AN EMBEDDING THEOREM FOR FREE INVERSE SEMIGROUPS

by W. D. MUNN

(Received 14 February, 1980)

In this note it is shown that if S is a free inverse semigroup of rank at least two and if e, f are idempotents of S such that e > f then S can be embedded in the partial semigroup $eSe \setminus fSf$. The proof makes use of Scheiblich's construction for free inverse semigroups [7, 8] and of Reilly's characterisation of a set of free generators in an inverse semigroup [4, 5].

The terminology and notation throughout is that of Howie [2]. For any two sets M and N we denote by $M \setminus N$ the set of all elements of M that are not in N.

Let X be a nonempty set and let G denote the free group \mathscr{FG}_X on X [1, Ch. 7]. The elements of G are the 'reduced words' in the alphabet $X \cup X^{-1}$, where X^{-1} denotes the set of formal inverses of the elements of X, and the identity of G is the empty word 1. The *length* (more precisely, the X-length) l(a) of $a \in G$ is defined by

$$l(a) = \begin{cases} n & \text{if the reduced form of } a \text{ is } x_1 x_2 \dots x_n \ (x_i \in X \cup X^{-1}), \\ 0 & \text{if } a = 1. \end{cases}$$

The cardinal number |X| of X is called the *rank* of G. By [1, Theorem 7.3.3], two free groups are isomorphic if and only if they have the same rank.

For all $a \in G$ the set of all initial segments of a (including 1) will be denoted by \bar{a} and for all nonempty subsets A of G we write $\bar{A} = \{\bar{a} : a \in A\}$. We say that A is *left closed* if and only if $A = \bar{A}$.

Scheiblich [7, 8] constructs the free inverse semigroup on X as follows. Let \mathcal{Y} denote the set of all finite left closed subsets of G having at least two elements and let

$$S = \{ (A, g) \in \mathcal{Y} \times G : g \in A \}.$$

If (A, g), $(B, h) \in S$ then $A \cup gB \in \mathcal{Y}$, as is easily checked: consequently, a multiplication can be defined on S by the rule that

$$(A, g)(B, h) = (A \cup gB, gh).$$

With respect to this multiplication S is an inverse semigroup in which

$$(\forall (A, g) \in S) \quad (A, g)^{-1} = (g^{-1}A, g^{-1}).$$

Let $\kappa : X \to S$ denote the mapping $x \mapsto (\bar{x}, x)$. Then to each mapping θ from X into an arbitrary inverse semigroup T there corresponds a unique homomorphism $\phi : S \to T$ such that $\theta = \kappa \phi$. Thus S is the free inverse semigroup on X. It will be denoted here by $\mathcal{F}\mathcal{I}_X$.

We call |X| the rank of S. It can be shown that two free inverse semigroups are isomorphic if and only if they have the same rank (see [6, Corollary 1.5]).

The semilattice of S is the set

$$E(S) = \{(A, 1) : A \in \mathcal{Y}\}$$

and its partial ordering is given by the rule:

$$(\forall A, B \in \mathscr{Y}) \quad (A, 1) \ge (B, 1) \Leftrightarrow A \subseteq B.$$

Let $(A, 1), (B, 1) \in E(S)$. We say that (A, 1) covers (B, 1) if and only if (A, 1) > (B, 1) and there is no $(C, 1) \in E(S)$ such that (A, 1) > (C, 1) > (B, 1). Thus (A, 1) covers (B, 1) if and only if $A \subset B$ and |A|+1=|B|.

The mapping $\pi: S \to G$ defined by

$$(A, g)\pi = g$$

is evidently a surjective homomorphism (and $\pi \circ \pi^{-1}$ is the least group congruence on S [2, Ch. V, §3]). Let us denote the \mathscr{Y} -component of a typical element a of S by $\mathscr{S}(a)$. This provides us with the following notation for the elements of S:

