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In this note it is shown that if S is a free inverse semigroup of rank at least two and if
e, f are idempotents of S such that e > f then S can be embedded in the partial semigroup
eSe\fSf. The proof makes use of Scheiblich's construction for free inverse semigroups
[7,8] and of Reilly's characterisation of a set of free generators in an inverse semigroup
[4,5].

The terminology and notation throughout is that of Howie [2]. For any two sets M
and N we denote by M\N the set of all elements of M that are not in N.

Let X be a nonempty set and let G denote the free group SF^x on X [1, Ch. 7]. The
elements of G are the 'reduced words' in the alphabet XUX"1, where X"1 denotes the
set of formal inverses of the elements of X, and the identity of G is the empty word 1.
The length (more precisely, the X-length) l(a) of aeG is defined by

•{
n if the reduced form of a is XiX2 . . . x,, (x; e X U X 1),
0 i f a = l .

The cardinal number |X| of X is called the rank of G. By [1, Theorem 7.3.3], two free
groups are isomorphic if and only if they have the same rank.

For all a e G the set of all initial segments of a (including 1) will be denoted by d and
for all nonempty subsets A of G we write A = {a: a e A}. We say that A is left closed if
and only if A = A.

Scheiblich [7,8] constructs the free inverse semigroup on X as follows. Let ty denote
the set of all finite left closed subsets of G having at least two elements and let

S = {(A, g)G<3/xG:geA}.

If (A, g), (B, h)eS then AUgBe®, as is easily checked: consequently, a multiplication
can be denned on S by the rule that

(A,g)(B,h) = (AUgB,gh).

With respect to this multiplication S is an inverse semigroup in which

(V(A,g)€S) (A;g)-1 = (g-1A,g-1).

Let K : X —» S denote the mapping xt-»(x, x). Then to each mapping 6 from X into an
arbitrary inverse semigroup T there corresponds a unique homomorphism <f>:S-*T such
that 6 = K<(>. Thus S is the free inverse semigroup on X. It will be denoted here by ^ x .

We call |X| the rank of S. It can be shown that two free inverse semigroups are
isomorphic if and only if they have the same rank (see [6, Corollary 1.5]).
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The semilattice of S is the set

and its partial ordering is given by the rule:

(VA,JBe<30 ( A , l ) > ( B , l ) O A c B .

Let (A, 1), (B, l)eE(S). We say that (A, 1) covers (B, 1) if and only if (A, 1)>(B, 1) and
there is no (C, l)eE(S) such that (A, 1)>(C, 1)>(B, 1). Thus (A, 1) covers (B, 1) if and
only if A <=B and |A| + 1 = |B|.

The mapping ir:S—*G defined by

(A, g)ir = g

is evidently a surjective homomorphism (and ir ° TT~X is the least group congruence on S
[2, Ch. V, §3]). Let us denote the "^-component of a typical element a of S by Sf{a). This
provides us with the following notation for the elements of S:

(Va e S) a = (Sf(a), air).

Let K b e a nonempty subset of S. Then the inverse subsemigroup of S generated by
K is the subsemigroup (K U K'1) generated by K U X"1, where K'1 denotes {k"1: k e K\.
We say that K is a set of free generators of (K U K'1) if and only if to each mapping 0
from K into an arbitrary inverse semigroup T there corresponds a unique homomorphism
<t>:(KUK~1)-+T such that 0 = i<k where i denotes the inclusion mapping K-»
{KUK'1) [4,5]. If K is a set of free generators of (KliK'1) then ( K U O is a free
inverse subsemigroup of S of rank \K\. Note, in particular, that {(x, x) :xeX} is a set of
free generators of S.

ReiUy has provided a useful criterion for a nonempty subset K of S to be a set of free
generators of (K U K"1) [4, Theorem 2.2 and remark on p. 417; 5]. We state his result as

LEMMA 1. Let S = &3>x and let K be a nonempty subset of S. Then K is a set of free
generators of (KUK'1) if and only if it satisfies the following two conditions:

(i) KC\K~x = 0,
(ii) ifveKUK'1 is such that

where each VijeKUK'1 and t )yVt) i i l + 1 (j = l,2,..., r^-l; i = l,2,... ,n), then v = vil

for some i.

Our main theorem follows below.

THEOREM 1. Let S = &#*, where |X|>2, and let e,feE(S) be such thate>f. Then S
can be embedded in the partial semigroup eSe\fSf.

