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1. Introduction

We denote lattice join and meet by v and A respectively and the as-
sociated partial order by ^ . A lattice L with 0 and / is said to be ortho-
complemented if it admits a dual automorphism x -> x', that is a one-one
mapping of L onto itself such that

x ^ y o y' g; x',

which is involutive, so that

(x'Y = x

for each x in L and, further, is such that

X A x' = 0, XV x' = I

for each x in L.
Here and elsewhere o stands for logical equivalence, or "if and only

if", and below => stands for "implies".
We call x' the orthocomplement of x. Two elements *, y of an ortho-

complemented lattice are said to be orthogonal, and we write x ± y, if and
only if x £S y'. Clearly

and
x±y => x Ay = 0

although the converse of this last implication is not generally true. A lattice
L is said to be orthomodular if it is orthocomplemented and satisfies the
following weak modular law,

(1.1) x±y^(xvy)Ax' = y.

Orthocomplementation of (1.1) yields the equivalent formulation

(1.2) a^b=>av {bAa') = b.

We remark that in an orthomodular lattice all closed intervals [0, a] are
46
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orthocomplemented by the mapping X-^-UAX' and with respect to this
orthocomplementation each such closed interval is an orthomodular lattice.
Any orthocomplemented modular lattice is orthomodular, in particular
a Boolean algebra is an orthomodular lattice. A well-known example of an
orthomodular lattice is the set of closed (linear) subspaces in Hilbert space
partially ordered by set inclusion. Such an orthomodular lattice is modular
only in the finite-dimensional case.

A congruence relation 0 on a lattice is an equivalence relation such that

xt = yt(6) i = l , 2
implies

x1vxz = y1

and

If 0 is a congruence relation on a lattice L with 0 we denote by Je the set ol
its elements which are congruent to 0. It is wellknown, Birkhoff [1, page 23],
that Jg is an ideal, that is, (i) x e Je and y e Je together imply that
xvyejg and (ii) x e Je and y < x together imply that y ejg.

Let L be a lattice and let 5 be the set of its ideals and C the set of con-
gruence relations on L. The following results are well-known.

(a) If the lattice has a 0 then there is a natural mapping of C onto a
subset of S. (For any congruence 0, Jg is an ideal.)

(b) If all closed intervals [0, a] of L are complemented then there is
a one-one correspondence of C with a subset of S.

(c) In a Boolean algebra there is a one-one correspondence of C with
the whole of S (not just a subset).

These results will be found in Birkhoff [1]; for (a) and (b) see Theorem
3, page 23, and for (c) Theorem 8, page 159.

The following result is established in the next section.

THEOREM \. If L is an orthomodular lattice and if Sx is the subset of S
consisting of those ideals J for which

(1.3) aeJ=>(xva)Ax'eJ

for each x in L, then there is a one-one mapping of the subset S1 onto the whole
of C.

Note that in a Boolean algebra Sx = S, for in the presence of dis-
tributivity

(x v a) A x' = a A x' ^ a ej.

Thus Theorem 1 contains (c) as a special case and to that extent may be
considered a generalisation of the known result for Bolean algebras. Note
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that the difference between the known result (b) and Theorem 1 is that the
theorem specifies the subset Sx of S whereas the result (b) does not give any
criterion whether or not a given ideal is, for some congruence 0, the ideal of
elements congruent to 0 modulo 0.

Interest in orthomodular lattices is stimulated by their use as a model
for the logic of quantum mechanics, see, for example, Mackey [4] section
(2.2), and the consequent need to develop probability theory on such struc-
tures. Further details of such a development will be given in a later paper,
Finch [2].

Finally in section 3 below we consider in some detail a class of ideals
in the lattice of closed subspaces of Hilbert space which satisfy the condition
(1.3) and which, therefore, generate congruence relations. This example shows
that there are orthomodular lattices other than Boolean algebras which
possess congruence relations.

2. Proof of Theorem 1

It is convenient to break up the proof of theorem 1 into a number of
contributory results.

PROPOSITION (2.1). If 0 is a congruence on an orthomodular lattice L
then

aeje=> (x v a) A X' e J8

for each x in L.

PROOF. Since a — 0(0)

(x v a) A x' = x A x' = 0(0).

