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The Dirichlet Divisor Problem of
Arithmetic Progressions

H. Q. Liu

Abstract. We present an elementarymethod for studying the problem of getting an asymptotic for-
mula that is better than Hooley’s and Heath-Brown’s results for certain cases.

1 Introduction

Let x be a large real number q and r be positive integers, and

D(x; q, r) ∶= ∑
n≤x

n≡r( mod q)

d(n),

where d(n) is the well-known Dirichlet divisor function. _e classical result of Sel-
berg andHooley [3] is that for (q, r) = 1 and any ε > 0, there exists δ > 0 such that

(1.1) D(x; q, r) =
x

φ(q)
P(log x; q) + O(

x 1−δ

φ(q)
) ,

for any q < x2/3−ε . Here P(log x; q) is the residue at s = 1 of s−1L2(s, χ0)x s−1 and
χ0 is the principal character modulus q. _e study of D(x; q, r) is of special interest
when (q, r) > 1, for the result would have important applications to other problems
(see [3–5]). But actually works by Hooley [5, Lemma C], Heath-Brown [4, _eorem
3], and Smith [11, _eorem 3] all used some deep and complicated tools of complex
analysis. In this paperwe shall give an elementary treatment that is similar to thewell-
known method for the originalDirichlet divisor problem (see [7, §6.12,_eorem 3]).
Our result is as follows.

_eorem 1.1 Given any small positive constant ε, for any q < min(x 1−ε , x2/3−εu1/3),
we have

D(x; q, r) = P(u, ρ)
φ(q)
qρ

x

× [P1(log x + 2γ − 1) − P2 − 2P1
q

φ(q)
(∑

t∣q

µ(t) log t
t

)] + ∆(x; q, r),

where
∆(x; q, r) = O((u1/4q−1x3/4

+ x 1/2
(uq)−1/4

+ (
q
u
)

1/2
)x ε) ,
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_e Dirichlet Divisor Problem of Arithmetic Progressions 593

(the implied constant does not depend on r , but depends on ε), u = (q, r), ρ = q/(q, r),
γ is the Euler constant, and

P1 = ∑
(a ,q)=u
p∣a⇒p∣u

d(a)
a

, P2 = ∑
(a ,q)=u
p∣a⇒p∣u

d(a) log a
a

, P(u, ρ) = ∏
p∣u

(p,ρ)=1

( 1 −
1
p
) .

Moreover if (q, r) = 1, then the x ε factor above can be replaced by (L ⋅ d(q))3,
L = log x.

_eorem 1.1 certainly gives an asymptotic formula for q ≪ x2/3−εu1/3 , and partic-
ularly gives (1.1) when u = (q, r) = 1 and q ≪ x2/3−ε . In fact we have (using (2.3))

u−1
(d(u))c ≫ P1 ≥

d(u)
u

,

P2 = 0 for u = 1, d(u) ≫ P2 ≥ (d(u) logu)u−1 for u > 1,

and

q
φ(q)∑t∣q

µ(t) log t
t

= −∑
p∣q

log p
p − 1

, ∑
p∣q

log p
p − 1

≪ log log6q.

(To show the equality it suõces to assume that q is squarefree, and then use mathe-
matical induction on the number of distinct prime factors of q; the≪ estimate follows
from a familiar technique). _us using (2.3) we get

P1(log x + 2γ − 1) − P2 − 2P1
q

φ(q)∑t∣q

µ(t) log t
t

> ∑
(a ,q)=u
p∣a⇒p∣u
a≤x 1−ε

d(a)
a

(log x − log a − c(log log x)2
) + o(x ε−1

) ≫
d(u)
u

log x .

For u = (q, r) = 1, _eorem 1.1 implies (1.1) for q ≪ x2/3−ε . In fact this follows from
using L(s, χ0) = ζ(s)∏p∣q (1 − p−s), and (for s near 1)

(s − 1)ζ(s) = 1 + γ(s − 1) + ⋅ ⋅ ⋅ ,

∏
p∣q

( 1 −
1
ps ) =

φ(q)
q

{ 1 − (s − 1)(∑
p∣q

log p
p − 1

) + ⋅ ⋅ ⋅} ,

x s
/s = x + (x log x − x)(s − 1) + ⋅ ⋅ ⋅ .

