THE STATES OF A BANACH ALGEBRA GENERATE THE DUAL

by ALLAN M. SINCLAIR (Received 8th March 1971)

In this paper we prove that the states of a unital Banach algebra generate the dual Banach space as a linear space (Theorem 2). This is a result of R. T. Moore (4, Theorem 1(a)) who uses a decomposition of measures in his proof. In the proof given here the measure theory is replaced by a Hahn-Banach separation argument. We shall let A denote a unital Banach algebra over the complex field, and D(1) denote $\{f \in A': ||f|| = f(1) = 1\}$ where A' is the dual of A. The motivation of Moore's results is the theorem that in a C^* -algebra every continuous linear functional is a linear combination of four states (the states are the elements of D(1)) (see (2, 2.6.4, 2.1.9, 1.1.10)).

Recall that the numerical index n(A) of A is defined by

 $n(A) = \inf \{v(a): a \in A, ||a|| = 1\}$

where $v(a) = \sup \{|f(a)|: f \in D(1)\}$ [1, Definition 4.9]. We show that the closed balanced convex hull of the states of a unital Banach algebra contains the dual ball of radius the numerical index (Corollary 4). We denote the convex hull of a subset F of a linear space by co F, and the closed unit ball

$$\{x \in X \colon \| x \| \leq 1\}$$

in a Banach space X by X_1 .

I wish to thank R. T. Moore for preprints, and F. F. Bonsall for bringing Moore's work to my notice.

1. Lemma. Let F be a finite set of complex numbers each of modulus 1, and let η be the radius of the largest disc centre the origin that is contained in the convex hull of F. Then co $\{\beta D(1): \beta \in F\}$ is a $\sigma(A', A)$ -compact subset of A' containing $\eta n(A)A'_1$.

Proof. Let $F = \{\beta_1, ..., \beta_n\}$. If each $\beta_j D(1)$ has the $\sigma(A', A)$ -topology, and if the product

$$\beta_1 \mathbf{D}(1) \times \ldots \times \beta_n \mathbf{D}(1) \times [0, 1] \times \ldots \times [0, 1]$$

has the product topology, then the product is compact. The subset E of the product consisting of those elements $(\beta_1 f_1, ..., \beta_n f_n, \alpha_1, ..., \alpha_n)$ such that $\alpha_1 + ... + \alpha_n = 1$ is a closed subset of the product. The map θ from E with the product topology into $(A', \sigma(A', A))$ given by

$$\theta(\beta_1 f_1, \ldots, \beta_n f_n, \alpha_1, \ldots, \alpha_n) = \alpha_1 \beta_1 f_1 + \ldots + \alpha_n \beta_n f_n$$

is continuous. The image of θ , which is equal to co { $\beta D(1)$: $\beta \in F$ }, is thus $\sigma(A', A)$ -compact.

Let f be in $\eta n(A)A'_1$, and suppose that f is not in co $\{\beta D(1): \beta \in F\}$. By a separation form of the Hahn-Banach Theorem (3, Theorem V.2.10, p. 417), there is an x in A (3, Theorem V.3.9, p. 421) and an $\varepsilon > 0$ such that ||x|| = 1 and Re $f(x) - \varepsilon \ge \text{Re } g(x)$ for all g in co $\{\beta D(1): \beta \in F\}$. Since co F contains the disc centre the origin with radius η in the complex plane,

 $\sup \{\operatorname{Re} g(x): g \in \operatorname{co} \{\beta D(1): \beta \in F\}\} \ge \eta . \sup \{|g(x)|: g \in D(1)\}.$

Therefore

$$\operatorname{Re} f(x) \geq \varepsilon + \eta v(x) \geq \varepsilon + \eta n(A)$$

which proves that f is not in $\eta n(A)A'_1$. This gives a contradiction and completes the proof.

Let H(A') be the real linear subspace of A' generated by D(1). The elements of H(A') are called *hermitian functionals* [4].

2. Theorem. Let A be a complex unital Banach algebra. Then A' = H(A') + iH(A')

$$A' = H(A') + iH(A')$$

and H(A') is a real Banach space under the norm

 $|f| = \inf \{ \alpha + \beta \colon \alpha \ge 0, \beta \ge 0, f = \alpha g - \beta h; g, h \in D(1) \}.$

Proof. An application of Lemma 1 with $F = \{1, -1, i, -i\}$ proves that A' = H(A') + iH(A'). Since D(1) is convex the subset

 $\{\alpha g - \beta h: \alpha, \beta \in \mathbf{R}, \alpha \geq 0, \beta \geq 0; g, h \in D(1)\}$

of A' is a real linear subspace, and so is equal to H(A'). We next prove that if f is in H(A'), then there are $\alpha, \beta \ge 0$ and g, h in D(1) such that

$$|f| = \alpha + \beta$$
 and $f = \alpha g - \beta h.$ (1)

Let G be the subset of

$$E = \mathbf{D}(1) \times \mathbf{D}(1) \times [0, |f|+1] \times [0, |f|+1]$$

of those (g, h, α, β) that satisfy $f = \alpha g - \beta h$. Then G, which is the intersection of the $\sigma(A', A)$ -closed subsets

$$\{(g, h, \alpha, \beta): (g, h, \alpha, \beta) \in E, f(x) = \alpha g(x) - \beta h(x)\}$$

of *E* as *x* runs over *A*, is a compact subset of *E*. The function $(g, h, \alpha, \beta) \rightarrow \alpha + \beta$ is continuous on *G*, and therefore the infimum is attained. This proves (1). From (1) and the inequality $||f|| \leq |f|$ for *f* in H(A') it follows that $(H(A'), |\cdot|)$ is a normed space.