In virtue of the proposition it remains only to show that each ideal in Sx

determines a unique congruence in C. To do so we establish

PROPOSITION (2.2). LetL be an orthomodular lattice and let J be an ideal
of L such that (1.3) holds. Write i ~ y in L if and only if there are elements a
and b in J such that

xv a = yv b.

Then x ~ y is a congruence relation on L, and

(2.1) J = {x:x~0).

Before proceeding to the proof of this proposition we establish the
preliminary

LEMMA (2.1). Under the hypothesis of proposition (2.2), x ~ t / implies
that there exist elements a, /? in J such that a j _ x, fi _L y and

x v a = y v p.
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PROOF. By hypothesis there are elements a and bin J such that

x v a = y v b.
Take

a = (x v a) A x',
and

/}= (yvi)At'.

Then «_l_ x, /3 j _ y and each of a and /? belong to / because of (1.3). Finally
using (1.2) gives

An immediate consequence of this lemma is

LEMMA (2.2). Under the hypothesis of proposition (2.2)

x ~ y o x' r*> y'.

PROOF. Suppose x <-^y and let a, /J be defined as in the proof of Lemmapp
(2.1). Using (1.1) we have

x = (x v a) A a' = (y v j8) A a'
and so

x'= (y 'A0')va.
Similarly

t,' = (*'Aa')v/?.
Thus

x' v 0 = x' v (x' A a') v /3 = x' v y'
and

3/' v a = y' v (y' A J8') V a = y1 v x'.

Hence x' v /J = y' v a and since a and 0 belong to / it follows that x' ~ y'.
The reverse implication is immediate since orthocomplementation is invo-
lutive.

PROOF OF PROPOSITION (2.2). Note first that (2.1) is an immediate
consequence of the definitions since xej implies that x -^ 0 and conversely
if x ^ 0 then there is an element a in / such that xv a belongs t o / . Since
x ^ x v a and / is an ideal it follows that x belongs to / .

The fact that the relation ~ is reflexive and symmetric is obvious and
transitivity follows from the fact that if x ~ y ~ z then there are elements
a, b, c, and din. J such that

x v a = yv b
and

yvc = zvd.
Thus

x v {a v c) = z v (b v d).
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Since / is an ideal av c and b v d each belong to / and this establishes that
x ~ z.

We prove next that the relation is a congruence. In the first place lat-
tice joins are preserved, for suppose that «< ~ yit i = 1, 2, and that

*<va< = y<v&j, * = 1 , 2

where at and bt belong to / . Then (ax v a2) and (bx v bt) belong to / also and
since

(*i v x2) v K v a2) = (yx v y2) v fa v b2)
we have

It follows from the preservation of lattice joins and Lemma (2.2) that
lattice meets are also preserved. To exhibit this note that if xt ~ y( then
x\ r^> y\ and so

(xx A a;2)' = x[ v x2 ~ y[ v y2 = (yx A y2)'
and so

This completes the proof of Proposition (2.2).
Combining Propositions (2.1) and (2.2) we see that Theorem 1 will

be established if we show that for any congruence 6 on L the construction
of Proposition (2.2) applied to the ideal Je leads back to the congruence 0.
This fact however follows from the known result (statement (b) of section 1)
that two distinct congruences cannot give the same ideal of elements con-
gruent to zero. It follows that the congruence of Proposition (2.2) must
be equivalent to the known one, namely given Je, x = y(0) means the exis-
tence of an element cinje such that (x A y) A C = 0 and (x A y) v c = x v y.
We now establish this equivalence directly in

PROPOSITION (2.3). Under the hypothesis of proposition (2.2) x~y if
and only if there is an element c in J such that

(2.2) (x A y) A c = 0

and

(2.3) (xAy)vc= (xvy).

PROOF. If x ~ y then

XAy~xAX = x = xvx~xvy.
Thus if

c = (xvy) A (a;Ay)'
then

c^ (xvy) A (xvy)' = 0,
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that is c belongs to / . With this choice of c the equation (2.2) is clearly
true and equation (2.3) holds because of orthomodularity in L by using equa-
tion (1.2).

Conversely if equation (2.3) holds with c in J then

x A y ~ x v y
and consequently

x = x v (x Ay) ~~>x v (a: vy) = a ; v y .