Note that if u = (q, r) > x6ε and q satisûes

max(x2/3+8εu−1 , x5/12+2εu1/4
) < q < x2/3−4εu,

then _eorem 1.1 gives ∆(x; q, r) ≪ x 1/3−ε , which is better than that given by [5,
Lemma C] , [4,_eorem 3 and its Corollary], Selberg unpublished result (see [4]).
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2 Proof of Theorem 1.1

We need two easy lemmas; the ûrst iswell known [6, p. 100] and the second is a special
case of Lemma 2.5 (ii) of [9].

Lemma 2.1 For ξ ≥ 1, integers t, q ≥ 1, (t, q) = 1, there holds

∑
u≤ξ

u≡t (mod q)

1 =
ξ
q
+ ψ(

−t
q

) − ψ(
ξ − t
q

) ,ψ(u) = u − [u] − 1/2.

Lemma 2.2 Let k, ξ ≥ 1, k be an integer, γ the Euler constant. _en

∑
u≤ξ
(u ,k)=1

1
u
=

φ(k)
k

(log ξ + γ) −∑
r∣k

µ(r) log r
r

+ O(
1
ξ
d(k)) .

Now let u = (q, r), ρ = q/u. A positive integer n for which n ≡ r (mod q) can be
uniquely written as n = ab, here u∣a and p∣a⇒ p∣u, (a/u, ρ) = 1 and (b, u) = 1. _us
we get

(2.1) D(x; q, r) = ∑
u∣a

p∣a⇒p∣u
(a/u ,ρ)=1
a≤x

d(a)( ∑
vst≡λ( mod ρ)

λ=r/u
v=a/u
(st ,u)=1
st≤x/a

1).

WritingY = x/a, and letting sv be theunique integer such that sv ⋅sv ≡ 1 (mod ρ), 0 ≤
sv < ρ, we get

∑
vst≡λ( mod ρ)

λ=r/u
v=a/u
(st ,u)=1
st≤x/a

1 = ∑

s≤
√
Y

(s ,q)=1

(2 ∑
t≡λsv( mod ρ)
(t ,u)=1
t≤Y/s

1 − ∑
t≡λsv( mod ρ)
(t ,u)=1
t≤
√
Y

1) .

We have

∑
t≡λsv( mod ρ)
(t ,u)=1
t≤Y/s

1 = ∑
δ∣u

(δ ,ρ)=1

µ(δ)( ∑
ω≡k (mod ρ)

ω≤Y/(sδ)

1) ,

where k is the unique integer such that kδ ≡ λsv (mod ρ), and 0 ≤ k < ρ . _us by
Lemma 2.1 we have

(2.2) ∑
t≡λsv( mod ρ)
(t ,u)=1
t≤Y/s

1 =
Y
sρ

P(u, ρ) + ∑
δ∣u

(δ ,ρ)=1

µ(δ){ψ(
Y/(sδ) − k

ρ
) − ψ(

−k
ρ

)} .
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A similar result holds for ∑t≡λsv( mod ρ),(t ,u)=1,t≤
√
Y 1 with s being replaced by

√
Y .

_en

∑
(a ,q)=u
p∣a⇒p∣u
a>x

d(a)
a

≤ x0.5ε−1
∑
u∣a

p∣a⇒p∣u
a>x

d(a)a−0.5ε

≤ x0.5ε−1
∏
p∣u

(1 − 2−ε)−2
= O(x0.5ε−1d(u)c(ε)) = O(x ε−1

),

(2.3)

and similarly

(2.4)

∑
(a ,q)=u
p∣a⇒p∣u
a>x

d(a) log a
a

= O(x ε−1
),

∑
u∣a

p∣a⇒p∣u

d(a)a−φ
≪ d(u)u−φ

∑
p∣m⇒p∣u

d(m)m−φ

≪ d(u)u−φ
∏
p∣u

(1 − 2−ε)−2
≪ u−φ

(d(u))c(φ)