$$(\forall a \in S) \quad a = (\mathscr{G}(a), a\pi).$$

Let K be a nonempty subset of S. Then the inverse subsemigroup of S generated by K is the subsemigroup $\langle K \cup K^{-1} \rangle$ generated by $K \cup K^{-1}$, where K^{-1} denotes $\{k^{-1} : k \in K\}$. We say that K is a set of free generators of $\langle K \cup K^{-1} \rangle$ if and only if to each mapping θ from K into an arbitrary inverse semigroup T there corresponds a unique homomorphism $\phi: \langle K \cup K^{-1} \rangle \rightarrow T$ such that $\theta = \iota \phi$, where ι denotes the inclusion mapping $K \rightarrow \langle K \cup K^{-1} \rangle$ [4, 5]. If K is a set of free generators of $\langle K \cup K^{-1} \rangle$ then $\langle K \cup K^{-1} \rangle$ is a free inverse subsemigroup of S of rank |K|. Note, in particular, that $\{(\bar{x}, x) : x \in X\}$ is a set of free generators of S.

Reilly has provided a useful criterion for a nonempty subset K of S to be a set of free generators of $\langle K \cup K^{-1} \rangle$ [4, Theorem 2.2 and remark on p. 417; 5]. We state his result as

LEMMA 1. Let $S = \mathcal{F}\mathcal{I}_X$ and let K be a nonempty subset of S. Then K is a set of free generators of $\langle K \cup K^{-1} \rangle$ if and only if it satisfies the following two conditions:

(i) $K \cap K^{-1} = \emptyset$,

(ii) if $v \in K \cup K^{-1}$ is such that

$$\mathscr{G}(v) \subseteq \bigcup_{i=1}^{n} \mathscr{G}(v_{i,1}v_{i,2}\ldots v_{i,n_i}),$$

where each $v_{i,j} \in K \cup K^{-1}$ and $v_{i,j+1}^{-1} \neq v_{i,j+1}$ $(j = 1, 2, ..., n_i - 1; i = 1, 2, ..., n)$, then $v = v_{i,1}$ for some *i*.

Our main theorem follows below.

THEOREM 1. Let $S = \mathcal{F}\mathcal{I}_X$, where $|X| \ge 2$, and let $e, f \in E(S)$ be such that e > f. Then S can be embedded in the partial semigroup eSe\fSf.

Proof. Choose $g \in E(S)$ such that $e > g \ge f$ and e covers g. Since $gSg \supseteq fSf$ it is enough to prove that S can be embedded in the partial semigroup $eSe \setminus gSg$.

218

Let e = (A, 1). Then $g = (A \cup \{ua\}, 1)$ for some $u \in A$ and $a \in X \cup X^{-1}$, where the final letter in the reduced form of u is not a^{-1} and $ua \notin A$. Write

$$r = \max\{l(w) + 1 : w \in A\},\$$

choose $b \in X \setminus \{a, a^{-1}\}$ (this is possible since $|X| \ge 2$) and define a subset Y of $G (= \mathscr{FG}_X)$ by

$$Y = \{b^{-r}xb^r : x \in X \setminus \{b\}\} \cup \{a^{-r}ba^r\}.$$

Every element of Y has length 2r+1 (being reduced as written). Further, $Y \cap Y^{-1} = \emptyset$, since $X \cap X^{-1} = \emptyset$. Each element of $Y \cup Y^{-1}$ is fully determined by its initial segment of length r+1, and if $p, q \in Y \cup Y^{-1}$ are such that $p \neq q^{-1}$ then the cancellation in the product pq does not reach the central factor of either p or q. Thus the elements of Y have central significant factors.

For all $y \in Y \cup Y^{-1}$, write

$$B_{v} = A \cup \bar{y} \cup yA.$$

Thus, for all $y \in Y \cup Y^{-1}$,

$$(B_y, y) = (A, 1)(\bar{y}, y)(A, 1) \in eSe$$

and

$$(B_{y}, y)^{-1} = (B_{y^{-1}}, y^{-1}).$$

Let K denote $\{(B_y, y) : y \in Y\}$ and write $T = \langle K \cup K^{-1} \rangle$. Evidently $T \subseteq eSe$ and |K| = |Y| = |X|. To establish the theorem it suffices to show that K is a set of free generators of T and that $T \cap gSg = \emptyset$.

