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The Dirichlet Divisor Problem of
Arithmetic Progressions

H. Q. Liu

Abstract. 'We present an elementary method for studying the problem of getting an asymptotic for-
mula that is better than Hooley’s and Heath-Brown’s results for certain cases.

1 Introduction

Let x be a large real number g and r be positive integers, and

D(x;q,r):= Y. d(n),

nzr(nrijtc)d q)
where d(n) is the well-known Dirichlet divisor function. The classical result of Sel-
berg and Hooley [3] is that for (¢, 7) = 1 and any ¢ > 0, there exists § > 0 such that
X ( JRED )
(1.1) D(x;q,1r) = ——P(logx;q) + O( ——),
9(q) 9(q)
for any q < x*°7¢. Here P(logx;q) is the residue at s = 1 of s'L2(s, yo)x* ' and
Xo is the principal character modulus g. The study of D(x; g, r) is of special interest
when (g,7) > L, for the result would have important applications to other problems
(see [3-5]). But actually works by Hooley [5, Lemma C], Heath-Brown [4, Theorem
3], and Smith [11, Theorem 3] all used some deep and complicated tools of complex
analysis. In this paper we shall give an elementary treatment that is similar to the well-
known method for the original Dirichlet divisor problem (see [7, §6.12, Theorem 3]).
Our result is as follows.

2/3-¢

Theorem 1.1  Given any small positive constant , for any q < min(x'~¢, x?/3~¢4'/3),
we have

x;q,1) =P(u Mx
D(x;q,7) = P(u, p) "

x [Pl(logx +2y-1)-P,-2P (p(qq)(%: ﬂ(t)tlogt)] YA ),
tlq

where
A(x;q,1) = O( (u1/4q_1x3/4 + xl/Z(uq)—1/4 n (ﬂ)l/z)xs) k
u
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(the implied constant does not depend on r, but depends on ¢), u = (q,r),p = q/(q, 1),
y is the Euler constant, and

d(a d(a)loga 1

R M R TR (Y

(ap=u @ (a,9)=u plu p
pla=plu pla=plu (psp)=1

Moreover if (q,r) = 1, then the x¢ factor above can be replaced by (L-d(q))>,
L =logx.

Theorem 1.1 certainly gives an asymptotic formula for g < x*>~¢4"/?, and partic-

ularly gives (1.1) when u = (g,7) = 1and g < x*/*~¢. In fact we have (using (2.3))

u N (d(u))" > P > @,

Py=0foru=1, d(u)> P> (d(u)logu)u™ foru>1,

and

q u(t)logt log p log p
=-) —, —2= «< loglog64.
sv(q)% t %p—l %P—l

(To show the equality it suffices to assume that q is squarefree, and then use mathe-
matical induction on the number of distinct prime factors of g; the < estimate follows
from a familiar technique). Thus using (2.3) we get

Pi(logx +2y-1) - P, - 2P, 9 Z u(t)logt

o(q) i, ¢
> M(logx ~loga - c(loglogx)*) + o(x*™") > d(u) log x.
(a.q)=u 4 “
pla=plu
a<x'™¢

For u = (g, ) = 1, Theorem L1 implies (1.1) for g <« x2/3~¢. In fact this follows from
using L(s, xo) = ¢(s) ITp|q (1= p~*), and (for s near 1)

(s=D¢(s)=1+yp(s-1)+---,
1

[10- ) - 221 (2 28 ),

rla p q p|qp_1
x*fs=x+(xlogx—x)(s=1) +---.

Note that if u = (g,7) > x°¢ and g satisfies
max(x2/3+8ey 71 (S22 1) g ¢ y23dey

then Theorem 1.1 gives A(x;q,7) <« x/37¢, which is better than that given by [5,
Lemma C], [4, Theorem 3 and its Corollary], Selberg unpublished result (see [4]).
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2 Proof of Theorem 1.1

We need two easy lemmas; the first is well known [6, p. 100] and the second is a special
case of Lemma 2.5 (ii) of [9].