(for any constant φ > 0 ). From (2.2), using Lemma 2.2, we have
(2.5)

∑
vst≡λ( mod ρ)
λ=r/u , v=a/u
(st ,u)=1, st≤x/a

1 = P(u, ρ)(
2Y
ρ

( ∑

s≤
√
Y

(s ,q)=1

1
s
) −

√
Y
ρ

( ∑

s≤
√
Y

(s ,q)=1

1))

= P(u, ρ)(
2Y
ρ

(
φ(q)
q

(
1
2
logY + γ) −∑

r∣q

µ(r) log r
r

+ O(
d(q)
√
Y

))

−

√
Y
ρ

(
φ(q)
q

√
Y + O(d(q)))) + E

= P(u, ρ)(
Yφ(q)

ρq
(logY + 2γ − 1) −

2Y
ρ ∑r∣q

µ(r) log r
r

+ O(

√
Y
ρ
d(q))) + E ,

and where E consists of the following sums

S1 = ∑

s≤
√
Y

(s ,q)=1

ψ(
Y/(sδ) − k

ρ
) , S2 = ∑

s≤
√
Y

(s ,q)=1

ψ(
−k
ρ

) ,

S3 = ∑

s≤
√
Y

(s ,q)=1

ψ(
√
Y/δ − k

ρ
) .

_us, using (2.3) and (2.4) we ûnd that other terms apart from E of (2.5) contribute
to (2.1) the “main terms” of_eorem 1.1, together with the following error term

O(x0.5ε + x 1/2u1/2q−1
(d(q))c) = O(x 1/2

(uq)−1/4
),
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because x 1/2(uq)−1/4 ≫ x0.5ε . It remains to deal with the contribution of S1, for the
treatments for S2 and S3 would be similar and easier. Let

√
Y > 1000. We have

S1 =∑
N

S(N) + O(1), S(N) = ∑
s∼N
(s ,q)=1

ψ(
Y/(sδ) − k

ρ
) ,

where N takes O(log 2Y) positive integer values, 10 < N < 2
√
Y . Let c be a large

constant (which will be clear later). For any 1 < H < x2 using the well-known Fourier
expansion treatment of the function ψ( ⋅ ) ([10]), we have

(2.6) S(N) ≪ log x(
N
H
+ ∑

1≤h≤H2
min(

1
h
,Hh−2) ∣ ∑

s∼N
(s ,q)=1

e(h
Y/(sδ) − λδsv

ρ
) ∣) .

Let

Sh(N) = ∑
s∼N
(s ,q)=1

e(h
Y/(sδ) − λsδv

ρ
) ,

Th(M) = ∑
N≤s≤M
(s ,q)=1

e(−h
λsδv
ρ

) , N ≤ M ≤ 2N .

By Abel’s partial summation we get

Sh(N) = ∑
M∼N

e(h
Y/(Mδ)

ρ
)(Th(M) − Th(M − 1))

= ∑
M∼N

( e(h
Y/(Mδ)

ρ
) − e(h

Y/((M + 1)δ)
ρ

))Th(M)

+ e(h
Y/(([2N] + 1)δ)

ρ
)Th([2N]).

Since (using the inequality e(θ) − 1 ≪ ∣θ∣ for any real number θ )

e(h
Y/(Mδ)

ρ
) − e(h

Y/((M + 1)δ)
ρ

) ≪ hY(δN2ρ)−1 ,

we have (this treatment is similar to that ofHooley [6, p. 108])

(2.7) Sh(N) ≪ (1 + hY(δNρ)−1
)max

M∼N
∣Th(M)∣.

We have

Th(M) ≪ d(u) max
t∣u ,(t ,ρ)=1

∣ ∑
E≤w≤F
(w ,ρ)=1

e(−h
λtwδv

ρ
) ∣ , E , F ≈ N/t.

