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ON INFINITE LOCALLY FINITE GROUPS 

AKBAR RHEMTULLA AND HOWARD SMITH 

ABSTRACT. If G is a group such that every infinite subset of G contains a commuting 
pair of elements then G is centre-by-finite. This result is due to B. H. Neumann. From 
this it can be shown that if G is infinite and such that for every pairX, F of infinite subsets 
of G there is some x in X and some y in Y that commute, then G is abelian. It is natural to 
ask if results of this type would hold with other properties replacing commutativity. It 
may well be that group axioms are restrictive enough to provide meaningful affirmative 
results for most of the properties. We prove the following result which is of similar 
nature. 

If G is a group such that for each positive integer n and for every n infinite subset 
Xi,...,Xn of G there exist elements jt/ of Xh i = 1,... ,n, such that the subgroup 
generated by {x\,... ,xn} is finite, then G is locally finite. 

1. Introduction. If G is a group such that every infinite subset of G contains a 
commuting pair of elements then G is centre-by-finite. This result is due to B. H. Neu
mann [5]. From this it can be shown that if G is infinité and such that for every pair X, Y 
of infinité subsets of G there is some x in X and some y in Y that commute, then G is 
abelian. It is natural to ask if results of this type would hold with other properties replac
ing commutativity. It may well be that group axioms are restrictive enough to provide 
meaningful affirmative results for most of the properties. Questions of this nature are 
discussed in [4] where the property considered is a certain variety of soluble groups. In 
this paper we study the "local finiteness" property and obtain the following result. 

If G is a group such that for each positive integer n and for every n infinite subsets 
X\,..., Xn of G there exist elements xt of X/, / = 1,. . . , n, such that the subgroup gener
ated by {x\,..., xn} is finite, then G is locally finite. 

We are not able to resolve the following question which seems to be considerably 
harder. Let G be a group such that for each positive integer n, every infinite subset X of 
G contains n element subset generating a finite subgroup of G. Does it follow that G is 
locally finite? 

Although our primary objective is to study the local finiteness property, we can get 
two additional results with little additional work by dealing with a class Q that is quotient, 
subgroup and locally closed. For any class Q. of groups denote by Q* the class of groups 
G satisfying the following hypothesis: 

For each positive integer n and for every n infinite subsets X\,..., Xn of G there exist 
elements xi of X/, i = 1, . . . , n, such that the subgroup generated by {x\,... ,xn} belongs 
to Q. 
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Let F denote the class of all finite groups. It is clear that every group in the class Q.UF 
is contained in Q*. We are interested in the question as to whether the reverse inclusion 
holds. We establish a positive result for the class LN of locally nilpotent groups; the class 
LS of locally soluble groups and the class LF of locally finite groups. From these one can 
deduce positive results for locally supersoluble groups and for locally polycyclic groups, 
and we shall sketch their proofs. Our main result, in the above notation, is the following: 

THEOREM. (LN)* = LN U F; (LS)* = LS U F; (LF)* = LF. 

An essential ingredient in the proof of the theorem is a special case of recent results 
in [1] by B.Hartley. 

2. Preliminary results. We begin with an observation which has wider application 
than that required for our present purpose. 

LEMMA 1. Let £lbea subgroup closed class of groups and suppose that G is in Q.*. 
If G contains a subgroup A which is either infinite cyclic or isomorphic to Cpoo, for some 
prime p, then every finitely generated subgroup of G is an £1 group. 

PROOF. Let n be a positive integer and let g\,... ,gn be arbitrary elements of an 
£2* group G. Supposed = (x) is an infinite cyclic subgroup of G and let/?, q be distinct 
primes. Considering the sets {xP}, {^} , Xg\,... ,Xgn9 where ij run through all positive 
integers, we see that, for some integers w, v, n , . . . , rn, L = (xpU,xq\xrig\,... ,xrngn) 
belongs to Q. Since x E L, (g\,..., gn) is also in £1, as required. 