To prove that $(H(A'), |\cdot|)$ is complete it is sufficient for us to show that if $f_0 = 0$, and if $f_n \in H(A')$ satisfy $|f_{n+1}-f_n| \leq 2^{-n}$ for n = 1, 2, ..., then there is an f in H(A') with $|f_n-f|$ tending to zero. Since $||\cdot|| \leq |\cdot|$ on H(A'), the series $\sum (f_{n+1}-f_n)$ converges in A' to an element we denote by f. By (1) there are α_n , $\beta_n \geq 0$ and g_n , h_n in D(1) such that

$$f_{n+1}-f_n = \alpha_n g_n - \beta_n h_n$$
 and $|f_{n+1}-f_n| = \alpha_n + \beta_n$.

For m = 1, 2, ..., let

$$\gamma_m = \sum_{n=m}^{\infty} \alpha_n$$
 and $\zeta_m = \sum_{n=m}^{\infty} \beta_n$

With convergence in the $\|\cdot\|$ -topology we now have

$$f-f_m = \sum_{n=m}^{\infty} (\alpha_n g_n - \beta_n h_n)$$
$$= \gamma_m \sum_{n=m}^{\infty} \alpha_n \gamma_m^{-1} g_n - \zeta_m \sum_{n=m}^{\infty} \beta_n \zeta_m^{-1} h_n.$$

Further $\sum_{n=m}^{\infty} \alpha_n \gamma_m^{-1} g_m$ and $\sum_{n=m}^{\infty} \beta_n \zeta_m^{-1} h_n$ are in D(1), because D(1) is a $\|\cdot\|$ -closed convex subset of A'. Therefore f is in H(A'), and $|f-f_m| \leq \gamma_m + \zeta_m$ for all m. This shows that $|f-f_m|$ tends to 0 as m tends to infinity, and completes the proof.

3. Remarks. In proving Theorem 2 we showed that if f is a hermitian functional, then there are $\alpha, \beta \ge 0$ and g, h in D(1) such that

$$f = \alpha g - \beta h$$
 and $|f| = \alpha + \beta$.

If A is a C*-algebra, then α , β , g, h are uniquely specified by these properties (2, Corollaire 12.3.4, p. 245). Solving the equations $\alpha + \beta = |f|$ and $\alpha - \beta = f(1)$ shows that α and β are unique. We now give an example to show that g and h are not unique.

Let A be the complex algebra generated by 1 and x satisfying $x^3 = 0$, and let A have the $\|\cdot\|_1$ -norm with $\{1, x, x^2\}$ as the basis for A. Let e_1, e_2, e_3 be the continuous linear functionals on A that are 1 at 1, x, x^2 (respectively) and zero on the other basis elements. In A' we have

$$2e_2 + e_3 = (e_1 + e_2 + \alpha e_3) - (e_1 - e_2 + (\alpha - 1)e_3)$$

for all α with $0 \leq \alpha \leq 1$. Since the norm in A' is the $\|\cdot\|_{\infty}$ -norm, it follows that $e_1 + e_2 + \alpha e_3$ and $e_1 - e_2 + (\alpha - 1)e_3$ are in D(1) for $0 \leq \alpha \leq 1$. Thus $2e_2 + e_3$ is in H(A'), and $|2e_2 + e_3| = ||2e_2 + e_3|| = 2$. This gives the required example.

4. Corollary. Let A be a complex unital Banach algebra, and let B be the closed convex hull of $\bigcup \{\beta D(1): \beta \in \mathbb{C}, |\beta| = 1\}$. Then $n(A)A'_1 \subseteq B \subseteq A'_1$.

Proof. The corollary will follow if we show that f in A' with || f || < n(A) implies that f is in B. There is a finite set F of complex numbers of modulus 1 whose convex hull contains the disc of radius || f ||/n(A) centre the origin in the complex plane. By Lemma 1, f is in co $\{\beta D(1): \beta \in F\}$ which is contained in B. This completes the proof.

5. Remarks. (a) Corollary 4 is best possible in the sense that $rA'_1 \subseteq B$ implies that $r \leq n(A)$. We prove this as follows. Let f be in A' with $||f|| \leq r$, and let x be in A. Since f may be approximated by convex sums from

$$\bigcup \{ \beta \boldsymbol{D}(1) \colon \beta \in \mathbf{C}, |\beta| = 1 \},\$$

we obtain $|f(x)| \leq v(x)$. Thus for each f in A' of unit norm and each x in A we have $|f(x)| \leq v(x)/r$. An application of the Hahn-Banach Theorem implies that $||x|| \leq v(x)/r$ for each x in A, and therefore $r \geq n(A)$.

(b) When is $|\cdot|$ on H(A') equivalent to the dual norm $||\cdot||$ of A' restricted to H(A')? R. T. Moore (letter to the author) has shown that $|\cdot|$ and $||\cdot||$ are equivalent on H(A') if, and only if,

 $H(A') = \{ f \in A' \colon f(h) \in \mathbf{R} \text{ for } h \text{ hermitian } \in A \}.$

REFERENCES

(1) F. F. BONSALL and J. DUNCAN, Numerical ranges of operators on normed spaces and of elements of normed algebras, London Math. Soc. Lecture Note Series, Vol. 2 (1971).

(2) J. DIXMIER, Les C*-algèbres et leurs représentations (Gauthier-Villars 1964).

(3) N. DUNFORD and J. T. SCHWARTZ, *Linear operators*, Part 1 (Interscience, 1964).

(4) R. T. MOORE, Hermitian functionals on *B*-algebras and characterizations of C^* -algebras, to appear.

UNIVERSITY OF EDINBURGH, SCOTLAND UNIVERSITY OF THE WITWATERSRAND, JOHANNESBURG