Lemma 2.1 For & >1, integerst,q > 1,(t,q) =1, there holds

(Y (Y ) — i Tul -
Z:E 1—q+w(q) v( p )>y(u) [u] -1/2.
u=t (mod q)

Lemma 2.2 Letk, & >1, k be an integer, y the Euler constant. Then

) i - go(kk) (log&+7) - Zlkj Lr)rlogr +O( %d(k))-
(u,lf):l ’

Now let u = (q,7), p = q/u. A positive integer n for which n = r (mod q) can be
uniquely written as n = ab, here u|a and p|la = p|u, (a/u, p) =1and (b, u) = 1. Thus

we get
2.1 D(x;q,r)= >, d(a)( Y, 1.
ula vst=A( mod p)
pla=plu A=r/u
(a/up)-1 v=a/u
asx (st,u)=1
st<x/a

Writing Y = x/a, and letting sv be the unique integer such thatsv-sv =1 (mod p),0 <
sV < p, we get

SIRED YN CHED IR TN YN}

vst=A( mod p) s<VY t=Asv( mod p) t=Asv( mod p)

A=r/u (s,q)=1 (t,u)=1 (t,u)=1
v=alu t<Y/s t<VY
(st,u)=1
st<x/a

We have
> 1= X wd( ¥ ),
t=Asv( mod p) Slu w=k (mod p)
(t,u)=1 (8,p)=1 w<Y/(s8)
t<Y/s

where k is the unique integer such that k6 = Asv (mod p), and 0 < k < p . Thus by
Lemma 2.1 we have

(2.2) > 1:§P(u,p)+ D M((s){l,,(y/(s‘:)‘k)_w(—k)}'

t=Asv( mod p) Slu p
(t,u)=1 (8,p)=1
t<Y/s
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A similar result holds for
Then

(2257 mod p),(t.u)=1,t</¥ | with s being replaced by /Y.

(2‘3) Z d(a) 0 5e-1 Z d(a)a—o .5¢
(a,q)=u a ula
Pl gl Pl gl
x().Se—l H(l _ 2—8)—2 - O(xO.Ss—ld(u)c(s)) — O(xs—l)’
plu
and similarly
Z d(a)loga _ O(xs—l),
(a,q)=u
pla=plu
a>x
(2.4) Y od(a)a? <dwu® > d(m)m™®
ula plm=plu
pla=plu

<dwu? TTA-2)" < u?(d(u)®
plu

(for any constant ¢ > 0 ). From (2.2), using Lemma 2.2, we have

(2.5)
2Y 1 Y
(2 £ )2 5 0)
vst=A( mod p) p s<VY P s<VY
A=r/u,v=alu (s,q)=1 (s,q)=1

(st,u)=1,st<x/a

ZP(”>P)(ZZ((P(;)(11 ) Zy(r)logr (d(q)))

2 rlq \/?
VY
- P(‘P(q)ﬁm(d(q)))) +E
= P(u,p)( 9(4) (logY +2y - Z #(r) logr (ﬂd(q))) +E,
Pq rlq P
and where E consists of the following sums
Y/(s8) -k -k
s= (DD, e T w2,
s<VY P s<VY p
(s:9)=1 (s:9)=1
VY/8-k
S3= ), ‘/’(/7)
SS\/? p
(s,9)=1

Thus, using (2.3) and (2.4) we find that other terms apart from E of (2.5) contribute
to (2.1) the “main terms” of Theorem L1, together with the following error term

O(XO.SS 1/2 1/2 (d(q)) ) _ O(xl/Z(uq)—l/4))
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because x"/2(uq)/* > x%5¢. It remains to deal with the contribution of Sy, for the
treatments for S, and S; would be similar and easier. Let /'Y > 1000. We have
Y/(s8) -k
Si=Y 8S(N)+0(1),S(N)= > y( /(p)),
N

s~N
(s,q)=1

where N takes O(log2Y) positive integer values, 10 < N < 2/Y. Let ¢ be a large
constant (which will be clear later). For any 1 < H < x? using the well-known Fourier
expansion treatment of the function y( - ) ([10]), we have

