# SOME KREIN-MILMAN THEOREMS FOR ORDER-CONVEXITY 

ANDREW WIRTH

(Received 17 April 1972)
Communicated by J. B. Miller

## 1. Introduction

Analogues of the Krein-Milman theorem for order-convexity have been studied by several authors. Franklin [2] has proved a set-theoretic result, while Baker [1] has proved the theorem for posets with the Frink interval topology. We prove two Krein-Milman results on a large class of posets, with the openinterval topology, one for the original order and one for the associated preorder. This class of posets includes all pogroups. Cellular-internity defined in $R^{n}$ by Miller [3] leads to another notion of convexity, cell-convexity. We generalize the definition of cell-convexity to abelian $l$-groups and prove a Krein-Milman theorem in terms of it for divisible abelian $l$-groups.

## 2. Preliminaries

Let ( $X, \leqq$ ) be a poset. By taking the family of sets $\{x: x>a\},\{y: y<b\}$ where $a, b \in X$ as a subbase we define the open-interval topology $\mathscr{U}$ on $X$. Denote the set $\{x: a<x<b\}$ for $a<b$ by $(a, b)$.

We say $a \preccurlyeq b$ if $x>b$ implies that $x>a$, and if $y<a$ implies that $y<b$ [4]. Then $(X, \preccurlyeq)$ is a preordered set $; \preccurlyeq$ is called the associated preorder and $a \succcurlyeq b, b>c$ implies that $a>c$ (also $a>b, b \succcurlyeq c$ implies that $a>c$ ). Also $\mathscr{U}$ is $T_{0}$ if and only if ( $X, \preccurlyeq$ ) is a poset [4]. For example if $X \equiv R^{n}$ define $\left(x_{1}, \cdots, x_{n}\right)>0$ to mean $x_{i}>0$ for $i=1,2, \cdots, n$, then $\mathscr{U}$ is just the usual euclidean topology and $\left(x_{1}, \cdots, x_{n}\right) \geqslant 0$ if $x_{i} \geqq 0$ for $i=1,2, \cdots, n$. In fact in a Banach lattice ( $B, \leqq \prime$ ) with strong unit if we define $x>0$ to mean $x$ is a strong unit then $\mathscr{U}$ is homeomorphic with the metric topology and $\preccurlyeq=\leqq$ [5]. We will denote the closure of $S \subseteq X$ in $\mathscr{U}$ by $S^{-\mathscr{U}}$ or $S^{-}$if the latter does not cause confusion.

If $S \subseteq X$ we say $S$ is $\leqq$-convex $(\preccurlyeq$-convex) if $a, b \in S a \leqq x \leqq b(a \preccurlyeq x \preccurlyeq b)$ implies that $x \in S$. We say $a \in S$ is a $\leqq$-extreme ( $\preccurlyeq$-extreme) point of $S$ if $x \leqq a \leqq y(x \preccurlyeq a \preccurlyeq y)$ with $x, y \in S$ implies that $a=x$ or $a=y$ ( $a \preccurlyeq x$ or $a \succcurlyeq y$ ). We denote the $\leqq$-extreme ( $\preccurlyeq$-extreme) points of $S$ by $E(S)(e(S))$. It is clear that $x \in E(S)(x \in e(S))$ if and only if $x$ is a maximal or a minimal element of $(S, \leqq)((S, \preccurlyeq)$ ). The $\leqq$-convex hull of $S$, denoted by
$C(S)$, is the smallest $\leqq$-convex set containing $S$. Similarly we define the $\preccurlyeq-$ convex $h u l l, c(S)$. It is easily seen that $C(S)$ and $c(S)$ do in fact exist and also $C(S)=\{x: a \leqq x \leqq b$ for some $a, b \in S\}$, with a similar formula for $c(S)$. We note that $e(S) \subseteq E(s)$ and $C(S) \subseteq c(S)$.

