper and lower bounds for 
K(T, \p,f) and p(r,\l/,f) when f Ç Vk. 
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2. Statement of results. For 0 < r < 1, set H(r) = (1 + r2)/2r -
{log ((1 + r ) / ( l — r ) ) } - 1 . Simple calculations show t h a t H(r) increases 
str ict ly with r and t h a t 0 < H(r) < 1. 

T H E O R E M 2.1. Letf Ç Vk. Then 

r — kr + 1 1 + r 

.1 - r. 

fc/2 

^ *(r, *,f) 

( 1 + r ) 
# ( r ) - l 2r 

. ( l - r > 
# ( r ) + l log( ( l + r ) / ( l - r ) ) J 

a-+2)/4 

^^//^ bounds are sharp for all 0 < r < 1. 

T o the best of the au thor ' s knowledge, the problem of determining 
m a x / ê y max^/c(r, \{/, f ), where 5^ is the class of normalized schlicht functions, 
has not been solved. In this direction we have the following negative result. 

COROLLARY 2.2. For each 0 < r < 1, 

max max K(V, ^ , / ) 
ftsr f 

is not attained by a Koebe function fe(z) = z/(l + eidz)2. 

I t is known [5] t h a t for / G Vk, R e ( l + zf"(z)/f'(z)) > 0 if \z\ < Rk = 
[k — (k2 — 4)*]/2. Combining this result with Theorem 2.1, we can es t imate 
p(r, <A,/). 

T H E O R E M 2.3. L e / / 6 Ffc. Then for 0 < r < Rk we have 

1 - r 

_(1 - r_)_ H(r) + 1 

.(1 + r) H(r)-1 
log( ( l + r ) / ( l - r ) ) 

2r 

U+2)/4 

^ P(r, * , / ) 

&r + 
_ / l _ ^ r V / 2 

If r = Rk < 1, //ie /ower bound given above remains valid, but we may have 
sup,/, p(r,\l/,f) = +oo. If Rk < r < 1, we may have infyp(r, ^ , / ) = — oo and 
sup,/, p(r, \[/, f ) = +QO . ^4// bounds are sharp. 

For fe = 2, F . R. Keogh [3] found the sharp upper bound for p(r, \p,f). Th i s 
was also found by V. A. Zmorovic [6], who in addit ion determined the sharp 
lower bound for p(r, \{/, f ) in the case k = 2. By employing different methods 
of proof, we extend these results to Vk. 

3. Proofs . Let m ^ 3 be a fixed integer, and define Vk(m) to be t h a t subclass 
of Vk such t h a t the integrator JU in (1.1) is a s tep function with a t most m j u m p 
discontinuities. W e first establish Theorem 2.1 for the class Vk(m). Since 
Theorem 2.1 is independent of m and since the step functions are dense in the 
functions of bounded variat ion, we see by allowing m -^ co t h a t the theorem 
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is also true for Vk. Also, in proving Theorem 2.1 for the class Vk(rn), it suffices 
to consider integrators /x satisfying 

J»2x 

\dn(t)\ = k/2, 
0 

since both the upper and lower bounds in the theorem are monotone functions 
•oik. 

Let /x be such a step function, with jumps Cj(l ^ j ^ m) at the points 
•0 (̂1 S j ^ #0 respectively. Then (1.2) becomes 

m m 

(3.1) £ c, = 1, £ |^ | = */2 . 

We now fix s = re**. Defining the vectors 9 = (0i , . . . , 6m) and C = (ci, . . . , cm), 
we see directly from (1.1) and (1.3) that 

(3.2) Yzrp "('- *>fi = G(°>c) 
where 

(3.3) G(0, O = [ É c,(l + r2 -2r cos(^ - ^ ) ) " 1 J 

If 

X II iX+r2 - 2rcos(t-dj))
cj. 

3=1 

and 

$(m) = m a x j j - ^ - p *(r, 1^,/):/ 6 F*(w)j 

<p(ra) = min|—£—2 K(T, ^ , / ) : / G 14 M j , 

then 

(3.4) $(m) = max G (9, C) 

<p(ra) = min G (9, C) 

where we maximize and minimize over the variable vectors 9 and C, subject to 
the constraints (3.1). 

We first evaluate G (9, C) for special values of 9. 

