SOME KREIN-MILMAN THEOREMS FOR ORDER-CONVEXITY

ANDREW WIRTH

(Received 17 April 1972) Communicated by J. B. Miller

1. Introduction

Analogues of the Krein-Milman theorem for order-convexity have been studied by several authors. Franklin [2] has proved a set-theoretic result, while Baker [1] has proved the theorem for posets with the Frink interval topology. We prove two Krein-Milman results on a large class of posets, with the openinterval topology, one for the original order and one for the associated preorder. This class of posets includes all pogroups. Cellular-internity defined in \mathbb{R}^n by Miller [3] leads to another notion of convexity, cell-convexity. We generalize the definition of cell-convexity to abelian *l*-groups and prove a Krein-Milman theorem in terms of it for divisible abelian *l*-groups.

2. Preliminaries

Let (X, \leq) be a poset. By taking the family of sets $\{x: x > a\}$, $\{y: y < b\}$ where $a, b \in X$ as a subbase we define the *open-interval topology* \mathcal{U} on X. Denote the set $\{x: a < x < b\}$ for a < b by (a, b).

We say $a \leq b$ if x > b implies that x > a, and if y < a implies that y < b [4]. Then (X, \leq) is a preordered set; \leq is called the *associated preorder* and $a \geq b$, b > c implies that a > c (also a > b, $b \geq c$ implies that a > c). Also \mathscr{U} is T_0 if and only if (X, \leq) is a poset [4]. For example if $X \equiv R^n$ define $(x_1, \dots, x_n) > 0$ to mean $x_i > 0$ for $i = 1, 2, \dots, n$, then \mathscr{U} is just the usual euclidean topology and $(x_1, \dots, x_n) \geq 0$ if $x_i \geq 0$ for $i = 1, 2, \dots, n$. In fact in a Banach lattice (B, \leq') with strong unit if we define x > 0 to mean x is a strong unit then \mathscr{U} is homeomorphic with the metric topology and $\leq = \leq'$ [5]. We will denote the closure of $S \subseteq X$ in \mathscr{U} by $S^{-\mathscr{U}}$ or S^{-} if the latter does not cause confusion.

If $S \subseteq X$ we say S is \leq -convex (\leq -convex) if $a, b \in S$ $a \leq x \leq b$ ($a \leq x \leq b$) implies that $x \in S$. We say $a \in S$ is a \leq -extreme (\leq -extreme) point of S if $x \leq a \leq y$ ($x \leq a \leq y$) with $x, y \in S$ implies that a = x or a = y($a \leq x$ or $a \geq y$). We denote the \leq -extreme (\leq -extreme) points of S by E(S) (e(S)). It is clear that $x \in E(S)$ ($x \in e(S)$) if and only if x is a maximal or a minimal element of (S, \leq) ((S, \leq)). The \leq -convex hull of S, denoted by C(S), is the smallest \leq -convex set containing S. Similarly we define the \leq convex hull, c(S). It is easily seen that C(S) and c(S) do in fact exist and also $C(S) = \{x: a \leq x \leq b \text{ for some } a, b \in S\}$, with a similar formula for c(S). We note that $e(S) \subseteq E(s)$ and $C(S) \subseteq c(S)$.

We shall need one or other of the following conditions:

- (a) For all $a, b \in X$ (y < a implies y < b) if and only if (b < x implies a < x)
- (β) a < b implies that a < x for all $x \in \{z : z > b\}^$
 - and that y < b for all $y \in \{z : z < a\}^-$.

There exist posets satisfying neither (α) nor (β), however each pogroup satisfies both. We note that our condition (α) is the same as condition (Σ) in [4].

Let (Y, \leq) be a preordered set. By taking the sets $\{y: y \geq a\}, \{y: y \leq b\}$ where $a, b \in Y$ as a subbase we define the *Frink interval topology* \mathcal{F} on Y. Baker [1] proved his results using the topology \mathcal{F} on a poset.