Now suppose that G has a Prufer subgroup A = (t\,t2, • • •)» where fx = 1 and, for 
all i>l,t?+l= t[. Partition the set {t\t h,...} into disjoint infinite subsets U and V and 
consider the sets Ug\,..., Ugn, Vg\,..., Vgn. By hypothesis, there are elements t\. of U 
andfMl. of V, i = l , . . . ,n , such that K = fagu... Jx^fagu... 9tpngn) € Q. Now 
for each i = l , . . . ,n , kt = (t^giXt^gi)"1 = tXit~^ e K. But (/:,) = (fAP*/*,-)» and so 
(gi> • • • > gn) ^ K and we are done. 

From now on we assume that G is an infinite periodic group in the class (LF)*. Our 
first objective is to show that every finite subgroup of G is contained in an infinite locally 
finite subgroup of G. 

LEMMA 2. Lvery infinite (LF)* group G has a nontrivial element whose centralizer 
in G is infinite. 

PROOF. Let ix — {/?;/? is a prime and G has elements of order /?}. Suppose the 
lemma is false. Take p € 7r, and some g €E G of order p. Let S be the set of conjugates 
of g in G, and let m denote the order of the centralizer of g in G. Then by a theorem 
of B. Hartley (Theorem B, [1]), there is an integer/ = f(m,p) such that for any finite 
subgroup H of G containing any element of 5, \H : Fitt(//)| < / , where Fitt(//) denotes 
the Fitting subgroup of H. If the set IT is infinite then take q E 7r, q > / , and h or order 
q. Now the set T of conjugates of h in G is infinite. For any given positive integer &, 
partition the set T into k infinite subsets 7), / = 1, . . . , k. Consider the sets S, T\,..., Tk. 
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By hypothesis, there exist a conjugate of g and k conjugates of h such that the subgroup Hk 

generated by these elements is finite. By taking a suitable conjugate of Hk, if necessary, 
we may assume that h € Hk. By Hartley's theorem, the Sylow ^-subgroup of Hk is normal 
in Hk. Let Zk denote the centre of the Sylow ^-subgroup Qk of Hk, and Z = {Zk ; k = 
1,2,...}. Clearly Z centralizes h. Thus Z is finite, and hence, for infinitely many values 
of &, Zk is some fixed subgroup of G. Now pick any nontrivial element of this subgroup 
and it is centralized by infinitely many Qks. This is a contradiction. 

We may thus assume that the set n is finite consisting of primes p = p\,p2, • •. ,pr-
Let gi be of order/?,, and Si the set of conjugates of gt•. Then by partitioning the set Si into 
k infinite subsets, using the (LF)* property and Hartley's theorem, we obtain subgroups 
Lk, all containing k conjugates of each of the elements gi, and the index of Fitt(L^) in Lk 

at most/ for some integer/. Now for some prime/?/, and an infinite set of values of k, the 
Sylow /?7-subgroups of Lk are increasing in size with k. We take conjugates of these Lk 

and ensure that gj lies in each of these. Now repeat the argument in the above paragraph 
and conclude that gj or some element in the centre of the Sylow /?7-subgroup of Lk has 
infinite centralizer. 

LEMMA 3. Every infinite (LF)* group G has an infinite abelian subgroup. 

By Lemma 2, G has an infinite subgroup G\ whose center Z\ is nontrivial. If Z\ is 
infinite then pick this to be the required subgroup. If Z\ is finite then consider the group 
H\ = G\ jZ\. Now H\ is an infinite (LF)* group. We may now repeat the above argument 
with H\ in place of G and, continuing this process, we obtain an ascending chain of 
subgroups 1 ^ Z\ < Z2 < • • • whose union W is an infinite ZA group, and hence has an 
infinite abelian subgroup. 

LEMMA 4. Every finite subgroup of an infinite (LF)* group G is contained in an 
infinite locally finite subgroup ofG. 

