KRASNOSEL'SKII THEOREMS FOR NON-SEPARATING COMPACT SETS

BY
N. STAVRAKAS

Abstract

Let $S \subset R^{d}, d \geq 2$, be compact and let E denote the set $(d-2)$-extreme points of S. M. Breen has shown that if E is countable and $S \neq E$, then S is planar. A new proof of this result is given as well as a Krasnosl'skii theorem for ($d-2$) extreme points which combines and generalizes previous results.

1. Introduction. If $S \subset R^{d}$, let E denote the set of ($d-2$)-extreme points of S. In [1], M. Breen proved that if S is compact, E countable and $S \neq E$, then S is planar. Section 2 of this paper gives a significantly shorter and more straightforward proof of her result. In [1], two Krasnosel'skii type theorems were proven. Section 3 of this paper gives a theorem which yields the latter two results as corollaries and its proof requires much less machinery than is used in [1]. Throughout, we employ the terminology of [1].
2. The cardinality of E. The following is Theorem 1 of [1] and we state it in the contrapositive form.

Theorem 1. Let $S \subset R^{d}$ be compact. If $S \notin R^{2}$ then $S=E$ or card $E=c$.
Proof. Let H be a hyperplane with $H \cap S \neq \emptyset$. We claim $\operatorname{ext}(H \cap S) \subset E$. Suppose not. Then there exists $x \in \operatorname{ext}(H \cap S)$ and a $(d-1)$-simplex $D \subset S$ with $\mathbf{x} \in \operatorname{rel}$ int D. Then $\operatorname{dim}(D \cap H) \geq d-2 \geq 1$ and $x \in \operatorname{rel} \operatorname{int}(D \cap H)$, a contradiction.

We now prove the theorem in the case that S is connected. Without loss of generality, we suppose $S \not \subset R^{d-1}$. Then there exists a hyperplane H and an open half-space H^{+}of H such that $S \cap H \neq \emptyset$ and $S \cap H^{+} \neq \emptyset$. Let $x \in S \cap H^{+}$ and $y \in S \cap H$. Let \mathscr{H} be the family of hyperplanes given by $\left\{H_{z} \mid z \in[x, y]\right.$, with $z \in H_{z}$ and H_{z} parallel to $\left.H\right\}$. Since S is connected and a hyperplane separates R^{d}, we must have $H_{z} \cap S \neq \emptyset$ for all $z \in[x, y]$. Since any two elements of \mathscr{H} have empty intersection and card $\mathscr{H}=c$ we will be done if for any $z \in[x, y]$ we have that $H_{z} \cap E \neq \emptyset$. But the latter is true by the claim of the first paragraph, and this completes the proof in the case that S is connected.

[^0]To prove the general case, not that if $S=E$ we are done, so suppose $S \neq E$. Let $x \in S \sim E$. Then there exists a ($d-1$)-simplex $D \subset S$ with $x \in$ rel int D. Let F be the flat generated by D and let C be the component of $F \cap S$ containing D. Now note rel int $C \neq \emptyset$ and so C is a compact, connected set of topological dimension $k=d-1 \geq 2$. Hence card rel bd $C)=c$. If rel bd $C \subset E$, we are done. Thus, suppose there exists $y \in($ rel bd $C) \sim E$. Let G be a $(d-1)$-simplex, with $G \subset S$ and $y \in \operatorname{rel}$ int G. Note $G \notin F$, for otherwise we contradict that $y \in$ rel bd C. Then $G \cup C$ is a compact, connected subset of S with $G \cup C \notin R^{2}$. Let Q be the component of S containing $G \cup C$. Note that $Q \notin R^{2}$ and that any $(d-2)$-extreme point of Q is a $(d-2)$-extreme point of S. The proof is completed by applying the connected case of the theorem to Q.
3. Helly-type results and ($d-2$)-extreme points. The following two results are the main results of Section 3 of [1].

Theorem 2. Let $S \subset R^{d}, d \geq 2$, be a non-empty compact set having the half-ray property. Suppose for some $\varepsilon>0$ every $f(d, k)$ or fewer points of E see via S a common k-dimensional ε-neighborhood, where $f(d, 0)=f(d, k)=d+1$ and $f(d, k)=2 d$ for $1 \leq k \leq d-1$. Then S is starshaped and $\operatorname{dim} \operatorname{Ker} S \geq k$.

Theorem 3. Let $S \subset R^{d}, d \geq 2$ be a non-empty compact set with $\sim S$ connected. Suppose for some $\varepsilon>0$, every $d+1$ or fewer points of E see via S a common d-dimensional ε-neighborhood. Then $\operatorname{dim} \operatorname{Ker} S=d$.

The main tool in the proofs of Theorems 2 and 3 is the Lemma of [2] but both proofs required additional non-trivial lemmas. We will prove Theorem 4, from which Theorems 2 and 3 follow as corollaries. The proof will use the Lemma of [2] but will require no additional results.