We shall need one or other of the following conditions:
( $\alpha$ ) For all $a, b \in X(y<a$ implies $y<b)$ if and only if ( $b<x$ implies $a<x$ )
( $\beta$ ) $a<b$ implies that $a<x$ for all $x \in\{z: z>b\}^{-}$
and that $\quad y<b$ for all $y \in\{z: z<a\}^{-}$.
There exist posets satisfying neither ( $\alpha$ ) nor ( $\beta$ ), however each pogroup satisfies both. We note that our condition ( $\alpha$ ) is the same as condition ( $\Sigma$ ) in [4].

Let $(Y, \preccurlyeq)$ be a preordered set. By taking the sets $\{y: y \succcurlyeq a\},\{y: y \preccurlyeq b\}$ where $a, b \in Y$ as a subbase we define the Frink interval topology $\mathscr{F}$ on Y. Baker [1] proved his results using the topology $\mathscr{F}$ on a poset.

In the context of solving a class of functional equations Miller [3] defined cellular internity in $R^{n}$; the concept of cell-convexity follows immediately from it. We generalize the definition to abelian $l$-groups. Let $(G, \preccurlyeq)$ be an abelian $l$-group. Denote $\{x: x \geqslant 0\}$ by $G^{+}$and for $a, b \in G^{+}$write $a \sim b$ if there exist positive integers $m$ and $n$ such that $\mathrm{a} \leqslant m b$ and $b \preccurlyeq n a$. If $a \in G^{+}$write $a^{0}$ for the set $\{x: x \sim a\}$. Call the sets $x^{0}$ for $x \in G^{+}$archimedean classes and denote the family of archimedean classes by $\mathscr{A}$ [5]. We define two partial orders, $\leqslant$ and $\S$, on $\mathscr{A}$. We say $a^{0} \preccurlyeq b^{0}$ if $a \preccurlyeq n b$ for some positive integer $n$; and $a^{0} \ll b^{0}$ if $n a \preccurlyeq b$ for all integers $n$. We write $[a b c]$ if $a \preccurlyeq b \preccurlyeq c$ and if $(c-b)^{0}=(b-a)^{0}$. We say $S \subseteq G$ is cell-convex if $a, b \in S$ and $[a x b]$ implies that $x \in S$. We say $a \in S$ is a cell-extreme point of $S$ if $[x a y]$ with $x, y \in S$ implies that $a=x$ or $a=y$. We denote the cell-extreme points of $S$ by $\mathscr{E}(S)$. The intersection of all cell-convex sets containing $S$ is itself cell-convex and is the smallest such set; it is called the cell-convex hull of $S$, denoted by $\mathscr{C}(S)$.

The open-interval topology on $(G, \preccurlyeq)$ is discrete if $(G, \preccurlyeq)$ is not fully ordered. So to obtain a suitable topology on $G$ we consider compatible tight Riesz orders (abbreviated CTROs) on ( $G, \preccurlyeq$ ) [5]. A tight Riesz group ( $H, \leqq$ ) is a directed abelian pogroup which satisfies the following interpolation property: if $a_{1}, a_{2}, b_{1}, b_{2} \in H$ such that $a_{i}<b_{j}$ for $i, j=1,2$ then there exists $c \in H$ such that $a_{i}<c<b_{j}$ for $i, j=1,2$. A CTRO on $(G, \preccurlyeq)$ is a non-trivial partial order $\leqq$ making ( $G, \leqq$ ) a tight Riesz group with $\preccurlyeq$ as its associated order. Each CTRO gives rise to an open-intrval topology which is Hausdorff. If $\leqq$ is a CTRO with topology $\mathscr{U}$ and $a<b$ then $(a, b)^{-\mathscr{U}}=\{x: a \preccurlyeq x \preccurlyeq b\}$. Also the family of sets $\{(-a, a): a>0\}$ forms a base of neighbourhoods at 0 and $\leqq$ is isolated. Also $e(S) \subseteq \mathscr{E}(S)$ and $\mathscr{C}(S) \subseteq c(S)$ for all $S \subseteq G$.