Similarly y ~xvy and so x ~ y. This completes the proof of the proposition.
Note that in Proposition (2.3) it is sufficient to require only that equa-

tion (2.3) hold with c in / , since that equation then implies the existence
of a cx in J which satisfies each of the equations (2.2) and (2.3). To see this
write

c i = {(* A y) v c} A (a; A y)' = (a; v y) A (X A y)'

Then by (1.3) cx belongs to / , clearly

(x A y) A cx — 0
and also, by (1.2),

(a; A y) v ct = (a; A y) v c = x v y.

We state without proof the following result

PROPOSITION (2.4). / / L is an orthomodular lattice and 6 is a congruence
relation on L then the factor lattice LjJe is orthomodular.

In fact if 6(x) denotes the congruence class containing element x in L
then the mapping

is an orthocomplementation of L/Jg and with respect to this orthocomple-
mentation the factor lattice is easily shown to be orthomodular.

3. An example

In this section we give an example of an orthomodular lattice which
is not a Boolean algebra and which possesses an ideal / such that (1.3)
holds. We prove

THEOREM 2. Let L be the lattice of closed subspaces of infinite dimensional
Hilbert space H; then L is an orthomodular lattice. Let dim x be the dimension
of x e L and let K ^ dim H be a fixed but arbitrary infinite cardinal. Let
J{K) be the set of all closed subspaces in H with dim x < K. Then J{K) is an
ideal of L and
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(3.1) a g J{K) => (x v a) A *'

/or cacA xinL.
For the proofs of the results in Hilbert space theory which we use

below we refer to the standard texts such as Halmos [3] and von Neumann
[5]. If M is a subset of H we denote by [Af] the closed subspace generated
by M. If x, y are two closed subspaces of H we denote their possibly non-
closed vector sum by x+y, this sum is not in general an element of L. If
x, y are two closed subspaces in H we denote by Pxy the projection of y onto
x. Theorem 2 is a consequence of the following

LEMMA. [P^y] = (* v y) A X'.

For the fact that L is orthomodular is well-known and it is easily veri-
fied that J(K) is an ideal of L; however using the lemma we obtain

dim {(a; v a) A X'} = dim [P*a] ^ dim a 1

from which (3.1) readily follows.
To prove the lemma we establish firstly that

(3.2) Px,y = (x+y) n x'

where the right-hand side is the set intersection of the closed subspace x' with
the possibly non-closed vector sum x+y. To do so note that if

f e (x+y) n x'

then there are vectors £, r\ in x and y respectively such that

C =
Since £ is in x' we must have

where 0 is the zero vector in # . Thus £ = P^J? belongs to P*y. Conversely
if £ does belong to Pm.y then

for some jy in y and writing | = —P,.^ we have

that is £ belongs to (a;+y) n x'. This proves (3.2).
We may note in passing that the known orthomodularity of L is a con-

sequence of (3.2), for asi. y implies that x+y is closed, that is,

1 This last inequality is not immediately obvious when dim a is not finite. It may be readily
proved however and we omit the details.
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x ± y => x+y = x v y.

But also x±y implies y g *' so that Pm.y = y. Thus from (3.2),

x±y=>(xvy)Ax' = y.

Returning to the proof of the lemma, and the case when y is not neces-
sarily orthogonal to x, it follows from (3.2) that

since [x+y] =xvy. Thus to establish the lemma we need only to show that
to each C in (x v y) A X' there is a sequence {rj*} of elements of Pa,y such that

To do so note that for each vector f in (a; v y) A X' there exist sequences
}• {*?«} °f vectors in a; and y respectively such that

L+Vn ~> f •
Write

(3.3) t« =

Since f belongs to x' we have

a n d
(C. •P.-'fc.) = ( £ £ . ) - I I C I I 1 -

Thus

(3.6) limsup | |C-P,^B| |2 ^ {limsup ||P..i?J|«}-||?||i

But from (3.3)

(C.-P^J^II^JI2.

and so, by the Schwartz inequality, either

IIP.-ifc.il = 0 or 0
Thus

and hence, from (3.6)

Writing TJ* = Px.rin we obtain the desired result. This concludes the proof
of the lemma.'
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