
Variscite is a hydrated aluminum phos-
phate, the sources of which are relatively
rare (Odriozola et al. 2010). The mineral

group comprises phosphates with the general for-
mula MPO4 2H2O (where M = Al3+, Fe3+, Cr3+, or
V3+). The most common minerals of this mineral
group are orthorhombic variscite (based on Al)
and strengite (based on Fe), and their monoclinic

chemical equivalents metavariscite and phospho-
siderite (or metastrengite). The latter is less com-
mon.

Variscite is formed at low temperatures by the
direct deposition of phosphate-bearing ground -
water moving down fissures and reacting with 
aluminum-rich bedrock material either at or near
the surface of the earth (Larsen 1942; Mykietiuk
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et al. 2005). In general, sources of phosphorous
and, hence, of variscite are associated with coastal
and marine deposits rich in phosphates from bird
droppings (guano) or other sources of biological
phosphorus (e.g., skeletal fish fragments), and from
chemical precipitation phenomena that occur in
shallow-water environments (Larsen 1942; 
Mykietiuk et al. 2005). Variscite commonly occurs
in the form of microcrystalline fibrous-radiated
aggregates, massive forms, nodules, and concre-
tions, typically filling fissures and cavities in rocks.
Its specific gravity is 2.5, and its hardness ranges
from 4 or 5 on the Mohs scale, which makes it
amenable to abrasion. In addition, it has a waxy
luster and a color varying from green-blue to emer-
ald green, but it may also be white and transparent
in the most pure phases (e.g., AlPO42H2O). Emer-
ald green is the most common color, probably
caused by chromium impurities that substitute for
aluminum (Calas et al. 2005:984). 

Prehistoric societies appreciated variscite for
its symbolic value. It was exploited mainly to make
jewelry, which was believed to have magical and
religious value (e.g., in prehistoric Europe) and to
signal social and economic differentiation in the
form of prestige ornaments (e.g., Camprubí et al.
2003; Kuhn et al. 2001; Noain 1999; Vanhaeren
and d’Errico 2006). Because variscite sources are
relatively rare, this mineral is well suited for stud-
ies of trade and exchange patterns in precolumbian
societies.

In this paper, we report the initial identification
of five prehispanic variscite beads from archae-
ological museum collections (Museo de Oro,
Bogotá, and the Universidad del Norte, Barran-
quilla) in Colombia using Raman Spectroscopy
Analysis, X-Ray Diffraction and Electron Micro-
probe Analysis (Figure 1). After our discovery,
we noted the potential abundance of this mineral
in other archaeological collections (Instituto
Colombiano de Antropología e Historia
[ICANH], Bogotá) and Archeology Laboratory
at the Universidad de Antioquia in Medellín),
whose variscite ornaments include mainly tabular
and oval beads and some zoomorphic or anthro-
pomorphic beads. They all originate from archae-
ological sites located in the Sierra Nevada de
Santa Marta, Colombia (Figure 2), and are con-
sidered an important part of the legacy of the pre-
hispanic societies that lived in this region during
the Tairona period (A.D. 1100–1600). 

Archaeological Context
For many years, the mountainous area of the Sierra
Nevada de Santa Marta (ca. 5,800 m asl at its high-
est point) in Colombia was of great scientific inter-
est for botanists, zoologists, and geographers
because of its particular geological and ecological
conditions (e.g., Mason 1936; Oyuela-Caycedo
2008). Prior to the European colonization of the
Americas in the sixteenth century A.D., the Sierra

Figure 1. Precolumbian Tairona beads made from variscite, Sierra Nevada de Santa Marta: (a) L00854-1, (b) L00854-2,
(c) un1, (d) un3, and (e) un5.
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Nevada was home to a number of precolumbian
cultures that inhabited the region during the
Nahuange (A.D. 200–1100) and Tairona (A.D.
1100–1600) periods (Giraldo 2010; Langebaek
2005; Oyuela-Caycedo 2008; Reichel-Dolmatoff
1997; Sáenz 2010). Located near the Caribbean
coast of Colombia, the Sierra Nevada connects the
Caribbean region, Central America, and the
Colombian and Venezuelan Andes and presents a
key locus for understanding the social changes
that occurred during the precolumbian period, as
shown by archaeological investigations (e.g.,
Bischof 1983; Cadavid y Herrera 1985; Dever
2007; Giraldo 2010; Langebaek 2005; Oyuela-
Caycedo 2008; Reichel-Dolmatoff 1951; Sáenz
2007, 2010). These studies include multiple eth-
nohistorical investigations of Tairona social, eco-

nomic, and political organization (e.g., Giraldo
2010; Oyuela-Caycedo 2005), which are reflected,
in turn, in prehispanic exchange patterns. 