Proof. Choose geE(S) such that c > g s f and e covers g. Since gSg2/S/ it is
enough to prove that S can be embedded in the partial semigroup eSe\gSg.
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Let e = (A, 1). Then g = (AU{ua}, 1) for some ueA and aeXUX'1, where the
final letter in the reduced form of u is not a"1 and ua£A. Write

r = max{I(w) + 1 : w e A},

choose beX\{a, a"1} (this is possible since |X|>2) and define a subset Y of G (=^SX)
by

Y = {b~rxbr: x e X\{b}} U {a-bar}.

Every element of Y has length 2r + l (being reduced as written). Further, YD Y"1 = 0 ,
since XHX"1 = 0 . Each element of YU Y"1 is fully determined by its initial segment of
length r + 1, and if p, qeYUY" 1 are such that p ^ q " 1 then the cancellation in the
product pq does not reach the central factor of either p or q. Thus the elements of Y have
central significant factors.

For all y e Y u r 1 , write

B y =AUyUyA.

Thus, for all yeYUY"1,

(By,y) = (A,l)(y,y)(A,l)eeSe

and

Let K denote {(B,, y): y e Y} and write T = (K U IT1). Evidently T c eSe and |K| = | Y\ =
\X\. To establish the theorem it suffices to show that K is a set of free generators of T and
that T n g S g = 0 .

Since Y(~lY~1 = 0 it follows that KC\K~1 = 0; that is, K satisfies condition (i) of
Lemma 1. We prove next that K also satisfies condition (ii). Let u e K U K'1 be such that

where each v^jeKUK'1 and vTj^vUj+1 (j = 1,2,... , Hj-1; i = 1, 2 , . . . , n). Now
mre 5 (̂t)). Hence there exists k e {1,2, . . . , n} such that

For / = 1, 2 , . . . , nk let us write y; = ukjir and B, = BVi: thus

Hence
UTT e B1U y i B 2 U (y!y2)B3 U. . . U (yxy2... y^- jB^.

Suppose that VTT£ BX. Then there exists (e {1,2 , . . . , nk -1} such that im € (yty2 . . . y,)B1+1

and so
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Now yjx¥>yi+1 (j = l,2,... ,t-l) (for otherwise Vkj=vkJ+l for some j , which is a
contradiction); also y^vir, since y ^ B i while vir^B^. Hence the initial segment of
y71y7-\ • • • yrHw) of length r + 1 is just the initial segment of yj"1 of length r + 1. Thus
the initial segment of yf1 of length r + 1 lies in Bt+1, since B,+1 is left closed.

Now B,+i = A U yt+i U y,+1A. Since no element of A has length exceeding r —1, the
only element of B,+1 of length precisely r + 1 is the initial segment of y(+1 of this length.
Hence y^1 and y,+1 have the same initial segment of length r + 1 and so y^1 = y,+i, which
is a contradiction. Consequently uireBj.

Since mreYUY" 1 and B1 = AUy1Uy1A, a similar argument to that above then
shows that VTT = y1. Hence u = (B1, y1) = uM. We have thus proved that K satisfies
condition (ii) of Lemma 1. Thus T is free of rank \K\ and so S = T.

Finally, we show that T n gSg = 0 . Suppose that the conclusion is false and hence
that there exists (C, h)eTDgSg. As remarked earlier, g = (D, 1), where D = AU{ua}.
Since (C,h)egSg,

(C, h) = g(C h)g = (D U C U hD, h).

Thus C = (DUhD)UC and soDLHtDgC. In particular, uaeC.
Since (C, h) e T, there exist y1; y 2 , . . . , yn e Y U Y"1 (not to be confused with the y; in

the first part of the proof) such that

(C,ri) = (B1,y1)(B2,y2)...(Bmyn),

where, for each i, we have written B; for By.. But ua € C. Hence

ua 6 Bx U y i B 2 U (yiy2)B3 U . . . U (yiy2 . . . y^OA,.

Suppose first that uaeB1 = AUy1Uy1A. Since ua£A we have that uaey1l)y1A.
But since l(ua)<r, this implies that ua is an initial segment of y! and hence is of the form
a~s or b~s for some positive integer s. Thus a = a - 1 or a = b"1 and in either case we have
a contradiction.

Similarly, if ua e (yiy2 . . . y,)B(+1 and yjy2 . . . y, = 1 for some (e {1 ,2 , . . . , n -1} , we
again obtain a contradiction. Thus, for some te{l, 2,..., n -1} , ua e (yty2 . . . y,)BI+1,
where y,y2 . . . y,± 1. Now we can write y^ 2 . . . y, as a reduced word in YU Y"1: thus

• • • y. =

where each zf e YU Y"1 and z^V zi+1 (i = 1,2,. . . , k -1). Hence

ua e ztz2 ... zkBt+1.

