
1 Prologue

1.1 Why OCaml?

Programming languages matter. They a�ect the reliability, security, and e�ciency of

the code you write, as well as how easy it is to read, refactor, and extend. The languages

you know can also change how you think, in�uencing the way you design software

even when you're not using them.

Wewrote this book becausewe believe in the importance of programming languages,

and that OCaml in particular is an important language to learn. Both of us have been

using OCaml in our academic and professional lives for over 20 years, and in that time

we've come to see it as a powerful tool for building complex software systems. This

book aims to make this tool available to a wider audience, by providing a clear guide

to what you need to know to use OCaml e�ectively in the real world.

What makes OCaml special is that it occupies a sweet spot in the space of program-

ming language designs. It provides a combination of e�ciency, expressiveness and

practicality that is matched by no other language. That is in large part because OCaml

is an elegant combination of a set of language features that have been developed over

the last 60 years. These include:

• Garbage collection for automatic memory management, now a common feature of

modern, high-level languages.

• First-class functions that can be passed around like ordinary values, as seen in

JavaScript, Common Lisp, and C#.

• Static type-checking to increase performance and reduce the number of runtime

errors, as found in Java and C#.

• Parametric polymorphism, which enables the construction of abstractions that work

across di�erent data types, similar to generics in Java, Rust, and C# and templates

in C++.

• Good support for immutable programming, i.e., programming without making de-

structive updates to data structures. This is present in traditional functional lan-

guages like Scheme, and is also commonly found in everything from distributed,

big-data frameworks to user-interface toolkits.

• Type inference, so you don't need to annotate every variable in your program with

its type. Instead, types are inferred based on how a value is used. Available in a

https://doi.org/10.1017/9781009129220.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.002


2 Prologue

limited form in C# with implicitly typed local variables, and in C++11 with its

auto keyword.

• Algebraic data types and pattern matching to de�ne and manipulate complex data

structures. Available in Scala, Rust, and F#.

Some of you will know and love all of these features, and for others they'll be

largely new, but most of you will have seen some of them in other languages that

you've used. As we'll demonstrate over the course of this book, there is something

transformative about having all these features together and able to interact in a single

language. Despite their importance, these ideas have made only limited inroads into

mainstream languages, and when they do arrive there, like �rst-class functions in C#

or parametric polymorphism in Java, it's typically in a limited and awkward form. The

only languages that completely embody these ideas are statically typed, functional

programming languages like OCaml, F#, Haskell, Scala, Rust, and Standard ML.

Among this worthy set of languages, OCaml stands apart because it manages to

provide a great deal of power while remaining highly pragmatic. The compiler has a

straightforward compilation strategy that produces performant code without requiring

heavy optimization and without the complexities of dynamic just-in-time (JIT) com-

pilation. This, along with OCaml's strict evaluation model, makes runtime behavior

easy to predict. The garbage collector is incremental, letting you avoid large garbage

collection (GC)-related pauses, and precise, meaning it will collect all unreferenced

data (unlike many reference-counting collectors), and the runtime is simple and highly

portable.

All of this makes OCaml a great choice for programmers who want to step up to a

better programming language, and at the same time get practical work done.

1.1.1 A Brief History

OCaml was written in 1996 by Xavier Leroy, Jérôme Vouillon, Damien Doligez, and

Didier Rémy at INRIA in France. It was inspired by a long line of research into ML

starting in the 1960s, and continues to have deep links to the academic community.

ML was originally themeta language of the LCF (Logic for Computable Functions)

proof assistant released by Robin Milner in 1972 (at Stanford, and later at Cambridge).

ML was turned into a compiler in order to make it easier to use LCF on di�erent

machines, and it was gradually turned into a full-�edged system of its own by the

1980s.

The �rst implementation of Caml appeared in 1987. It was created by Ascánder

Suárez (as part of the Formel project at INRIA headed by Gérard Huet) and later

continued by Pierre Weis and Michel Mauny. In 1990, Xavier Leroy and Damien

Doligez built a new implementation called Caml Light that was based on a bytecode

interpreter with a fast, sequential garbage collector. Over the next few years useful

libraries appeared, such as Michel Mauny's syntax manipulation tools, and this helped

promote the use of Caml in education and research teams.

Xavier Leroy continued extending Caml Light with new features, which resulted

https://doi.org/10.1017/9781009129220.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.002


1.1 The Base Standard Library 3

in the 1995 release of Caml Special Light. This improved the executable e�ciency

signi�cantly by adding a fast native code compiler that made Caml's performance

competitive with mainstream languages such as C++. A module system inspired by

Standard ML also provided powerful facilities for abstraction and made larger-scale

programs easier to construct.