Archaeological research in the Sierra Nevada
region began in 1922 with J. Alden Mason’s expe-
dition and excavations (Mason 1931, 1936, 1939).
Near Nahuange Bay (Figure 3), Mason discovered
a tomb that contained various artifacts with unusual
stylistic characteristics. He suggested that they were
of a previously unidentified cultural or chronolog-
ical affiliation (Mason 1939:360). In the coastal
and piedmont regions between Santa Marta and
the Cabo de San Juan (Figure 3), Mason identified
remnants of the Tairona culture. Throughout his
excavations, Mason recovered many ornaments
made of greenstone and gold, including earrings,
nose rings, pectorals, bracelets, breast covers, and
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Figure 2. Location of the Sierra Nevada de Santa Marta, Colombia.
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a variety of pendants representing wildlife or myth-
ical beings of symbolic importance. 

Subsequent archaeological excavations in the
area led to the designation of a pre-Tairona period
known as Nahuange (Bischof 1968). The chrono-
logical division was based primarily on subtle dif-
ferences in the stratigraphic position of different
archaeological sites and on the stylistic attributes
of jadeite objects and peculiar gold work found in
coastal sites. Few radiocarbon dates exist for these
periods. A date associated with Tairona metal work
(uncalibrated A.D. 565 ± 50) indicates an approx-
imate date of 1385 B.P. (Groot 1980:29). Dates
obtained from Nahuange-period gold objects at
the Field Museum in Chicago and the Museo de
Oro in Bogotá ranged from cal. A.D. 130 ± 40 to
cal. A.D. 480 ± 40 (Bray 2003:324). 

Nahuange people were settled along the coast
in river valleys from the Ciénaga Grande de Santa
Marta to the Palomino River (Figure 3) in small
and isolated towns lacking a settlement hierarchy
(Giraldo 2010:181). Their architecture did not
include stone foundations or any sign of social dif-
ferentiation. Around the beginning of the tenth
century A.D., an increase in population led to col-
onization of the upper mountain slopes. By the

end of the tenth century, flagstone pathways con-
nected towns and cities with buildings constructed
on stone foundations. These were inhabited by the
Tairona, members of a society with a longstanding
religious tradition (Cadavid y Herrera 1985; Groot
1985; Langebaek 2003, 2005; Oyuela-Caycedo
1986, 1987; Reichel-Dolmatoff 1997; Serje 1987;
Wynn 1975). Research conducted by Dever (2007)
shows continuous occupation of the region from
A.D. 200 to A.D. 1600. Excavations conducted at
the sites of Pueblito and Ciudad Perdida (Figure
3) revealed that dwellings and structures belonging
to the Nahuange period are buried beneath the
Tairona-period occupation.

Giraldo (2010) recently described Nahuange
dwellings as having round foundations and noted
that, at Pueblito and Ciudad Perdida, the archae-
ological evidence shows a sequence of growth and
permanent occupation, beginning around the sixth
or seventh century A.D. with Nahuange popula-
tions who used basic stone architecture. Social and
political changes and a population increase around
A.D. 1100/1200 spurred architectural development
and the construction of large urban centers that
were in use until the sixteenth century, when the
Spanish arrived.
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Figure 3. Location of Nahuange and Tairona archaeological sites. Sierra Nevada de Santa Marta. Modified from Giraldo
(2010:Figure 1.2).
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Material and Methods

Our study began with an optical binocular
microscopy inspection of 450 artifacts. This was
used to classify artifact material by color and surface
texture. We then selected for detailed study two
unprovenienced beads from the Museo del Oro,
Bogotá (L00854-1 and L00854-2), and three beads
of known archaeological context from the Archae-
ology Laboratory of the Universidad del Norte, 
Barranquilla (un1, un3 and un5). All five beads are
assigned stylistically to the Tairona culture.