We split the inner sum into subsums in each of which the variable runs through
exactly one complete residue class (mod q) (each of them is indeed a Ramanujan
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sum), together with one sum which has the form (a�er suitably reducing the variable
mod q)

S′ ∶= ∣ ∑
1≤w≤Q
(w ,ρ)=1

e(−h
λtwδv

ρ
) ∣ ,Q < ρ.

For this sum we appeal to the technique in proving _eorem 3 of [7, §7.7], which
then results in a complete Kloosterman sum. _us, by using Estermann’s estimate for
Kloosterman’s sum [2], we always have (the technique of [7, §7.7] will add an addi-
tional factor log 2ρ.)

S′ ≪ d(ρ)ρ1/2
(h, ρ)1/2

(log 2ρ).
As for those Ramanujan sums, for each of them we have an estimate ≪ (h, ρ) (see
[1, p. 149]). _erefore,

Th(M) ≪ d(ρ)(N/ρ)(h, ρ) + d2ρ1/2
(h, ρ)1/2

(log 2ρ).

Let L = log x. From (2.5), (2.6), and (2.7), for any 1 < H < x2 we have

L−2d−3
(q)S(N) ≪

N
H
+ (

YH
δNρ

+ 1) ρ1/2
+

N
ρ
+

HY
ρ2 .

Taking into account the trivial estimate we have for all H ∈ [0,∞)

L−2d−3
(q)S(N) ≪

N
H
+ (

YH
δNρ

+ 1) ρ1/2
+

NH
x2 +

N
ρ
+

HY
ρ2 .

We can use the following lemma to choose an optimal H .

Lemma 2.3 For M ,N ≥ 1,Am , Bn , um , vn > 0 , we can ûnd a number ω ∈ (0,∞)

such that

∑
1≤m≤M

Amωum + ∑
1≤n≤N

Bnω−vn ≪ ∑
1≤m≤M
1≤n≤N

(Avn
mB

um
n )

1/(um+vn) .

Proof It can be deduced from [8, Lemma 6] by taking Q1 → 0 and Q2 →∞. In fact,
we can choose (as is clear from [8, p. 209]) ω = min1≤i≤M ,1≤ j≤N(B jA−1

i )1/(u i+v j).

Now by Lemma 2.3 we have

L−2d−3
(q)S(N) ≪ Nρ−1

+

√

Yδ−1ρ−1/2 +
√

NYρ−2 +
N
x
+ ρ1/2 .

_us
L−3d−3

(q)S1 ≪

√

Yρ−1/2 +
√
Y 1.5ρ−2 + ρ1/2

+ Y 0.5
/x .

_e same bound holds also for S2 and S3. Using (2.3) to treat the summation for
a in (2.1), we ûnd that

√
Yρ−1/2 and

√
Y 1.5ρ−2 contribute respectively the terms

(d(u))cx 1/2(uq)−1/4 and (d(u))cu1/4q−1x3/4. _us to obtain _eorem 1.1 we only
need to estimate (see (2.1)) ρ1/2S′′, here

S′′ ∶= ∑
u∣a

p∣a⇒p∣u
(a/u ,ρ)=1
a≤x

d(a).
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Using d(mn) ≤ d(m)d(n), we have

S′′ ≪ d(u) ∑
p∣b⇒p∣u

d(b)(
x
ub

)
0.5ε

≪ x0.5ε
d(u)
u0.5ε ∏

p∣u
(1 − p−0.5ε)−2

≪ x0.5ε
d(u)
u0.5ε ∏

p∣u
(1 − 2−0.5ε)−2

≪ x0.5ε
1

u0.5ε (d(u))
c(ε)

≪ x0.5ε .

_us ρ1/2S′′ contributes to D(x; q, r) a term≪ (
q
u )

1/2x ε .
In case (q, r) = u = 1 , there is only one term a = 1 in the summation

∑
u∣a

p∣a⇒p∣u
(a/u ,ρ)=1
a≤x

.

_us certain treatments can be omitted. _e proof of_eorem 1.1 is ûnished.
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