LEMMA 3.1. Letz = re1* be fixed, and define G (9, C) by (3.3). If9 = (du...,6m) 
and if 6j = \p (mod ir) for all j (1 ̂  j ^ m), /&ew /or a ^ C satisfying (3.1) 

/ * t . n (I + Z T 1 < rt* n < (! + r)HiT)~l 2r_ 
(r -kr+ 1) _ t / ^ T ^ G(9, C) S ^ r ) + I + _ 
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where H(r) = (1 + r2)/2r — (log ((1 + r ) / ( l — r)))~l. In particular, 

(3.5) <p(m) g 1 < $(m), 

w£ft c^(m) = 1 only if k = 2. 

Proof. Let J = \j:cos(iP - 6j) = 1}, / ' = {j : costy - Oj) = - l j . 
Set C = (ci, . . . , cOT), p , = maxfe, 0), w, = max( —c,, 0), 4̂ = £ i € J £ i f 

S = Z;€J »i, and E = A - B. From (3.1) we have 0 ^ A ^ (k + 2)/4 and 
0 ^ B ^ (k - 2)/4, and hence - (k - 2)/4 S E ^ (k + 2)/4. After some 
computation, in which we use the hypothesis that J VJ Jf = {1, . . . , m\, 
we find that 

(3.6) G(0, C) = L l + r J L ( l - r ) 2 + 1. 

We now differentiate with respect to E. If follows that the only critical point 
occurs at E0 = (1 — H(r))/2, and it is simple to verify that EQ corresponds to 
a maximum. As noted previously, 0 < H(r) < 1, and so — (k — 2)/4 ^ E0 ^ 
(fe + 2)/4. Evaluating (3.6) at £0 , we find 

G(0, C) ^ ^ J ^ Z l - I 
( 1 _ r ) ^ + i l o g ( ( 1 + r ) / ( 1 _ f ) ) . 

We now minimize G(0, C). From above it follows that the minimum occurs 
when E = — (k — 2)/4 or E = (k + 2)/4. After comparing functional values 
at these two points, we see that 

G(0, C) ^ (r2 - kr + 1) " | f ^ y ^ + i . 

Also note that if in (3.6) we set E = 0, then G(0, C) = 1, from which (3.5) 
follows easily. This proves the lemma. 

We now examine problem (3.4). Our technique is conceptually simple, 
although the details are cumbersome. We shall first study the problem of 
determining 3>(ra). Clearly G(Q, C) attains its maximum, say at 0* = 
(0i*, . . . , 6m*), C* = (ci*, . . . , cm*). From (3.4) it is clear that 

(3.7) 3>(m) = maxG(0, C*) 

where we now maximize only with respect to the vector 0. In other words, we 
now allow M to have m jumps with fixed heights c* (1 ^ j ^m), but we allow 
the respective positions 6j of the jumps to vary freely in [0, 2TT], A similar 
technique is used in [4]. Recall that C* is a fixed vector, and that 6j is the 
position of the jump of height c*. 

LEMMA 3.2. Let z = re** be fixed, and consider the problem defined by (3.7). 
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Let 0* = (0x*, . . . , dm*) denote any solution vector to the problem (3.7). Then 
one of the following conditions must hold: 

(i) For each j (1 ^ j ^ w), we have 6* = \j/ (mod w). 
(ii) There exists a constant A satisfying 0 < A ^ (k + 2)/4 and nonnegative 

constants a,\, a2 satisfying a,\ + a2 = -4, ^ ^ ^ /A#£ 

* ^ ( l + r 2 + 2 r ( g 1 - g 2 ) M ) A 

* ( « ) = (i _ r ) * , ( 1 + r)*., • 

Proof. Suppose that (i) does not hold, and choose h such that cos (\j/ — dh*)?£ 
dzl. For each j (1 ^ j ^ m), set Xj = cos(^ — 0 ;), so x;- G [ — 1, + 1 ] . Also 
set A(XJ) = 1 + r2 — 2rx3: After changing variables in (3.7), we see that 

(3.8) $(m) = m a x G ( Z ) 
x 

where X = (xi, . . . , xm) and 

j = l -J ; = 1 

If we now set x* = cos(\f/ — 6*) for 1 ^ j ^ m, and X* = (xi*, . . . , #m*)» 
it is clear that <3>(m) = G(X*). 

We now claim that ii j satisfies \x*\ ^ 1, then 

(3.10) xf = xh*, A(xj*) = A(xh*). 

To see this, we note that \x*\ 9e 1 implies dG/dXj = 0 when evaluated at X*, 
which is equivalent to 

m 

(3.11) A (at/) Z c / A f r / ) - 1 = 1. 