The beads were examined using Raman Spec-
troscopy Analysis, X-Ray Diffraction (XRD), and
Electron Microprobe Analysis (EPMA). The min-
eralogical and chemical analysis was conducted
on polished thin sections. Given the archaeological
value of the beads and the destructive nature of the
EPMA and XRD techniques, only two beads
(L00854-1 and L00854-2) with characteristics rep-
resentative of the larger sample were selected for
these types of analysis. 

Micro-Raman Spectroscopy analyses were
conducted with a HORIBA Jobin Yvon LabRam
HR 800 dispersive spectrometer equipped with an
Olympus BXFM optical microscope in the Centres
Científics i Tecnológics of the Universitat de
Barcelona (CCiT-UB) and the Centro de Investi-
gación, Innovación y Desarrollo de Materiales
(CIDEMAT) at the Universidad de Antioquia in
Medellín. Non-polarized Raman spectra were
obtained by applying a 532-nm laser and 784-nm
laser respectively, using a 100x objective (beam
size around 2 µm), with 10 measurement repeti-
tions for 15 seconds each. The instrument was cal-
ibrated by checking the position of the metallic Si
band at ~520 cm-1.

XRD analyses were performed on an X’ Pert
PRO diffractometer (X-ray equipment Radioactive
EXEMPT) at the Department of Mineralogy and
Petrology at the University of Granada, Spain.
XRD analyses were conducted on the unground
samples, with an amplitude (diffractograms) 2ϴ
angle between 2° and 70°, Cu anode, a speed of
.4-second integration, 45-kV voltage, and a current
of 40 mA.

EPMA analyses were performed on a
CAMECA SX100 electron microprobe at the Sci-
entific Instrumentation Center, University of

Granada, Spain. We used five wavelength disper-
sive XR spectrometers equipped with crystal ana-
lyzers LCF2, LPC0, LTAP, LPET, and LLIF, an
energy dispersive X-ray (EDS) spectrometer, vis-
ible light microscope (transmitted and reflected),
and detectors for absorbed, secondary, and
backscattered electrons (the conditions used were
acceleration voltage of 20 kV, probe current of 15
nA, and beam diameter of 5 µm).

The calibration standards used were albite (Na),
periclase (Mg), SiO2 (Si), Al2O3 (Al), Fe2O3 (Fe),
MnTiO3 (Mn), vanadinite (Cl), diopside (Ca), TiO2
(Ti), Cr2O3 (Cr), fluorite (F), vandinite (V), and
apatite (P).

Results
Bead L00854-1 (Figure 1a) has a dark-green color,
resinous luster, irregular texture, and a rough sur-
face. Bead L00854-2 (Figure 1b) has a bright-
green color, resinous luster, homogeneous texture,
and compact appearance. Bead un1 (Figure 1c)
has a light-green color with shades of white,
resinous luster, and irregular texture, and it shows
abundant veins of wyllieite with a thickness less
than 1 mm. Bead un3 (Figure 1d) has a bright-
green color with white and brown areas, resinous
luster, and irregular texture, showing a porous sur-
face. Bead un5 (Figure 1e) has a dark and bright-
green color, resinous luster, and homogeneous
texture.

Micro-Raman spectroscopy represents a fast
and nondestructive method for distinguishing the
phosphates of the variscite mineral group (e.g.,
Frost et al. 2004). The micro-Raman spectra of the
five beads were compared with the reference spec-
tra of the variscite group minerals (variscite,
metavariscite, strengite, and phosphosiderite) of
the database RRUFF (http://rruff.info/) using the
same laser of 532 nm. The spectra show that they
are composed dominantly of phosphates of the
variscite-strengite series (Figure 4). Samples
L00854-1, un1, and un2 display a Raman spectrum
similar to that of variscite (the most intense bands
in the stretching vibrations region of the PO4