The modern OCaml emerged in 1996, when a powerful and elegant object system

was implemented byDidier Rémy and JérômeVouillon. This object systemwas notable

for supporting many common object-oriented idioms in a statically type-safe way,

whereas the same idioms required runtime checks in languages such as C++ or Java. In

2000, JacquesGarrigue extendedOCamlwith several new features such as polymorphic

methods, variants, and labeled and optional arguments.

The last two decades has seen OCaml attract a signi�cant user base, and language

improvements have been steadily added to support the growing commercial and aca-

demic codebases. By 2012, the OCaml 4.0 release had added Generalized Algebraic

Data Types (GADTs) and �rst-class modules to increase the �exibility of the language.

Since then, OCaml has had a steady yearly release cadence, and OCaml 5.0 with multi-

core support is around the corner in 2022. There is also fast native code support for the

latest CPU architectures such as x86_64, ARM, RISC-V and PowerPC, making OCaml

a good choice for systems where resource usage, predictability, and performance all

matter.

1.1.2 The Base Standard Library

However good it is, a language on its own isn't enough. You also need a set of libraries

to build your applications on. A common source of frustration for those learningOCaml

is that the standard library that ships with the compiler is limited, covering only a subset

of the functionality you would expect from a general-purpose standard library. That's

because the standard library isn't really a general-purpose tool; its fundamental role is

in bootstrapping the compiler, and has been purposefully kept small and portable.

Happily, in the world of open source software, nothing stops alternative libraries

from being written to supplement the compiler-supplied standard library. Base is an

example of such a library, and it's the standard library we'll use through most of this

book.

Jane Street, a company that has been using OCaml for more than 20 years, developed

the code in Base for its own internal use, but from the start designed it with an eye

toward being a general-purpose standard library. Like the OCaml language itself, Base

is engineered with correctness, reliability, and performance in mind. It's also designed

to be easy to install and highly portable. As such, it works on every platform OCaml

does, including UNIX, macOS, Windows, and JavaScript.

Base is distributed with a set of syntax extensions that provide useful new function-

ality to OCaml, and there are additional libraries that are designed to work well with it,

including Core, an extension to Base that includes a wealth of new data structures and

tools; and Async, a library for concurrent programming of the kind that often comes

up when building user interfaces or networked applications. All of these libraries are

https://doi.org/10.1017/9781009129220.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.002


4 Prologue

distributed under a liberal Apache 2 license to permit free use in hobby, academic, and

commercial settings.

1.1.3 The OCaml Platform

Base is a comprehensive and e�ective standard library, but there's much more OCaml

software out there. A large community of programmers has been using OCaml since its

�rst release in 1996, and has generated many useful libraries and tools. We'll introduce

some of these libraries in the course of the examples presented in the book.

The installation and management of these third-party libraries is made much easier

via a package management tool known as opam1 . We'll explain more about opam

as the book unfolds, but it forms the basis of the OCaml Platform, which is a set

of tools and libraries that, along with the OCaml compiler, lets you build real-world

applications quickly and e�ectively. Constituent tools of the OCaml Platform include

the dune2 build system and a language server to integrate with popular editors such as

Visual Studio Code (or Emacs or Vim).

We'll also use opam for installing the utop command-line interface. This is amodern

interactive tool that supports command history, macro expansion, module completion,

and other niceties that make it much more pleasant to work with the language. We'll

be using utop throughout the book to let you step through the examples interactively.

1.2 About This Book

Real World OCaml is aimed at programmers who have some experience with con-

ventional programming languages, but not speci�cally with statically typed functional

programming. Depending on your background, many of the concepts we cover will be

new, including traditional functional-programming techniques like higher-order func-

tions and immutable data types, as well as aspects of OCaml's powerful type and

module systems.

If you already know OCaml, this book may surprise you. Base rede�nes most of

the standard namespace to make better use of the OCaml module system and expose a

number of powerful, reusable data structures by default. Older OCaml code will still

interoperate with Base, but you may need to adapt it for maximal bene�t. All the new

code that we write uses Base, and we believe the Base model is worth learning; it's

been successfully used on large, multimillion-line codebases and removes a big barrier

to building sophisticated applications in OCaml.

Code that uses only the traditional compiler standard library will always exist,

but there are other online resources for learning how that works. Real World OCaml

focuses on the techniques the authors have used in their personal experience to construct

scalable, robust software systems.

1 https://opam.ocaml.org/
2 https://dune.build

https://doi.org/10.1017/9781009129220.002 Published online by Cambridge University Press

https://opam.ocaml.org/
https://dune.build
https://doi.org/10.1017/9781009129220.002


1.2 Code Examples 5

1.2.1 What to Expect

Real World OCaml is split into three parts:

• Part I covers the language itself, opening with a guided tour designed to provide a

quick sketch of the language. Don't expect to understand everything in the tour;

it's meant to give you a taste of many di�erent aspects of the language, but the

ideas covered there will be explained in more depth in the chapters that follow.