In particular, we know \xh*\ 5* 1, and so 
m 

(3.12) Afe*) £ c / A ( * / ) - x = 1. 

From (3.11) and (3.12) it follows immediately that (3.10) holds. 
Next, since X* maximizes G(X), we have for each j (l g j ^ m) that 

Xj(dG/dXj) ^ 0 when evaluated at X*. Straightforward computation shows 
this to be equivalent to 

(3.13) xfcffa* - xh*) ^ 0 (1 ^j S m). 

We now claim that c* < 0 implies \XJ*\ ^ 1. To prove this, suppose x* = 1. 
From (3.13), c*{\ — xh*) ^ 0, and since xh* < 1, we have c* ^ 0. Similarly, 
if x* = — 1, then c* (1 + xh*) ^ 0, and so c* ^ 0. This establishes the claim. 
Combining this fact with (3.10), we see that c* < 0 implies A{x*) = A(xh*). 

We now combine this latter fact with (3.8), (3.12), and (3.1). We find that 
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with d = A(xh*) and pt* = max [ct*, 0} (1 ^ i ^ m) we have 

(3.14) $ ( w ) = m a x G ( J ) 

and 
m 

(3.15) d £ />i*A(*,*) -1 = (k + 2 ) / 4 , 

£ £;* = (* + 2)/4. 

Next pu t T0 = {j : | x / | ^ 1}, 7 \ = {j : x / = 1}, and T2 = {j : x/* = — 1}. 
Clearly j G 7 \ implies A ( x / ) = (1 — r) 2 , j G ^ 2 implies A ( x / ) = (1 + r ) 2 , 
and (by (3.10)) j £ T0 implies A ( x / ) = A(xh*) = d. Also pu t 

j e r o j e ^ i ;G772 

so a0 + ai + a2 = (fe + 2 ) / 4 . (If 7 \ is empty , we use the convention at = 0.) 
Wi th ,4 = (k + 2 ) / 4 - a0f we have from (3.14) and (3.15) t h a t 

(3.16) * ( m ) = ^ — ^ ^ ^ - , 

^\l^rY + \Yf7)V^A' 
\{A = 0, thenao = (& + 2 ) / 4 , and since the nonnegat ive numbers a ; satisfy 

&o + «i + #2 = (& + 2 ) / 4 , we mus t have ax = a2 = 0, and hence from (3.16) 
3>(m) = 1. However, from (3.5), we know <i>(m) > 1, and so 0 < 4̂ ^ 
(& + 2 ) / 4 . After some simplification, we then see from (3.16) t h a t 

d = ( 1 ^ f )  

1 + r + 2r(ai - a^) IA ' 

and the lemma follows upon subst i tu t ing this into (3.16). 

We now begin the proof of Theorem 2.1. As noted previously, it suffices to 
prove the theorem for Vk(m), where the integrator /x in (1.1) satisfies (3.1). 
Le t z = re** be fixed, and as before pu t 

/ r \ 
$(ra) = m a x j — ~~2 K(T, 4<J):f G Vk(m)> . 

Using the notat ion of Lemma 3.2, we have two cases to consider. Suppose 
first t h a t 6* = \p (mod w) for all j(l ^ j ^ m). By L e m m a 3.1, 

(I + r \ * C')-1 2r 

<3-17> *<») * V^Wk>^r+"ô7(r=7j) 
where J ï ( r ) = ( 1 + r»)/2r - (log ((1 + r ) / ( l - r ) ) ) " 1 . 
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Suppose now tha t condition (ii) of Lemma 3.2 holds, so tha t 

ttlSï *(m\ (l+r2 + 2r(a1-ai)/A)A 

(3.18) * (m) = — - r = - - - a - - n _ ^ 5 5 - — 

where a± ^ 0, a>2 ^ 0, A = ax + a2, and 0 < A ^ (& + 2 ) / 4 . Fixing A and 
allowing ai and a2 to vary subject to the above conditions, we see by the usual 
methods of the calculus t ha t the maximum in (3.18) occurs when 2ai = 
A (1 - H(r)), 2a2 = A (1 + H(r)), which gives 

<ï>(m) ^ 
2 r ( l - r ) 7 l + r V ' g ( r ) 

- l o g ( ( l + r ) / ( l - r ) ) . 