We quote one result on CTROs from [5].
Lemma 1 [5]. There is a one-one correspondence between CTROs on $(G, \preccurlyeq)$ and sets $\mathscr{T}$ with the properties:
(i) $\mathscr{T}$ is a proper dual ideal of $(\mathscr{A}, \preccurlyeq)$
(ii) if $a^{0} \in \mathscr{T}$ then there exist $b^{0}, c^{0} \in \mathscr{T}$ such that $a=b+c$
(iii) if $x^{0} \ll y^{0}$ for all $y^{0} \in \mathscr{T}$ then $x=0$.

In fact the set of archimedean classes of the strictly positive elements of a CTRO satisfies (i)-(iii) and vice versa.

It can be shown that every divisible abelian $l$-group has at least one CTRO [5].

## 3. The $\leqq$-convex and $\preccurlyeq$-convex cases

Theorem 1. Let $K$ be compact in $(X, \leqq, \mathscr{U})$ then
(i) $C E(K)=C(K)$ if $(X, \leqq)$ satisfies ( $\alpha$ ) or $(\beta)$
(ii) $c e(K)=c(K)$ if $(X, \leqq)$ satisfies $(\alpha)$ or if $(X, \leqq)$ is dense and satisfies $(\beta)$

Proof. Franklin [2] has shown that to prove (i) it is sufficient to prove that for each $a \in K$, ( $K \cap\{x: x \geqq a\}$, $\leqq$ ) has a maximal element and that $(K \cap\{x: x \leqq a\}, \leqq$ ) has a minimal element. Let $C$ be a chain in ( $K \cap\{x: x \geqq a\}$, $\leqq$ ), we want to show that $C$ is bounded above in $(K \cap\{x: x \geqq a\}, \leqq) . C$ is a net with itself as indexing set so by the definition of $\mathscr{U}$ there exists $b \in K$ such that $\mathscr{U}$ - $\lim C=b$, we may also assume that $C$ has no largest element. If $x>b$ then $\{y: y<x\}$ is a neighbourhood of $b$ so $c<x$ for all $c \in C$. So if ( $\alpha$ ) holds then $b \geqslant c$ for all $c \in C$. So in fact $b>c$ for all $c \in C$ and $b \in K \cap\{x: x \geqq a\}$. Now suppose instead that ( $\beta$ ) holds. If $c \in C$ there exists $c_{1} \in C$ such that $c<c_{1}$ and so $b \in\left\{x: x>c_{1}\right\}^{-}$. Hence by $(\beta) b>c$ for all $c \in C$. Hence (i) follows by applying Zorn's lemma and a dual argument for $K \cap\{x: x \leqq a\}$.

Franklin's result can be shown to be true also for preordered sets. Let $a \in K$ and let $D$ be a chain in ( $K \cap\{x: x \geqslant a\}$, ), so there exists $f \in K$ such that $\mathscr{U}-\lim D=f$. If $x>f$ then $x>d$ for all $d \in D$. So if $(\alpha)$ holds then $f \succcurlyeq d$ for all $D$. Now suppose that ( $X, \leqq$ ) is dense and ( $\beta$ ) holds. Let $d \in D$, if $y<d$ then for some $z \in X \quad y<z<d$. So $f \in\{x: x>z\}^{-}$and by ( $\beta$ ) $y<f$. So $x>f$ implies that $x>d$, and $y<d$ implies that $y<f$. Hence $f \succcurlyeq d$ for all $d \in D$. Hence (ii) follows.

Baker [1] proved that if $K$ is convex and compact in ( $Y, \leqq, \mathscr{F}$ ) where $(Y, \leqq)$ is a poset then $C E(K)=K$. We restate his result, and for completeness prove it.

Lemma 2 (Baker). Let $(Y, \leqq)$ be a preordered set and let $K$ be compact in $(Y, \leqq, \mathscr{F})$ then $C E(K)=C(K)$.

Proof. Let $a \in K$ and let $C$ be a chain in ( $K \cap\{x: x \geqq a\}$, $\leqq$ ). Then the family of $\mathscr{F}$-closed sets $\{y: y \geqq c\}, c \in C$, has the finite intersection property. So by the compactness of $K$ there exists $b \geqq c$ for all $c \in C$, and $b \in K$. The rest of the proof follows the method used above.