3- units
are at 1020 cm-1 and 1060 cm-1, with less defined
bands for other components). According to Frost
et al. (2004:1049), the most intense band in the
region 900–1200 cm-1 of variscite is at 1023 cm-1.
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Figure 4. Micro-Raman spectra of beads L00854-1, L00854-2, un1, un3, and un5, and two reference analyses from
RRUFF database (http://rruff.info/; Frost et al. 2004). 
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Samples L00854-2 and un5 are more similar to
strengite. The only intense band in the stretching
vibrations region of the PO4

3- units is at 988 cm-1,
with less defined bands for other components.
According to Frost et al. (2004:1048), the Raman
spectrum of strengite shows a strong band at 985
cm-1, assigned to the v1 symmetric stretching
vibration of the PO4 units. The number of bands
observed in stretching regions of the PO4 units is
an indication of multiple PO4 species (Frost et al.
2004:1048).

A shift in the position of the main peaks of the
analyzed samples probably corresponds with vari-
ations in the Al-Fe contents. In general, the Raman
spectra of the analyzed samples have wide bands
and low-intensity peaks.

Figure 5 displays the XRD results. Sample
L00854-1 shows the presence of one crystalline
phase consistent with variscite, while L00854-2
shows two crystalline phases consistent with
variscite and intergrown variscite and quartz.

The electron microprobe analyses (Table 1)
from both beads are plotted in molar proportions
as a ternary diagram of P2O5, (Al, V)2O3, and (Fe,
Cr)2O3. Both beads have similar phosphorus con-
tent, although L00854-2 shows considerable com-
positional variation in terms of Fe2O3, with values
ranging between .276 to .320 weight percent (wt%;
Figure 6).

Representative compositions of variscite from
both beads are presented in Table 1. They show
high values of Cr2O3 and V2O3. L00854-1 has val-
ues of Cr2O3 and V2O3 in the ranges of .14–.18
and .37–.40 wt%, respectively. Similarly, L00854-
2 has values of Cr2O3 and V2O3 in the ranges of
.60–1.25 and .01–.03 wt%, respectively. 

The atomic ratio P/Al obtained for L00854-1
is about 1.2, which is close to the value of pure
stoichiometric variscite represented by the formula
AlPO42H2O. Nonetheless, substitutions of other
ions, such as Fe3+, Cr3+, and V3+, increase this ratio.
For example, it is about 1.7 for L00854-2.
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Table 1. Representative EPMA Analysis of Taironavariscite (Oxides in wt%). Beads L00854-1 and L00854-2. 
Cations Calculated Based on Four Oxygens.

                                      L00854-1                                                                                       L00854-2
SiO2         .317         .238        .272        .325         .270         .243          .020          .029           .048         .009       .017       .015
TiO2         .046         .046        .040        .035         .029         .022          .632          .538           .310         .685       .352       .586
Al2O3   30.262     30.110    30.323    30.294     30.408     30.197      19.688      19.641       20.318     18.436   20.588   19.178
Fe2O3       .486         .447        .490        .487         .460         .479      12.063      12.889       12.568     13.759   12.084   12.975
MnO        .000         .000        .000        .000         .002         .000          .016          .020           .010         .023       .022       .019
MgO        .004         .007        .007        .003         .008         .011          .005          .000           .015         .003       .014       .005
CaO         .037         .029        .030        .028         .030         .036          .021          .028           .014         .019       .013       .024
Na2O        .000         .000        .000        .000         .000         .000          .000          .000           .000         .000       .000       .000
Cr2O3       .166         .144        .172        .179         .161         .146        1.075        1.078           .730       1.254       .602     1.119
V2O3        .399         .373        .369        .388         .396         .383          .021          .021           .034         .008       .004       .005
P205      49.092     48.699    48.849    47.902     48.317     48.615      46.674      45.910       46.334     45.930   46.432   46.241
F              .000         .027        .000        .000         .000         .000          .045          .000           .035         .101       .118       .045
Cl             .030         .024        .038        .036         .012         .003          .000          .012           .035         .009       .000       .027
Total     80.839     80.142    80.590    79.678     80.092     80.134      80.259      80.166       80.449     80.236   80.245   80.239
Si             .008         .006        .007        .008         .007         .006          .001          .001           .001         .000       .000       .000
Ti             .001         .001        .001        .001         .001         .000          .013          .011           .006         .014       .007       .012
Al             .895         .898        .900        .910         .908         .901          .636          .639           .656         .604       .664       .624
Fe3+          .010         .009        .010        .010         .010         .010          .276          .298           .288         .320       .277       .299
Mn           .000         .000        .000        .000         .000         .000          .000          .000           .000         .001       .001       .000
Mg           .000         .000        .000        .000         .000         .000          .000          .000           .001         .000       .001       .000
Ca            .001         .001        .001        .001         .001         .001          .001          .001           .000         .001       .000       .001
Na            .000         .000        .000        .000         .000         .000          .000          .000           .000         .000       .000       .000
Cr             .003         .003        .003        .004         .003         .003          .023          .024           .016         .028       .013       .024
V              .007         .006        .006        .007         .007         .006          .000          .000           .001         .000       .000       .000
P            1.043       1.043      1.041      1.034       1.036       1.042        1.082        1.073         1.075       1.081     1.076     1.081
F              .000         .002        .000        .000         .000         .000          .004          .000           .003         .009       .010       .004
Cl             .001         .001        .002        .002         .000         .000          .000          .001           .002         .000       .000       .001
                                                                                                                                                                                              