Let F be a finite subgroup of G and let A be an infinite abelian subgroup of G. Suppose 
F = {/i,... ,/„} and consider the sets A, A/i,.. . ,A/„. Then for some a,a\, ...,an in A, 
(a, a\f\,..., arjfn) is finite, as therefore is [F, (a)]. Since A may be replaced, in the above 
argument, by any infinite subset of A, it follows that [F, (a)] is finite for all a in some 
cofinite subset A\ of A. Choose a\ in A\ \ F. Then F\ = {F,a\) is finite. Similarly, let 
A2 be a cofinite subset of Ai such that [F\, (a)] is finite for all a in Ai and choose ai 
in A2 \ F\. Then F2 = (F,a\,a2} is finite. Continuing, we obtain an infinite subgroup 
H ~ (F,a\,ai, . . .) which is locally finite. 

Observe that if G E (LS)* then (a\, a2,.. .)F is locally soluble. But H is in (LS)* and 
so all finite images of H (indeed all images H/N, where TV is infinite) are soluble. Thus 
H is locally soluble, establishing the following. 

LEMMA 5. Every finite subgroup of an infinite (LS)* group G is contained in an 
infinite locally soluble subgroup ofG. 

The next major result that we want to establish is that an infinite (LF)* group G is 
locally finite. If G is locally finite then there is nothing to show, so assume that G is an 
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infinite, finitely generated periodic (LF)* group. Apply Zorn's Lemma to obtain a normal 
subgroup N maximal subject to G/N being infinite. Then G/N is a (LF)* group; and, in 
order to obtain a contradiction, we may assume that every non-trivial normal subgroup 
of G has finite index. 

DEFINITION. We shall call G a critical (LF)* group if G is a finitely generated infinite 
periodic (LF)* group in which every nontrivial normal subgroup is of finite index in G. 

LEMMA 6. If H is an infinite locally nilpotent subgroup of a critical (LF)* group G 
and F is a finite subgroup ofH, then the centralizer C//(F) of F in H is infinite. 

PROOF. For suppose that F is finite and that H = (F, h\, hi,...) is an infinite locally 
nilpotent subgroup of G such that C//(F) is finite. Then the descending chain CH(F) > 
C//((F, h\ )) > C//((F, h\, hi)) > • • • of nontrivial subgroups must terminate in a nontriv
ial subgroup Zi, say, which is clearly the centre of H. Since Z\ is finite, so is 
CH/Zl(FZ\ /Z\). By repeating this argument we may obtain an infinite hypercentral sub
group KF of H. Let A be a maximal normal abelian subgroup of KF. Then A is infinite. 
If B is any ix' subgroup of A, where TT is the set of primes dividing the order of F, then 
[B, F] = 1, and so B is finite. Thus, using Lemma 1, A contains an infinite, characteristic 
subgroup D of exponent/?, for some prime p € 7r. Then DF is nilpotent and so CD(F) is 
infinite. 

LEMMA 7. If G is a critical (LF)* group then every infinite locally nilpotent sub
group of G is abelian. 

PROOF. Suppose H is a nonabelian infinite locally nilpotent subgroup of G. Then for 
some h\, hi in //, d — [h\, h{\ ^ 1. Let Ho = (h\,h2). Then Ho is a finite subgroup of 
H. By Lemma 6, C//(//o) is infinite and hence contains an infinite abelian subgroup A. 
Let gi,...,gn be arbitrary elements of G, and consider the sets Ah\,Ali2,Ag\,... ,Agn. 
For some a,b,a\,.. .,an in A we have T = (ah\,bh2,a\g\,... ,angn) is finite. Clearly 
T contains the element d = [ah\, bh^\ and hence the subgroup (d, dgl,..., d8n ) is finite. 
Since n and the elements gi were arbitrary, it follows that (dG) is locally finite, and hence 
G is locally finite, and thus finite; a contradiction. 

LEMMA 8. If G is a critical (LF)* group then every infinite p-subgroup of G is 
abelian. 

PROOF. Suppose H is an infinite/7-subgroup of G. By Lemma 4 and Lemma 7, every 
finite subgroup of H is abelian. Hence given any infinite subsets X\, Xi of //, there exist 
x\ E X\, X2 G X2 such that x\ and X2 commute. But this implies that every infinite subset 
of H contains a commuting pair of elements and so, by a theorem of B. H. Neumann in 
[5] H is centre-by-finite and thus locally nilpotent. This completes the proof. 