We now show that the first part of Theorem 1 (ii) can alternatively be proved using Lemma 2.

Lemma 3. If $(X, \leqq, \mathscr{U})$ satisfies $(\alpha)$ then $\mathscr{U}$ is at least as strong as $\mathscr{F}$ for $(X, \preccurlyeq)$; hence if $K$ is $\mathscr{U}$-compact then $c e(K)=c(K)$.

Proof. We shall show that $S=\{x: x \geqslant a\}$ is $\mathscr{U}$-closed for each $a \in X$. Let $\left\{y_{\alpha}\right\}$ be a net in $S$ with $\mathscr{U}$-limit $b$. If $c>b$ then $c>y_{\alpha}$ for some $\alpha$ so $c>a$. Since ( $\alpha$ ) holds we conclude that $b \succcurlyeq a$ so that $S$ is $\mathscr{U}$-closed. Hence $\mathscr{U}$ is at least as strong as the Frink interval topology on $(X, \preccurlyeq)$. So if $K$ is $\mathscr{U}$-compact then it is $\mathscr{F}$-compact. The rest follows by Lemma 2.

The class of posets satisfying $(\alpha)$ and $(\beta)$ is quite large as is made clear now.
Lemma 4. If $(X, \leqq)$ is a pogroup then it satisfies $(\alpha)$ and $(\beta)$.
Proof. Now $y<a$ implies $y<b$ means that $a-p<b$ for all $p>0$; and $b<x$ implies $a<x$ means that $b+p>a$ for all $p>0$. So ( $\alpha$ ) is satisfied since these are equivalent.

If $a<b$ and $x \in\{z: z>b\}^{-}$then $\{y: y<b-a+x\}$ is a neighbourhood of $x$. So for some $c, b<c<b-a+x$, hence $a<x$. The dual follows easily and so $(\beta)$ is satisfied.

We note that $(X,+)$ need not be abelian.
Example. There exists a lattice satisfying neither ( $\alpha$ ) nor ( $\beta$ ). Consider the lattice consisting of the elements $a_{1}<a_{2}<a_{3}<a_{4}<a_{5}$ and $b$ such that $a_{1}<b<a_{5}$, and $b$ not comparable with $a_{2}, a_{3}$ and $a_{4}$. Then $x>b$ implies that $x>a_{4}$ but $y<a_{4}$ does not imply that $y<b$ (for example $a_{3}<a_{4}$ and $a_{3} \nless b$ ). Also $a_{2}<a_{3}$ and $a_{4} \in\left\{x: x>a_{3}\right\}$, so $b \in\left\{x: x>a_{3}\right\}^{-}$but $a_{2} \nless b$.

## 4. The cell-convex case

Lemma 5. Let $(G, \preccurlyeq)$ be a divisible abelian l-group, with a CTRO, $\leqq, K$ a compact cell-convex subset of $(G, \leqq, \mathscr{U})$ and $0, a \in K \cap G^{+}$. Then $a^{0} \preccurlyeq p^{0}$ for all $p>0$.

Proof. Let $L=\{x: x=r a$ for $0 \leqq r \leqq 1$, and $r$ rational $\}$.
By cell-convexity of $K$ we have $L \subseteq K$, so $L^{-}$is compact. Let $p>0$ and cover $L^{-}$by the family of sets $(x-p, x+p)$ where $x \in L^{-}$. Then by compactness there exist $0 \leqq r_{1}, r_{2} \leqq 1, r_{1} \neq r_{2}$, and some $x \in L^{-}$such that $x-p<r_{1} a$, $r_{2} a<x+p$. Also for some $r_{3},-p<x-r_{3} a<p$, since $x \in L^{-}$. So $-2 p<\left(r_{1}-r_{3}\right) a,\left(r_{2}-r_{3}\right) a<2 p$. Since at least one of $r_{1}-r_{3}, r_{2}-r_{3}$ is non-zero we have $a^{0} \preccurlyeq p^{0}$.