A straightforward bu t ra ther tedious calculation shows tha t the quan t i ty in 
brackets is a t least 1, and hence we have 

H(r)-1 [ 2r ('1-1- r) 

, l o g ( ( l + r ) / ( l - r ) ) ( 1 - r ) 4 

(fc+2)/4 

since A ^ (fe + 2 ) / 4 . In Lemma 3.1 we showed t ha t the quan t i ty in brackets 
in (3.19) is a t least 1, so comparing (3.17) and (3.19) we see tha t the r ight-hand 
inequali ty of Theorem 2.1 is valid. 

We now minimize ( r / ( l — r2))n(r, \p,f) f o r / £ Vk. Again it suffices to con­
sider the class Vk(m), and we may assume (3.1) holds. We first suppose 
k > 2. Wi th the notat ion of (3.4), suppose 

<p(m) = m i n j y - ^ - - 2 K(T, ^ , / ) : / G Vk(m) 

= m i n G ( 0 , C) 

occurs when 9* = (ft*, . . . , 0m*), C* = (ci*, . . . , cm*). If for all j (1 g j ^ m) 
we have 0/* = ^ (mod 7r), then from Lemma 3.1 

(3.20) <p(m) ^ (r2 - kr + 1) - , -^72+1 2 . ^ ^ i l i l O ^ 1 

(1 - rf 

If there exists h such t h a t 0ft* ^ \p (mod 7r), then proceeding as in the proof of 
Lemma 3.2 we see t h a t 

m 

A(xA*) E cfAixfy1 = 1, 

and we also see t ha t A(x*) = A f e * ) for any j such t h a t c* > 0. Also, defining 
G(X) as in (3.9). we must have d2G/dxh

2 ^ 0 when evaluated a t X* since X* 
minimizes G and |x^*| 9^ 1. Using these facts to simplify the expression for 
d2G/dxh

2, we conclude t ha t we must in fact have k ^ 2. This contradicts our 
assumption t ha t k > 2, and hence 0 / = ^ (mod 7r) for all j (1 ^ j ^ w ) . 
Therefore (3.20) holds, and this is equivalent to the inequality in Theorem 2.1. 

In order to prove the theorem for k = 2, we note t ha t V2 C Vk for all k > 2. 

https://doi.org/10.4153/CJM-1973-109-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1973-109-6


I 

1022 J. W. NOONAN 

Hence 

min *(r, \p,f) 
rev2 

r — kr + 1 1 +r 
.1 - r. 

k/2 

for all k > 2, which implies that the same inequality holds with k = 2. 
The function 

/»-i[(^r-'] 
shows that the lower bound in Theorem 2.1 is sharp for all r and fe. In order to 
show that the upper bound is sharp, let r be given. Construct a step function n 
with positive jumps (k + 2) (1 - H(r))/8 and (ife + 2)(1 + H(r))/8 at / = 0 
and £ = 7T respectively, and with a negative jump of magnitude (k — 2)/4 at 
any value of t satisfying 

l + r2 -2r cos(J) = T - J V - ^ 
1 + r - 2r#(r) ' 

The resulting function fr £ Ffc shows that the upper bound is sharp. Note that 
the function fr varies with r. 

In order to prove Corollary 2.2, let re1* be given, and setfe(z) = 2 / ( 1 — zeie)2. 
A straightforward calculation shows 

(3.22) K(r, * , / , ) Ï l o g ( ( 1 + / / ( 1 _ r ) ) ( 1 _ r
r ) « ( D + i • 

Since the quantity on the right-hand side of (3.22) is strictly greater than 1, 
we see from Theorem 2.1 that for any k > 2 there exists fT £ Vk such that 

max K(T, yp,fr) > max *(r, ^ , / * ) . 

However, it is well-known (See [5] for references.) that if 2 _̂  & ̂  4, then F* 
contains only schlicht functions. This proves the corollary. 

We now prove Theorem 2.3. If 0 < r < Rk = [k - (k2 - 4)*]/2. then 
r2 — kr + 1 > 0, and Theorem 2.3 follows immediately from Theorem 2.1. 
For r = Rk < 1, the lower bound for p(r, \p, f ) also follows directly from 
Theorem 2.1. In addition, we have su p,/, p{r, \//,f ) = + 0 0 for/given by (3.21). 
Suppose now that r > Rk. For / given by (3.21) we have 

Re[l + */"(*)//'(*)] = Re[(s2 + kz + 1)/(1 - **)]. 

Since at s = r this quantity is positive and at z — — r it is negative, a change 
in sign must occur on \z\ = r. Hence, for this function, 

sup p(r, \f/,f) = +oo and inf p(r, ^ , / ) = - c o . 
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