P/Al       1.165       1.162      1.157      1.136       1.141       1.156        1.703       1.679         1.638       1.790    1.620    1.732
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Discussion

Two sources of phosphatic minerals are known in
Colombia. Phosphate deposits are found in the
Upper Cretaceous continental margin sedimentary
sequences of the Eastern Cordillera (INGEOMI-
NAS 1978; McConnell 1943), some of which are
currently exploited for fertilizer, but reports of
variscite are lacking to date. The second location,

alpelo Island (Figure 7), contains variscite and
metavariscite deposits as the result of the alteration
of volcanic rocks during interaction with aqueous
solutions rich in phosphoric acid derived from the
decomposition of guano (McConnell 1943).

At a greater distance from the Sierra Nevada
de Santa Marta, geological formations containing
phosphates also occur on the island of Gran Roque,
northeast of the archipelago of Los Roques,
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Figure 5. Diffractograms of beads L00854-1 (variscite) and L00854-2 (variscite and quartz).

Figure 6. Ternary diagram with the projection of EPMA analyses of the two variscite beads (L00854-1 and L00854-2)
(atomic proportions). Values shown in Table 1.
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Venezuela (Figure 7). At this location, Cretaceous
igneous and metamorphic rocks have been altered
to phosphates, variscite being the most character-
istic mineral (Aguerrevere and López 1938;
McConnell 1941; Ostos 1990; Urbani 2005). Sim-
ilar deposits have been reported in mainland
Venezuela to the north of Barquisimeto, where
Urbani et al. (2012) describe aheylite phosphate
((Fe2+, Zn) Al6(PO4) 4(OH)84(H2O)), a rare min-
eral belonging to the turquoise group and associ-
ated with other phosphates, including variscite
(Foord and Taggart 1998). The onshore geology
of the Caribbean Basin, including Colombia,
Venezuela, the Antilles, and Central America, is
suitable for the formation of variscite. Cretaceous
to Tertiary magmatic, metamorphic, and sedimen-
tary rocks anywhere in this large region may have
been exposed to guano deposition and, therefore,
to phosphoritization by means of rock-phosphoric
solution interaction. Thus, other potential sources
of variscite may exist. Nonetheless, we favor the
view that the studied Tairona variscite beads came
from relatively close variscite deposits, either those
two mentioned above or others not yet discovered
in Colombia or Venezuela. 

Of the known sources of variscite, the Malpelo
Island of Colombia can be excluded. This is a small
(1.2 km2) uninhabited island in the East Pacific
Ocean located about 500 km west of the Colombian
mainland, with a rough seashore (steep cliffs),
strong marine currents, and no indications of human
settlements until 1986 by the Colombian Army.

There is no evidence to suggest that pre-
columbian populations permanently inhabited
Gran Roque Island. Nevertheless, groups from the
central coast of Venezuela (Ocumaroide style, A.D.
850–1600) and the Valencia Lake (Los Tamarindos
style, A.D. 200–900, and Valencioide Style, A.D.
900–1500) visited the island to exploit its resources
(Antczak and Antczak 2006; Kidder 1944). These
cultural groups built up complex and dynamic
mobility and interaction patterns with important
sociopolitical implications in the Venezuelan
region (Navarrete 2005). 