Corollary 1. For the above $a$, the set $\left\{x: x^{0} \succcurlyeq a^{0}\right\}$ is the strictly positive cone of a CTRO.

Proof. Properties (i) and (ii) of Lemma 1 are easily proved. If $y^{0} \ll a^{0}$ then certainly $y^{0} \ll p^{0}$ for all $p>0$, so $y=0$.

Denote this CTRO by $\underset{a}{\leqq}$, and the open-interval topology of $(G, \underset{a}{\leqq})$ by $\mathscr{U}_{a}$.
Corollary 2. The topology $\mathscr{U}_{a}$ is at least as strong as $\mathscr{U}$.
Proof. It will be sufficient to prove that if $p>0$ then $\{x:-p<x<p\}$ is a neighbourhood of 0 in $\mathscr{U}_{a}$. There exists a positive integer $m$ such that $p / 2 \succcurlyeq a / m$, since $p^{0} \succcurlyeq a^{0}$. So $(a / m)<p$ since $\leqq$ is isolated. If $(-a / m)<{ }_{a}^{<}{ }_{a}(a / m)$ then certainly $(-a / m)<y<(a / m)$, so $-p<y<p$. Hence $\mathscr{U}_{a}$ is at least as strong as $\mathscr{U}$.

Theorem 2. Let $(G, \preccurlyeq)$ be a divisible abelian l-group, $\leqq a \operatorname{CTRO}$ on $(G, \preccurlyeq), K$ a compact cell-convex subset of $(G, \leqq, \mathscr{U})$ then

$$
[\mathscr{C e}(K)]^{-}=K
$$

Proof. Let $x \in K$ then by Theorem 1 (ii) and Lemma 4 there exist $a$, $b \in e(K)$ such that $b \preccurlyeq x \preccurlyeq a$. We may assume without loss of generality that $b=0$.

Now $\left\{y: 0<{ }_{a} y{ }_{a} a\right\} \subseteq \mathscr{C} e(K)$, since $a^{0} \preccurlyeq y^{0} \preccurlyeq a^{0}$ and $a^{0} \preccurlyeq(a-y)^{0} \preccurlyeq a^{0}$, so [0ylal. By Lemma 5 Corollary 2

$$
\{z: 0 \preccurlyeq z \preccurlyeq a\}=\left\{y: 0<_{a} y_{a}^{<} a\right\}^{-w_{a}} \subseteq\left\{y: 0<_{a}^{<}{\underset{a}{<} a\}^{-u} \subseteq[\mathscr{C} e(K)]^{-u}, ~}_{\text {Q }}\right.
$$

hence $x \in[\mathscr{C} e(K)]^{-}$; so $K \subseteq[\mathscr{C} e(K)]^{-}$. The rest is obvious since $e(K) \subseteq K$, $K$ is cell-convex, and $\mathscr{U}$ is Hausdorff.

Corollary. With the hypotheses as above $[\mathscr{C} \mathscr{E}(K)]^{-}=K$.

## Acknowledgements

The author would like to thank Professor J. B. Miller for his helpful advice. This research was carried out while the author held a Commonwealth Postgraduate Research Award.

## References

[1] K. A. Baker, 'A Krein-Milman theorem for partially ordered sets', Amer. Math. Monthly 76 (1969), 282-238.
[2] S. P. Franklin, 'Some results on order-convexity', Amer. Math. Monthly 69 (1962), 357-359.
[3] J. B. Miller, 'Aczél's uniquness theorem and cellular internity', Aequationes Mc th. 5 (1970), 319-325.
[4] J. B. Miller and N. Cameron, 'Topology and axioms of interpolation in partially ordered spaces', J. für die reine u. angewandte Math. (to appear).
[5] A. Wirth, 'Compatible tight Riesz orders', J. Austral. Math. Soc. 15 (1973), 105-111.

## Monash University

Clayton
Victoria 3168
Australia