LEMMA 9. Let G be a critical (LF)* group. Ifh\, /i2 are non-commuting elements of 
G then Cc(h\)n CG(/*2) is finite. 

PROOF. Let d = [h\,h2], C = CG(h\) PI CG(h2) and let g\,...,gn be arbitrary ele
ments of G. If C is infinite, let A be an infinite abelian subgroup of C and consider the 
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sets Ah\,Ah2,Ag\,..., Agn and argue exactly as in the proof of Lemma 7 to obtain a 
contradiction. 

LEMMA 10. Let G be a critical (LF)* group. Then all nontrivial maximal p-sub
groups of G are infinite. 

PROOF. First let us note that, for any prime q, if Q is an infinité g-subgroup of G then 
every maximal ^-subgroup R is infinite. For, by Lemma 8, Q is abelian, and if R were 
finite, then by replacing A by Q and F by R in the proof of Lemma 4 we would obtain an 
infinite locally finite subgroup L of G containing R and also an infinite subgroup of Q. 
Thus all maximal ^-subgroups of L are infinite (see Lemma 1.D.12 in [3]), and R is not 
a maximal ^-subgroup of G, contrary to the choice ofR. 

Now suppose the result is false. Let H be a finite maximal p-subgroup of G for 
some prime p. If for some nontrivial element h of H the centralizer C of (h) is infi
nite, then by Lemma 3 and the remark above, C contains an infinite abelian //-subgroup 
A. Now (A, h) is abelian and, for any finite set {w, v, . . . , w} of G, by considering the sets 
Ah,Au,Av,... ,Aw we obtain, by hypothesis, a finite group generated by ah, bu, cv,.. . , 
dw for some a, b, c , . . . , d in A. Now the subgroup generated by h and its conjugates under 
w, v, . . . , w is contained in this subgroup since the order of a is coprime to the order of h. 
From this it follows that the normal closure of the subgroup (h) in G is locally finite, and 
hence so is G. 

We may thus assume that the centralizer of every nontrivial element of H is finite. 
Consider any h E H of order /?, and let m denote the order of its centralizer in G. Let 
/ = f(m,p) as used in Lemma 2. If G has an element g of order a prime q>f, then let 
Q be a maximal ^-subgroup of G containing g. There are two cases to be considered. 

(1) Q is infinite. Then let R be another maximal ^-subgroup (say a suitable conjugate 
of Q) not containing g. Partition R into k infinite subsets /?/,/= 1,. . . , k, where k is any 
positive integer. Let T be the set of conjugates of h and let To be the set of all conjugates 
of g by elements ofR. Since R is abelian by Lemma 8, and (/?, g) is nonabelian, it follows 
from Lemma 9 that C/?(g) is finite and hence the set To is infinite. By considering the sets 
r , 7o, /? i , . . . , /?£ we obtain a finite group (/zi, g\, n , . . . , r^) for some conjugate h\ of /z, 
some conjugate g\ of g and some r; in /?/. Since the centralizer of h\ in this subgroup has 
order at most m, it follows from Hartley's theorem that the Fitting subgroup of this group 
contains the Sylow-g-subgroup, and hence (g\, r\,..., rk) is a ̂ -subgroup. By Lemma 8, 
and the fact that all maximal ^-subgroups are infinite, this is abelian. This shows us that 
the centralizer of g in R is infinite and this is a contradiction. 

(2) Q is finite. In this case take R to be the set of all conjugates of g, partitioned 
into k disjoint infinite subsets with k larger than size of Q. From these sets and the set 
T of conjugates of h in G we obtain, by hypothesis, a ^-subgroup of size at least k, a 
contradiction. 