In the context of solving a class of functional equations Miller [3] defined cellular internity in \mathbb{R}^n ; the concept of cell-convexity follows immediately from it. We generalize the definition to abelian *l*-groups. Let (G, \leq) be an abelian *l*-group. Denote $\{x: x \geq 0\}$ by G^+ and for $a, b \in G^+$ write $a \sim b$ if there exist positive integers *m* and *n* such that $a \leq mb$ and $b \leq na$. If $a \in G^+$ write a^0 for the set $\{x: x \sim a\}$. Call the sets x^0 for $x \in G^+$ archimedean classes and denote the family of archimedean classes by \mathscr{A} [5]. We define two partial orders, \leq and \leq , on \mathscr{A} . We say $a^0 \leq b^0$ if $a \leq nb$ for some positive integer *n*; and $a^0 \leq b^0$ if $na \leq b$ for all integers *n*. We write $[a \ b \ c]$ if $a \leq b \leq c$ and if $(c-b)^0 = (b-a)^0$. We say $S \subseteq G$ is cell-convex if $a, b \in S$ and $[a \ x \ b]$ implies that $x \in S$. We say $a \in S$ is a cell-extreme point of S if $[x \ a \ y]$ with $x, y \in S$ implies that a = x or a = y. We denote the cell-extreme points of S by $\mathscr{E}(S)$. The intersection of all cell-convex sets containing S is itself cell-convex and is the smallest such set; it is called the cell-convex hull of S, denoted by $\mathscr{C}(S)$.

The open-interval topology on (G, \preccurlyeq) is discrete if (G, \preccurlyeq) is not fully ordered. So to obtain a suitable topology on G we consider compatible tight Riesz orders (abbreviated CTROs) on (G, \preccurlyeq) [5]. A tight Riesz group (H, \leq) is a directed abelian pogroup which satisfies the following interpolation property: if $a_1, a_2, b_1, b_2 \in H$ such that $a_i < b_j$ for i, j = 1, 2 then there exists $c \in H$ such that $a_i < c < b_j$ for i, j = 1, 2. A CTRO on (G, \preccurlyeq) is a non-trivial partial order \leq making (G, \leq) a tight Riesz group with \preccurlyeq as its associated order. Each CTRO gives rise to an open-intrval topology which is Hausdorff. If \leq is a CTRO with topology \mathscr{U} and a < b then $(a, b)^{-\mathscr{U}} = \{x: a \preccurlyeq x \preccurlyeq b\}$. Also the family of sets $\{(-a, a): a > 0\}$ forms a base of neighbourhoods at 0 and \leq is isolated. Also $e(S) \subseteq \mathscr{E}(S)$ and $\mathscr{E}(S) \subseteq c(S)$ for all $S \subseteq G$.

We quote one result on CTROs from [5].

LEMMA 1 [5]. There is a one-one correspondence between CTROs on (G, \leq) and sets \mathcal{T} with the properties:

- (i) \mathcal{T} is a proper dual ideal of $(\mathcal{A}, \preccurlyeq)$
- (ii) if $a^0 \in \mathcal{T}$ then there exist b^0 , $c^0 \in \mathcal{T}$ such that a = b + c

(iii) if $x^0 \ll y^0$ for all $y^0 \in \mathcal{T}$ then x = 0.

In fact the set of archimedean classes of the strictly positive elements of a CTRO satisfies (i)-(iii) and vice versa.

It can be shown that every divisible abelian *l*-group has at least one CTRO [5].

3. The \leq -convex and \preccurlyeq -convex cases

THEOREM 1. Let K be compact in (X, \leq, \mathcal{U}) then (i) CE(K) = C(K) if (X, \leq) satisfies (α) or (β) (ii) ce(K) = c(K) if (X, \leq) satisfies (α) or if (X, \leq) is dense and satisfies (β)

PROOF. Franklin [2] has shown that to prove (i) it is sufficient to prove that for each $a \in K$, $(K \cap \{x : x \ge a\}, \le)$ has a maximal element and that $(K \cap \{x : x \le a\}, \le)$ has a minimal element. Let C be a chain in $(K \cap \{x : x \ge a\}, \le)$, we want to show that C is bounded above in $(K \cap \{x : x \ge a\}, \le)$. C is a net with itself as indexing set so by the definition of \mathscr{U} there exists $b \in K$ such that \mathscr{U} -lim C = b, we may also assume that C has no largest element. If x > b then $\{y : y < x\}$ is a neighbourhood of b so c < x for all $c \in C$. So if (α) holds then $b \ge c$ for all $c \in C$. So in fact b > c for all $c \in C$ and $b \in K \cap \{x : x \ge a\}$. Now suppose instead that (β) holds. If $c \in C$ there exists $c_1 \in C$ such that $c < c_1$ and so $b \in \{x : x > c_1\}^-$. Hence by (β) b > c for all $c \in C$. Hence (i) follows by applying Zorn's lemma and a dual argument for $K \cap \{x : x \le a\}$.