Since $Y \cap Y^{-1} = \emptyset$ it follows that $K \cap K^{-1} = \emptyset$; that is, K satisfies condition (i) of Lemma 1. We prove next that K also satisfies condition (ii). Let $v \in K \cup K^{-1}$ be such that

$$\mathscr{G}(v) \subseteq \bigcup_{i=1}^{n} \mathscr{G}(v_{i,1}v_{i,2}\ldots v_{i,n_i}),$$

where each $v_{i,j} \in K \cup K^{-1}$ and $v_{i,j}^{-1} \neq v_{i,j+1}$ $(j = 1, 2, ..., n_i - 1; i = 1, 2, ..., n)$. Now $v\pi \in \mathscr{S}(v)$. Hence there exists $k \in \{1, 2, ..., n\}$ such that

$$v\pi\in\mathscr{G}(v_{k,1}v_{k,2}\ldots v_{k,n_k}).$$

For $j = 1, 2, ..., n_k$ let us write $y_i = v_{k,i}\pi$ and $B_i = B_{y_i}$: thus

$$v_{k,j} = (B_j, y_j) \quad (j = 1, 2, ..., n_k)$$

Hence

$$v\pi \in B_1 \cup y_1B_2 \cup (y_1y_2)B_3 \cup \ldots \cup (y_1y_2 \ldots y_{n_k-1})B_{n_k}$$

Suppose that $v\pi \notin B_1$. Then there exists $t \in \{1, 2, ..., n_k - 1\}$ such that $v\pi \in (y_1y_2 ... y_t)B_{t+1}$ and so

$$y_t^{-1}y_{t-1}^{-1}\ldots y_1^{-1}(v\pi)\in B_{t+1}.$$

W. D. MUNN

Now $y_i^{-1} \neq y_{i+1}$ (j = 1, 2, ..., t-1) (for otherwise $v_{k,i}^{-1} = v_{k,i+1}$ for some *j*, which is a contradiction); also $y_1 \neq v\pi$, since $y_1 \in B_1$ while $v\pi \notin B_1$. Hence the initial segment of $y_t^{-1}y_{t-1}^{-1} \dots y_1^{-1}(v\pi)$ of length r+1 is just the initial segment of y_t^{-1} of length r+1. Thus the initial segment of y_t^{-1} of length r+1 lies in B_{t+1} , since B_{t+1} is left closed.

Now $B_{t+1} = A \cup \overline{y}_{t+1} \cup y_{t+1}A$. Since no element of A has length exceeding r-1, the only element of B_{t+1} of length precisely r+1 is the initial segment of y_{t+1} of this length. Hence y_t^{-1} and y_{t+1} have the same initial segment of length r+1 and so $y_t^{-1} = y_{t+1}$, which is a contradiction. Consequently $v\pi \in B_1$.

Since $v\pi \in Y \cup Y^{-1}$ and $B_1 = A \cup \overline{y}_1 \cup y_1 A$, a similar argument to that above then shows that $v\pi = y_1$. Hence $v = (B_1, y_1) = v_{k,1}$. We have thus proved that K satisfies condition (ii) of Lemma 1. Thus T is free of rank |K| and so $S \cong T$.

Finally, we show that $T \cap gSg = \emptyset$. Suppose that the conclusion is false and hence that there exists $(C, h) \in T \cap gSg$. As remarked earlier, g = (D, 1), where $D = A \cup \{ua\}$. Since $(C, h) \in gSg$,

$$(C, h) = g(C, h)g = (D \cup C \cup hD, h).$$

Thus $C = (D \cup hD) \cup C$ and so $D \cup hD \subseteq C$. In particular, $ua \in C$.

Since $(C, h) \in T$, there exist $y_1, y_2, \ldots, y_n \in Y \cup Y^{-1}$ (not to be confused with the y_i in the first part of the proof) such that

$$(C, h) = (B_1, y_1)(B_2, y_2) \dots (B_n, y_n),$$

where, for each *i*, we have written B_i for B_{y_i} . But $ua \in C$. Hence

$$ua \in B_1 \cup y_1B_2 \cup (y_1y_2)B_3 \cup \ldots \cup (y_1y_2 \ldots y_{n-1})B_n.$$

Suppose first that $ua \in B_1 = A \cup \overline{y}_1 \cup y_1 A$. Since $ua \notin A$ we have that $ua \in \overline{y}_1 \cup y_1 A$. But since $l(ua) \leq r$, this implies that ua is an initial segment of y_1 and hence is of the form a^{-s} or b^{-s} for some positive integer s. Thus $a = a^{-1}$ or $a = b^{-1}$ and in either case we have a contradiction.