After covering the core language, Part I then moves onto more advanced

features like modules, functors, and objects, which may take some time to digest.

Understanding these concepts is important, though. These ideas will put you in

good stead even beyond OCaml when switching to other modern languages, many

of which have drawn inspiration from ML.

• Part II builds on the basics by working through useful tools and techniques for

addressing common practical applications, from command-line parsing to asyn-

chronous network programming. Along the way, you'll see how some of the

concepts from Part I are glued together into real libraries and tools that combine

di�erent features of the language to good e�ect.

• Part III discusses OCaml's runtime system and compiler toolchain. It is remarkably

simple when compared to some other language implementations (such as Java's or

.NET's CLR). Reading this part will enable you to build very-high-performance

systems, or to interface with C libraries. This is also where we talk about pro�ling

and debugging techniques using tools such as GNU gdb.

1.2.2 Installation Instructions

Real World OCaml uses some tools that we've developed while writing this book.

Some of these resulted in improvements to the OCaml compiler, which means that you

will need to ensure that you have an up-to-date development environment (using the

4.13.1 version of the compiler). The installation process is largely automated through

the opam package manager. Instructions on how to set it up and what packages to

install can be found at the installation page3 .

Some of the libraries we use, notably Base, work anywhere OCaml does, and in

particular work on Windows and JavaScript. The examples in Part I of the book will

for the most part stick to such highly portable libraries. Some of the libraries used,

however, require a UNIX based operating system, and so only work on systems like

macOS, Linux, FreeBSD, OpenBSD, and the Windows Subsystem for Linux (WSL).

Core and Async are notable examples here.

This book is not intended as a reference manual. We aim to teach you about the

language as well as the libraries, tools, and techniques that will help you be a more

e�ective OCaml programmer. But it's no replacement for API documentation or the

OCaml manual and man pages. You can �nd documentation for all of the libraries and

tools referenced in the book online4 .
3 http://dev.realworldocaml.org/install.html
4 https://v3.ocaml.org/packages

https://doi.org/10.1017/9781009129220.002 Published online by Cambridge University Press

http://dev.realworldocaml.org/install.html
https://v3.ocaml.org/packages
https://doi.org/10.1017/9781009129220.002


6 Prologue

1.2.3 Code Examples

All of the code examples in this book are available freely online under a public-domain-

like license. You are welcome to copy and use any of the snippets as you see �t in your

own code, without any attribution or other restrictions on their use.

The full text of the book, along with all of the example code is available online at

https://github.com/realworldocaml/book5 .

1.3 Contributors

We would especially like to thank the following individuals for improving Real World

OCaml:

• Jason Hickey was our co-author on the �rst edition of this book, and is instrumental

to the structure and content that formed the basis of this revised edition.

• Leo White and Jason Hickey contributed greatly to the content and examples in

Chapter 13 (Objects) and Chapter 14 (Classes).

• Jeremy Yallop authored and documented the Ctypes library described inChapter 23

(Foreign Function Interface).

• Stephen Weeks is responsible for much of the modular architecture behind Base

and Core, and his extensive notes formed the basis of Chapter 24 (Memory

Representation of Values) and Chapter 25 (Understanding the Garbage Collector).

Sadiq Ja�er subsequently refreshed the garbage collector chapter to re�ect the

latest changes in OCaml 4.13.

• Jérémie Dimino, the author of utop, the interactive command-line interface that is

used throughout this book. We're particularly grateful for the changes that he

pushed through to make utop work better in the context of the book.

• Thomas Gazagnaire, Thibaut Mattio, David Allsopp and Jonathan Ludlam con-

tributed to the OCaml Platform chapter, including �xes to core tools to better aid

new user installation.

• Ashish Agarwal, Christoph Troestler, Thomas Gazagnaire, Etienne Millon, Nathan

Rebours, Charles-Edouard Lecat, Jules Aguillon, Rudi Grinberg, Sonja Heinze

and Frederic Bour worked on improving the book's toolchain. This allowed us

to update the book to track changes to OCaml and various libraries and tools.

Ashish also developed a new and improved version of the book's website.

• David Tranah, Clare Dennison, Anna Scriven and Suresh Kumar from Cambridge

University Press for input into the layout of the print edition. Airlie Anderson

drew the cover art, and Christy Nyberg advised on the design and layout.

• The many people who collectively submitted over 4000 comments to online drafts

of this book, through whose e�orts countless errors were found and �xed.

5 https://github.com/realworldocaml/book

https://doi.org/10.1017/9781009129220.002 Published online by Cambridge University Press

https://github.com/realworldocaml/book
https://github.com/realworldocaml/book
https://doi.org/10.1017/9781009129220.002