We may now assume that G is a 7r-group where 7r is a finite set of primes. Then it 
follows that for at least one prime q, maximal ^-subgroups of G are infinite, for G has 
infinite locally finite 7r-subgroups. Let Q and R be two distinct maximal ^-subgroups of 
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G. Suppose A = Q D R is infinite and choose h\ in Q, /z2 in R such that d = [h\, h^\ ^ 1. 
Let g i , . . . ,g„ be arbitrary elements of G, and consider the sets Ah\,Ah2,Ag\,... ,Agn. 
For some a,b,a\,...,an in A we have 7 = (ah\,bh2,a\g\,... ,angn) is finite. Clearly 
T contains the element d = [ah\, bh{\ and hence the subgroup (d, dg\...,dgn) is finite. 
Since n and the elements g/ were arbitrary, it follows that (dG) is locally finite, and hence 
G is locally finite, and thus finite; a contradiction. 

Thus we may assume that Q H R is finite. Since Q and /? are abelian ^-groups, not 
containing a Priifer ^-subgroup by Lemma 1, Q has an infinite elementary abelian q-
subgroup that intersects trivially with R. Let F be a finite subgroup of this group with the 
order of F exceeding/ = /(m, q). Take T to be the set of all conjugates of h by elements 
of R and T\, T^,..., Tn to be the sets /?g, where g\,..., gn are the elements of F, and /?/, 
/ = 1 , . . . ,&, a partition of /? into & infinite subsets where k is any positive integer. 

By hypothesis, we obtain a finite group K = (h\, a\g\,..., tfngn, n , . . . , r*) for some 
conjugate /zi of /z, some a,, / = 1, . . . , n, in R, and r; in Rj, j = 1, . . . , k. Let 5 be a 
Sylow g-subgroup of K containing (r\,..., r#). By Hartley's theorem, the index of Fitt(^) 
in T̂ is at most/, so that some (aigi)(ajgj)~l lies in Fitt(A )̂ and hence commutes with 
Fitt(K)n (r\,..., rk). Thus gigT1 commutes with Fitt(^T)Pi ( n , . . . , rk). Using the pigeon
hole principle, we get some element in F centralizing an infinite subgroup of R. This is 
not possible by Lemma 9. 

LEMMA 11. Let G be a critical (LF)* group. Then the order of every element of G 
is a prime. 

PROOF. Suppose false; let g be an element of G of order pq, where /?, q are primes 
(p = q allowed). Write y for gq so that y is of order p. As in the proof of Lemma 4 embed 
(g) in an infinite locally finite subgroup H of (g, S) where S is a Sylow-/?-subgroup of G 
containing y, and / / contains an infinite subgroup of S. Let K be a Sylow-/?-subgroup of 
H containing y. Now let T be the set of all conjugates of g by elements of K. If the set T 
is finite then the centralizer of g in AT is infinite, and hence, by Lemma 1, there exists an 
infinite elementary abelian subgroup C of K centralizing (g). Since the /7-th power of eg 
is the same (say z), independent of choice of c in C, considering the sets Cg, Cu,..., Cw, 
we find that the subgroup generated by z and conjugates of z by w,..., w is finite for all 
w,..., w in G. Hence the normal closure of (z) in G is locally finite and we are done. We 
may thus assume that T is infinite. Now for every element of the infinite set 7, the g-th 
power is y. So if we were to consider the sets T, Ku,..., Kw, we would get the normal 
closure of (y) in G to be locally finite, another contradiction. 

3. Proof of the Theorem. We begin with a result that is probably known but we 
could not find a suitable reference. 

LEMMA 12. Let G be a finite group in which the order of every element is a prime, 
and the Sylow subgroups are all abelian. Then G is isomorphic to A5 or G is abelian-by-
cyclic. 
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PROOF. The proof that G is simple or soluble goes back to Weisner in [7]. If G is 
simple then it is of type PSL(2, q), where q is a power of two (see Corollary 2.8, p. 182 of 
[2]). Since such groups have cyclic subgroups of order q — 1 and q + 1, q must equal four 
and G is A5. If G is soluble then it has a normal subgroup H of index/?, for some prime 
/?. Now each element of G not in H must be of order/?. This is forced by the hypothesis 
of the lemma. The result now follows from Theorem 4.24 in [6]. 

LEMMA 13. There is no critical (LF)* group. 