Similarly, if $ua \in (y_1y_2...y_t)B_{t+1}$ and $y_1y_2...y_t = 1$ for some $t \in \{1, 2, ..., n-1\}$, we again obtain a contradiction. Thus, for some $t \in \{1, 2, ..., n-1\}$, $ua \in (y_1y_2...y_t)B_{t+1}$, where $y_1y_2...y_t \neq 1$. Now we can write $y_1y_2...y_t$ as a reduced word in $Y \cup Y^{-1}$: thus

$$\mathbf{y}_1\mathbf{y}_2\ldots\mathbf{y}_t=\mathbf{z}_1\mathbf{z}_2\ldots\mathbf{z}_k,$$

where each $z_i \in Y \cup Y^{-1}$ and $z_i^{-1} \neq z_{i+1}$ (i = 1, 2, ..., k-1). Hence

$$ua \in z_1 z_2 \ldots z_k B_{t+1}$$

Let us write

$$w = z_k^{-1} z_{k-1}^{-1} \dots z_1^{-1} ua.$$
 (1)

Then $w \in B_{t+1}$. Now cancellation on the right-hand side of (1) cannot reach the central factor of any z_i^{-1} , since $z_i^{-1} \neq z_{i+1}$ (i = 1, 2, ..., k-1) and l(u) < r. Also it cannot reach the final letter a since l(u) < r and the final segment of z_1^{-1} of length r is either a' or b'.

Hence

$$l(w) \ge r + 3 \tag{2}$$

221

and the last letter of the reduced form of w is a.

Since $w \in B_{t+1} = A \cup \overline{y}_{t+1} \cup y_{t+1}A$ and no word in A has length exceeding r-1, (2) shows that

$$w \in \bar{y}_{t+1} \cup y_{t+1} A. \tag{3}$$

Hence the initial segments of w and y_{t+1} of length r+2 must coincide; also

$$l(w) \le (2r+1) + (r-1) = 3r.$$
(4)

Suppose that k > 1. If there exist *i*, *j* such that $z_i^{-1} = a^{-r}ba^r$ and $z_j^{-1} = b^{-r}xb^r$ for some $x \in (X \cup X^{-1}) \setminus \{b, b^{-1}\}$ then

$$l(w) \ge (r+1) + 2r = 3r + 1$$
,

which contradicts (4). Thus either

$$z_i^{-1} = b^{-r} x_i b^r$$
 for some $x_i \in (X \cup X^{-1}) \setminus \{b, b^{-1}\}$ $(i = 1, 2, ..., k)$

or

$$z_i^{-1} = a^{-r} c a^r$$
 $(i = 1, 2, ..., k)$, where $c \in \{b, b^{-1}\}$.

In the first case

$$w = b^{-r} x_1 x_2 \dots x_k b^r u a_k$$

where $x_i^{-1} \neq x_{i+1}$ (i = 1, 2, ..., k-1), and so the initial segment of w of length r+2 is $b^{-r}x_1x_2$. But the initial segments of w and y_{r+1} of length r+2 are the same. This gives a contradiction since $x_2 \neq b$. In the second case, $w = a^{-r}c^k a^r ua$ and in the same way we again get a contradiction. Thus k = 1.

It follows that the initial segments of y_{t+1} and z_1^{-1} of length r+1 coincide. Hence $y_{t+1} = z_1^{-1}$ and so

$$w = y_{t+1}ua. (5)$$

Suppose that $w \in y_{t+1}A$. Then, from (5), $ua \in A$, which is false. Hence, from (3), $w \in \bar{y}_{t+1}$. Thus, since the last letter of w (in reduced form) is a, we see from (2) that $w = a^{-r}ca^s$ and $y_{t+1} = a^{-r}ca^r$, where $c \in \{b, b^{-1}\}$ and $2 \le s \le r$. Hence, from (5),

$$a^{-r}ca^s = a^{-r}ca^rua$$

and so $u = a^{-(r+1-s)}$. Since $s \le r$ this contradicts the fact that the last letter in the reduced form of u is not a^{-1} .