Franklin's result can be shown to be true also for preordered sets. Let $a \in K$ and let D be a chain in $(K \cap \{x : x \ge a\}, \preccurlyeq)$, so there exists $f \in K$ such that \mathscr{U} -lim D = f. If x > f then x > d for all $d \in D$. So if (α) holds then $f \ge d$ for all D. Now suppose that (X, \le) is dense and (β) holds. Let $d \in D$, if y < d then for some $z \in X$ y < z < d. So $f \in \{x : x > z\}^-$ and by (β) y < f. So x > f implies that x > d, and y < d implies that y < f. Hence $f \ge d$ for all $d \in D$. Hence (ii) follows.

Baker [1] proved that if K is convex and compact in (Y, \leq , \mathcal{F}) where (Y, \leq) is a poset then CE(K) = K. We restate his result, and for completeness prove it.

LEMMA 2 (Baker). Let (Y, \leq) be a preordered set and let K be compact in (Y, \leq, \mathcal{F}) then CE(K) = C(K).

PROOF. Let $a \in K$ and let C be a chain in $(K \cap \{x : x \ge a\}, \le)$. Then the family of \mathscr{F} -closed sets $\{y : y \ge c\}$, $c \in C$, has the finite intersection property. So by the compactness of K there exists $b \ge c$ for all $c \in C$, and $b \in K$. The rest of the proof follows the method used above.

We now show that the first part of Theorem 1 (ii) can alternatively be proved using Lemma 2.

LEMMA 3. If (X, \leq, \mathcal{U}) satisfies (α) then \mathcal{U} is at least as strong as \mathcal{F} for (X, \leq) ; hence if K is \mathcal{U} -compact then ce(K) = c(K).

PROOF. We shall show that $S = \{x : x \ge a\}$ is \mathscr{U} -closed for each $a \in X$. Let $\{y_{\alpha}\}$ be a net in S with \mathscr{U} -limit b. If c > b then $c > y_{\alpha}$ for some α so c > a. Since (α) holds we conclude that $b \ge a$ so that S is \mathscr{U} -closed. Hence \mathscr{U} is at least as strong as the Frink interval topology on (X, \leq) . So if K is \mathscr{U} -compact then it is \mathscr{F} -compact. The rest follows by Lemma 2.

The class of posets satisfying (α) and (β) is quite large as is made clear now.

LEMMA 4. If (X, \leq) is a pogroup then it satisfies (α) and (β) .

PROOF. Now y < a implies y < b means that a - p < b for all p > 0; and b < x implies a < x means that b + p > a for all p > 0. So (α) is satisfied since these are equivalent.

If a < b and $x \in \{z: z > b\}^-$ then $\{y: y < b - a + x\}$ is a neighbourhood of x. So for some c, b < c < b - a + x, hence a < x. The dual follows easily and so (β) is satisfied.

We note that (X, +) need not be abelian.

EXAMPLE. There exists a lattice satisfying neither (α) nor (β). Consider the lattice consisting of the elements $a_1 < a_2 < a_3 < a_4 < a_5$ and b such that $a_1 < b < a_5$, and b not comparable with a_2 , a_3 and a_4 . Then x > b implies that $x > a_4$ but $y < a_4$ does not imply that y < b (for example $a_3 < a_4$ and $a_3 < b$). Also $a_2 < a_3$ and $a_4 \in \{x : x > a_3\}$, so $b \in \{x : x > a_3\}^-$ but $a_2 < b$.

4. The cell-convex case

LEMMA 5. Let (G, \leq) be a divisible abelian l-group, with a CTRO, \leq , K a compact cell-convex subset of (G, \leq, \mathcal{U}) and 0, $a \in K \cap G^+$. Then $a^0 \leq p^0$ for all p > 0.