Theorem 4. Let $S \subset R^{d}, d \geq 2$, be a non-empty compact set with $\sim S$ connected. Suppose for some $\varepsilon>0$, every $f(d, k)$ or fewer points of E see via S a common k-dimensional ε-neighborhood where $f(d, 0)=f(d, d)=d+1$ and $f(d, k)=2 d$ for $1 \leq k \leq d-1$. Then S is starshaped and $\operatorname{dim} \operatorname{Ker} S \geq k$.

Proof. Let $\mathscr{K}=\left\{\operatorname{conv} S_{x} \mid x \in E\right\}$. The hypotheses imply that every $f(n, k)$ members of \mathscr{H} have a non-empty k-dimensional intersection. Note that \mathscr{H} is a uniformly bounded family of compact convex sets. Depending on the value of k, Helly's theorem or the Lemma of [2] gives that $\operatorname{dim} \bigcap_{R \in H} R \geq k$. Let $z \in$ $\bigcap_{R \in H} R$. To show $z \in \operatorname{Ker} S$ it suffices to prove that given any $y \in \sim S$, that $L(y, z) \subset \sim S$ where $L(y, z)$ si the closed half-line with vertex y not containing z determined by the line containing y and z. Suppose the latter is false. Without loss of generality we take z as 0_{v}, the origin, and suppose that $y \in \sim S$ with $L\left(y, 0_{v}\right) \cap S \neq \emptyset$. Choose w with $w \notin$ conv S. Since $\sim S$ is an open connected set, it is polygonally connected. Since $w \in \sim S$, we may choose a polygonal arc $l \subset \sim S$ joining y and w. Let the vertices of l be $x_{1}, x_{2}, \ldots x_{n}$ with $x_{1}=w$ and
$x_{n}=y$. Since $l \subset \sim S$ there exists $\varepsilon>0$ with $l_{\varepsilon} \subset \sim S$ where l_{ε} is the ball about l of radius ε in the Hausdorff metric. Since $w \in \operatorname{conv} S$, we have $L\left(w, 0_{v}\right) \subset \sim S$. Let l be the homeomorphic image of f on the interval $[1, n]$ with $f(i)=x_{i}, 1 \leq i \leq$ n. Let $j=\max \left\{i \mid L\left(x_{i}, 0_{v}\right) \cap S=\emptyset\right\}$. Let $C\left(L\left(x_{j}, 0_{v}\right), \delta\right)$ denote the closed half cylinder centered about $L\left(x_{i}, 0_{v}\right)$ of radius δ. Choose δ so that $\delta<\varepsilon / 2$ and $C\left(L\left(x_{j}, 0_{v}\right), \delta\right) \cap S=\emptyset$. Let $\gamma=\sup \left\{\alpha \mid \alpha \in[j, j+1]\right.$ and $C\left(L\left(f(\alpha), 0_{v}\right), \delta\right) \cap S=$ $\emptyset\}$. Note $j<\gamma<j+1 \leq n$ and $B \cap S \neq \emptyset$, where $B=C\left(L\left(f(\gamma), o_{v}\right), \delta\right)$. Since $B \cap S$ is compact we may choose $q \in B \cap S$ with $\|q\|=\sup \{\|r\| \mid r \in B \cap S\}$ where $\|\|$ is the Euclidean norm. Since $\delta<\varepsilon / 2, q$ is not an element of $d-2$ dimensional sphere centered about $f(\gamma)$ at the "beginning" of B. Then there exists a unique hyperplane G of support to B containing q. The definition of B implies $S \cap$ int $B=\emptyset$. Thus we have $S_{q} \subset G^{+}$where G^{+}is the closed half-space of G not containing 0_{v}. Thus conv $S_{q} \subset G^{+}$. We will be done if we can show $q \in E$ because this will contradict the fact that we have $z \in \bigcap_{R \in H} R$. Now suppose that $q \notin E$. Then there exists a ($d-1$)-simplex $D \subset S$ with $q \in$ rel int D. Note $D \subset G$, lest we contradict the definition of B. We then can produce $q_{1} \in D \cap B$, with $\left\|q_{1}\right\|>\|q\|$, contradicting the definition of q.
In conclusion, we remark that the latter proof is an adaptation of an argument of Goodey used in [3] to generalize a result in [4].

References

1. M. Breen, (d-2)-extreme points and a Helly-theorem for starshaped sets, Can J. Math., vol 31 (1980) pp 703-713.
2. M. Breen, k-dimensional intersections of convex sets and convex kernels, Discrete Mathematics, vol 36 (1981) pp 233-237.
3. P. R. Goodey, A note on starshaped sets, Pacific J. Math., vol 61 (1975) pp 151-152.
4. N. Stavrakas, A note on starshaped sets, (k)-extreme points and the half-ray property Pacific J. Math., vol 53 (1974) pp 627-628.

[^0]: Received by the editors January 15, 1982 and, in revised form, March 26, 1982 A.M.S. Subject classification numbers (1980) Primary 52A30; Secondary 52A20. (C) 1983 Canadian Mathematical Society.