Let us write

w = Zk1zkl1...Zi1ua. (1)

Then weBt+1. Now cancellation on the right-hand side of (1) cannot reach the central
factor of any z^1, since zj"1^ zi+1 (i = 1, 2 , . . . , k -1) and f(u) < r. Also it cannot reach the
final letter a since l(u)<r and the final segment of z^1 of length r is either ar or br.
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Hence

l(w)>r + 3 (2)

and the last letter of the reduced form of w is a.
Since w e Bt+1 = A U y,+1 U y1+1 A and no word in A has length exceeding r - 1 ,

(2) shows that

w e y,+1 U y,+iA. (3)

Hence the initial segments of w and yt+1 of length r + 2 must coincide; also

f(w)<(2r + l) + ( r - l ) = 3r. (4)

Suppose that k > 1. If there exist i, j such that z"1 = a~'bar and zj1 = b~rxbr for some
xe(XUX-1)\{b, b~1} then

which contradicts (4). Thus either

zT1 = b~Txlb' for some x* eCXUX" 1 )^ , b'1} (i = 1, 2 , . . . , k)

or
zr1 = a-rcar (i = l ,2 , . . . , fc) , where cefofc"1}.

In the first case

w = b"~rx1x2 . . . xkb
rua,

where x^1=£xi+1 (i = 1,2,. . . , fc-1), and so the initial segment of w of length r + 2 is
b~'x1x2. But the initial segments of w and y,+1 of length r + 2 are the same. This gives a
contradiction since x2^ b. In the second case, w = a~rckaTua and in the same way we
again get a contradiction. Thus k = 1.

It follows that the initial segments of yt+1 and zi1 of length r + 1 coincide. Hence
y,+1 = Zi1 and so

w = y,+1ua. (5)

Suppose that w e y,+1A. Then, from (5), ua e A, which is false. Hence, from (3),
w e y(+1. Thus, since the last letter of w (in reduced form) is a, we see from (2) that
w = a~rcas and y,+1 = a~'car, where ce{b, b^1} and 2 < s ^ r . Hence, from (5),

and so u = a~(r+1~s). Since s<r this contradicts the fact that the last letter in the reduced
form of u is not a"1.

Consequently T H gSg = 0 and the proof is complete.

REMARK 1. The result fails for the case |X| = 1: for if S = &JX, where |X| = 1, and
e,feE(S) are such that e covers / then the set of idempotents in eSe\fSf is totally
ordered, whereas E(S) is not totally ordered.
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REMARK 2. Let S be a free inverse semigroup of rank 1 and let eeE(S). Then
eSe£E(S). Choose a non-idempotent element a e eSe. By [4, Corollary 2.5], ({a, a~1}) is
a free inverse subsemigroup of S of rank 1. This shows that S can be embedded in eSe.

REMARK 3. From Theorem 1 and Remark 2 we see that if M is an ideal of a free
inverse semigroup S of arbitrary rank then S can be embedded in M.

To conclude, we extend Theorem 1 with the aid of a result of O'Carroll's [3, p. 19],
which we state below as Lemma 2. Recall that, by Schreier's theorem [1, Theorem 7.2.1],
every subgroup of a free group is itself free.

LEMMA 2. Let S = &#x and G = SF§X, where X is a nonempty set. Let H be a
non-trivial subgroup of G. Then there exists a free inverse subsemigroup T of S such that
rank of T = rank of H.

Now let c and d be cardinal numbers such that c ̂  2 and 0 < d < max{K0, c}. It can be
shown that every free group of rank c contains a (free) subgroup of rank d. Hence, by
Lemma 2, every free inverse semigroup of rank c contains a free inverse subsemigroup of
rank d. From Theorem 1 we then immediately obtain

THEOREM 2. Let S be a free inverse semigroup of rank c, where c ^ 2 , and let d be any
cardinal number such that 0<d^max{Ko, c}. Let e,feE(S) be such that e>f. Then the
partial semigroup eSe\fSf contains a free inverse subsemigroup of S of rank d.

In particular, if S is a free inverse semigroup of rank 2 and e, feE(S) are such that
e >f then eSe\fSf contains a free inverse subsemigroup of S of rank Ko. This strengthens
[4, Corollary 2.7].
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