Consequently $T \cap gSg = \emptyset$ and the proof is complete.

REMARK 1. The result fails for the case |X| = 1: for if $S = \mathcal{FI}_X$, where |X| = 1, and $e, f \in E(S)$ are such that e covers f then the set of idempotents in $eSe \setminus fSf$ is totally ordered, whereas E(S) is not totally ordered.

W. D. MUNN

REMARK 2. Let S be a free inverse semigroup of rank 1 and let $e \in E(S)$. Then $eSe \notin E(S)$. Choose a non-idempotent element $a \in eSe$. By [4, Corollary 2.5], $\langle \{a, a^{-1}\} \rangle$ is a free inverse subsemigroup of S of rank 1. This shows that S can be embedded in *eSe*.

REMARK 3. From Theorem 1 and Remark 2 we see that if M is an ideal of a free inverse semigroup S of arbitrary rank then S can be embedded in M.

To conclude, we extend Theorem 1 with the aid of a result of O'Carroll's [3, p. 19], which we state below as Lemma 2. Recall that, by Schreier's theorem [1, Theorem 7.2.1], every subgroup of a free group is itself free.

1

LEMMA 2. Let $S = \mathcal{F}\mathcal{I}_X$ and $G = \mathcal{F}\mathcal{I}_X$, where X is a nonempty set. Let H be a non-trivial subgroup of G. Then there exists a free inverse subsemigroup T of S such that rank of $T = \operatorname{rank}$ of H.

Now let c and d be cardinal numbers such that $c \ge 2$ and $0 < d \le \max\{\aleph_0, c\}$. It can be shown that every free group of rank c contains a (free) subgroup of rank d. Hence, by Lemma 2, every free inverse semigroup of rank c contains a free inverse subsemigroup of rank d. From Theorem 1 we then immediately obtain

THEOREM 2. Let S be a free inverse semigroup of rank c, where $c \ge 2$, and let d be any cardinal number such that $0 \le d \le \max\{\aleph_0, c\}$. Let $e, f \in E(S)$ be such that e > f. Then the partial semigroup eSe\fSf contains a free inverse subsemigroup of S of rank d.

In particular, if S is a free inverse semigroup of rank 2 and $e, f \in E(S)$ are such that e > f then $eSe \setminus fSf$ contains a free inverse subsemigroup of S of rank \aleph_0 . This strengthens [4, Corollary 2.7].

ACKNOWLEDGEMENT. This work was completed while I held a visiting appointment at Monash University. I am grateful to the university authorities and the Mathematics Department for providing financial support and excellent facilities for research.

REFERENCES

1. M. Hall, Jr. The theory of groups, (Macmillan, 1959).

2. J. M. Howie, An introduction to semigroup theory, (Academic Press, 1976).

3. L. O'Carroll, A note on free inverse semigroups, Proc. Edinburgh Math. Soc. (2) 19 (1974), 17-23.

4. N. R. Reilly, Free generators in free inverse semigroups, Bull. Austral. Math. Soc. 7 (1972), 407-424.

5. N. R. Reilly, Free generators in free inverse semigroups: Corrigenda, Bull. Austral. Math. Soc. 9 (1973), 479.

6. N. R. Reilly, Free inverse semigroups, Algebraic theory of semigroups, (Szeged, 1976), Colloq. Math. Soc. János Bolyai Vol. 20, 479–508.

7. H. E. Scheiblich, Free inverse semigroups, Semigroup Forum 4 (1972), 351-359.

8. H. E. Scheiblich, Free inverse semigroups, Proc. Amer. Math. Soc. 38 (1973), 1-7.

MATHEMATICS DEPARTMENT UNIVERSITY OF GLASGOW GLASGOW G12 8QW SCOTLAND