PROOF. Let $L = \{x : x = ra \text{ for } 0 \leq r \leq 1, \text{ and } r \text{ rational}\}.$

By cell-convexity of K we have $L \subseteq K$, so L^- is compact. Let p > 0 and cover L^- by the family of sets (x - p, x + p) where $x \in L^-$. Then by compactness there exist $0 \leq r_1$, $r_2 \leq 1$, $r_1 \neq r_2$, and some $x \in L^-$ such that $x - p < r_1 a$, $r_2 a < x + p$. Also for some r_3 , $-p < x - r_3 a < p$, since $x \in L^-$. So $-2p < (r_1 - r_3)a$, $(r_2 - r_3)a < 2p$. Since at least one of $r_1 - r_3$, $r_2 - r_3$ is non-zero we have $a^0 \leq p^0$.

COROLLARY 1. For the above a, the set $\{x: x^0 \ge a^0\}$ is the strictly positive cone of a CTRO.

PROOF. Properties (i) and (ii) of Lemma 1 are easily proved. If $y^0 \leq a^0$ then certainly $y^0 \leq p^0$ for all p > 0, so y = 0.

Order-convexity

Denote this CTRO by $\leq a$, and the open-interval topology of $(G, \leq a)$ by \mathscr{U}_a . COROLLARY 2. The topology \mathscr{U}_a is at least as strong as \mathscr{U} .

PROOF. It will be sufficient to prove that if p > 0 then $\{x: -p < x < p\}$ is a neighbourhood of 0 in \mathscr{U}_a . There exists a positive integer m such that $p/2 \ge a/m$, since $p^0 \ge a^0$. So (a/m) < p since \le is isolated. If $(-a/m) \le y \le (a/m)$ then certainly $(-a/m) \prec y \prec (a/m)$, so -p < y < p. Hence \mathscr{U}_a is at least as strong as \mathscr{U} .

THEOREM 2. Let (G, \leq) be a divisible abelian l-group, $\leq a$ CTRO on (G, \leq) , K a compact cell-convex subset of (G, \leq, \mathcal{U}) then

$$[\mathscr{C}e(K)]^- = K.$$

PROOF. Let $x \in K$ then by Theorem 1 (ii) and Lemma 4 there exist a, $b \in e(K)$ such that $b \leq x \leq a$. We may assume without loss of generality that b = 0.

Now $\{y: 0 \leq y \leq a\} \subseteq \mathscr{C}e(K)$, since $a^0 \leq y^0 \leq a^0$ and $a^0 \leq (a - y)^0 \leq a^0$, so $[0 \ y \ a]$. By Lemma 5 Corollary 2

$$\{z: 0 \leq z \leq a\} = \{y: 0 \leq y \leq a\}^{-\mathscr{U}_a} \subseteq \{y: 0 \leq y \leq a\}^{-\mathscr{U}} \subseteq [\mathscr{C}e(K)]^{-\mathscr{U}},$$

hence $x \in [\mathscr{C}e(K)]^-$; so $K \subseteq [\mathscr{C}e(K)]^-$. The rest is obvious since $e(K) \subseteq K$, K is cell-convex, and \mathscr{U} is Hausdorff.

COROLLARY. With the hypotheses as above $[\mathscr{CE}(K)]^- = K$.

Acknowledgements

The author would like to thank Professor J. B. Miller for his helpful advice. This research was carried out while the author held a Commonwealth Postgraduate Research Award.

References

- [1] K. A. Baker, 'A Krein-Milman theorem for partially ordered sets', Amer. Math. Monthly 76 (1969), 282-238.
- [2] S. P. Franklin, 'Some results on order-convexity', Amer. Math. Monthly 69 (1962), 357-359.
- [3] J. B. Millei, 'Aczél's uniquness theorem and cellular internity', Aequationes Meth. 5 (1970), 319-325.
- [4] J. B. Miller and N. Cameron, 'Topology and axioms of interpolation in partially ordered spaces', J. für die reine u. angewandte Math. (to appear).
- [5] A. Wirth, 'Compatible tight Riesz orders', J. Austral. Math. Soc. 15 (1973), 105-111.

Monash University Clayton Victoria 3168 Australia

[5]