PROOF. Suppose that G is such a group. If H is a finite subgroup of G, then every 
element of H is of a prime order by Lemma 11. Also any Sylow /^-subgroup P of H is 
contained in some maximal/^-subgroup of G which, by Lemma 10, is infinite and thus, 
by Lemma 8, is abelian. It follows from Lemma 12 that H is isomorphic to A 5 or it 
is metabelian. Now H can be embedded in an infinite locally finite subgroup of G by 
Lemma 4. Thus, if H is simple, then H = G and G is finite, a contradiction. We may thus 
assume that every finite subgroup of H is metabelian. If X\, Xi, X3, X4 are any infinite 
subsets of G then by hypothesis, there exist x, in X; such that the subgroups generated by 
these is finite, and hence metabelian. Then, by the main result of [4], G is metabelian. 
Since it is finitely generated and periodic, it is finite, a contradiction. 

The proof that (LF)* groups are locally finite now follows from Lemma 1 and 
Lemma 13. That (LS)* = LS U F can be seen with the additional information from 
Lemma 5. The result for locally poly cyclic groups follows in the same way. We shall 
now assume that (LS)* = LS U F. 

In order to show that (LN)* = LNUF we may assume G to be an infinite locally finite 
soluble (LN)* group. If G is not locally nilpotent then there is a finite, non-nilpotent sub
group F of G. If G contains an infinite, normal abelian subgroup A, then by Lemma 1, A 
is reduced and therefore contains an infinite characteristic subgroup B which is residually 
finite. The infinite (LN)* group BF is also residually finite, while all its finite images are 
nilpotent. Since BF is also locally finite, it is locally nilpotent, a contradiction. Assuming 
that all normal abelian subgroups of G are finite, let K be the intersection of all normal 
subgroups NofG such that G/N is locally nilpotent. Thus G/K is locally nilpotent, and 
K ^ 1. Then every proper G-invariant subgroup N of K is finite—since G/N is locally 
nilpotent otherwise. Hence its centralizer contains K. In other words, it is central in K. 
The centre Z of K is finite and K/Z is a chief factor of G and therefore abelian. Now 
suppose K is infinite. Then K/Z is infinite, and G/Z is locally nilpotent, a contradiction. 

Thus K must be finite. Clearly we may assume K is abelian of prime exponent/?. Let 
C = CG{K). Then C is locally nilpotent. Since G/K (but not G) is locally nilpotent, there 
is an element h of G such that h has #-power order for some prime q different from /? 
and (K, h) is not nilpotent. We may assume that F = (K, h). If The /?'-component L of 
C is infinite then G/L is locally nilpotent and so G G LN, a contradiction. Certainly, 
therefore, the/?-component P of C is infinite. We may assume that G = (P, F) and hence 
that G/K is a direct product of P/K and F/K. Then F is in the FC-centre of G and the 
centralizer of F in P is infinite, and so contains an infinite abelian subgroup D. 
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Now replace P by D and assume that G = DF, where D is an abelian p-group F is 
a unite non-nilpotent group and [D,F] = 1. But in this set-up, D is an infinite normal 
abelian subgroup of G and, as before, this gives the required contradiction. 

The proof for the locally supersoluble case is analogous to the locally nilpotent case 
up to the point where we are able to assume that G/K is locally supersoluble and K is a 
finite abelian group of exponent/7. Since G is not locally supersoluble, there exists a finite 
subgroup F that is not supersoluble. Now G'K/K is locally nilpotent and G' is infinite— 
else F centralizes an infinite abelian subgroup of G. Thus by considering the centralizer 
of K in G' we may pass to the case where G = HF and H is a locally nilpotent p-group 
which is normal in G and centralized by K. As in the proof of Lemma 6 we have that 
every finite F-invariant subgroup of H has infinite centralizer. If A is a maximal normal 
abelian subgroup of H then AG = AF is nilpotent. Replace H by AG. The centre of H is 
finite and so H has finite exponent. Passing to the centralizer of the last finite term of the 
upper central series of H and then to a suitable subgroup we may assume that H/Z(H) 
is elementary abelian. Using the local supersolubility of G/Z(H) we easily construct an 
infinite F-'mvariant abelian subgroup of H, thus obtaining a contradiction. 
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