The occupation sequence for the La Pitía
archaeological site (Figure 7; Acosta 1953; Crux-
ent and Rouse 1958; Gallagher 1976), located in
the Gulf of Venezuela, serves as a starting point to
propose an outline for the ancient settlement of
Venezuela and their interregional interactions; the
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Figure 7. Possible routes of variscite exchange in the southern Caribbean region (modified after Langebaek 2003:Figure
1) with indication of location of variscite and phosphate deposits (Appleton and Notholt 2002; INGEOMINAS 1978).
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inhabitants of La Pitía may have had connections
with Central America, as indicated by the discov-
ery of jade beads at the site (Acosta 1953). Fur-
thermore, similarities have been found between
artifacts from the La Pitía archaeological site and
artifacts from the Rancheria region, Colombia, and
the Valencia Lake, central Venezuela (Acosta
1953:7). Winged ornaments from Venezuela
(Antczak and Antczak 2006; Perera 1979; Wirz
1948) are similar to those associated with the
Tairona culture (i.e., winged plates made of ser-
pentinite with similar stylistic forms). Variscite
beads similar to the ones described here from the
Sierra Nevada have been found at archaeological
sites (La Pura y Limpia and Pueblo Nuevo) on the
central coast of Venezuela in the Quibor Valley
(Franco Urbani and Luis E. Molina, personal com-
munication 2016). Together, this evidence strongly
supports connections linking the northern part of
South America during the prehispanic period.

These networks probably connected the
Caribbean Colombian and Venezuelan coasts
mostly via coastal trade (but river and land routes
are not excluded). This may be considered as part
of a network of broader precolumbian interactions
that connected the southern margin of the circum-
Caribbean region with the Colombian Andes (Fig-
ure 7). In fact, a connection with the communities
of the upper Magdalena River through land routes
would have been possible. 

The discovery of variscite artifacts in the
archaeological collections of the Museo del Oro
and the Universidad del Norte opens new oppor-
tunities for research on the mobility of raw mate-
rials during precolumbian times, similar to
obsidian (Jiménez-Reyes et al. 2001). The green
color is an important characteristic that would have
made variscite a desirable resource for pre-
columbian communities, which associated green-
stone with prestige, such as they also did with
jadite (García-Casco et al. 2013; Mason 1936;
Reichel-Dolmatoff 1997; Rodríguez-Ramos
2011). Precolumbian demand for variscite and the
central geographic location of the Sierra Nevada
favor the hypothesis of an exchange network
between the precolumbian Tairona society and
other communities farther away, such as mainland
Venezuela or Gran Roque Island. This exchange
network was most like established by means of
coastal trade (Fitzpatrick 2013). 

The variscite artifacts that we examined in the
first stage of this study—from which our analyzed
sample of five was drawn—constitute a significant
number of ornaments from the Tairona period.
They could easily be misidentified as turquoise,
jade, or malachite. We suspect that other archae-
ological ornaments from the Sierra Nevada de
Santa Marta region, which Mason (1936)
described as being made from malachite and
turquoise, may in fact represent artifacts made of
variscite. 

Conclusion
Our analyses have identified five precolumbian
Tairona ornamental artifacts from the Sierra
Nevada de Santa Marta as having been made of
variscite. We therefore hypothesize that this min-
eral may have been used for the production of
many more of these types of artifacts. Artifacts
made from variscite have not been reported pre-
viously in prehistoric collections from Colombia.
This finding is of great importance for archeolog-
ical and geological research in the South Caribbean
and Colombian-Venezuelan Andean region
because the initial identification of this small sam-
ple raises two questions. First, how important was
this material for trade during the precolumbian
period? Second, do other unknown variscite
deposits exist? We propose that exchange took
place and other relations existed between groups
living in the Sierra Nevada de Santa Marta and
communities in distant areas, such as Venezuela.
Nonetheless, more research is needed to under-
stand exchange dynamics in this region.
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