(2.6)  S(N) <<logx(%+ > min(%,Hh’z)‘ D e(hwml

1<h<H? s~N P
(s,9)=1
Let
Y/(s8) — Asév
S(N)= e(hL),
s~N P
(s,9)=1
Ty(M)= Y, e(—h)”av), N<M<2N
N<s<M P

(s,9)=1

By Abel’s partial summation we get

SN = 3 e(h”(pm)m(M)—n(M—l))

M~N
- MZN(Q(”Y/(;)M) . e(hY/((]";”m) ) T, (M)

Since (using the inequality e(0) — 1 <« |6| for any real number 6 )

e(hY/(pM‘S)) _e(hW) < hY(6N?p)™,

we have (this treatment is similar to that of Hooley [6, p. 108])
(2.7) Si(N) < (1+hY(8Np)™) max | T, (M)).

We have

Atwév
Tp(M) «< d(u) max | 2. e(-h -
tlu,(t.p)=1' pocF P
(w.p)=1

)

, E,F~N/t.

We split the inner sum into subsums in each of which the variable runs through
exactly one complete residue class (mod g) (each of them is indeed a Ramanujan
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sum), together with one sum which has the form (after suitably reducing the variable
mod q)

S'::‘ > e(—hAtl:;(sv) ,Q<p.

1sw<Q

(w.p)=1
For this sum we appeal to the technique in proving Theorem 3 of [7, §7.7], which
then results in a complete Kloosterman sum. Thus, by using Estermann’s estimate for
Kloosterman’s sum [2], we always have (the technique of [7, §7.7] will add an addi-
tional factor log2p.)

§' <« d(p)p"*(h, p)"*(log2p).
As for those Ramanujan sums, for each of them we have an estimate << (h, p) (see
[1, p. 149]). Therefore,

Tw(M) < d(p)(N/p)(h,p) +d*p"*(h, p)"/*(log2p).
Let L = log x. From (2.5), (2.6), and (2.7), for any 1 < H < x* we have

N YH N HY

L2d73(q)S(N) < = + (o +1)p*+ =+ —-.

Taking into account the trivial estimate we have for all H € [0, o0)
N YH NH N HY

L2d73(q)S(N) < — + (= +1)p* 4 — + — + —-

H “46Np x2  p  p?

We can use the following lemma to choose an optimal H .

Lemma 2.3 For M,N > 1,A., By, tm, vy > 0, we can find a number w € (0, c0)
such that
S Ape'm+ Y Buw < Y (AU BUm )Y (v,

1<m<M 1<n<N 1<m<M

1<n<N
Proof It can be deduced from [8, Lemma 6] by taking Q; — 0 and Q, — co. In fact,
we can choose (as is clear from [8, p. 209]) w = min1<,-<M,1<j<N(BjAl‘.l)l/(”**"f). [ ]

Now by Lemma 2.3 we have

N
L72d73(q)S(N) <« Np~'+1/Y81p1/2 +\/NYp~2 + —* P2,
Thus
L73d73(q)S1 < \/Yp V2 +\/Y15p2 4 pV2 1 Y05 /x.

The same bound holds also for S, and S;. Using (2.3) to treat the summation for
a in (2.1), we find that \/Yp~Y/2 and \/Y'5p=2 contribute respectively the terms
(d(u))°x?(ug)™/* and (d(u))u’*q'x*/*. Thus to obtain Theorem 1.1 we only
need to estimate (see (2.1)) pl/ZS", here

§":=" > d(a).

ula
pla=plu
(a/u,p)=1

asx
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Using d(mn) < d(m)d(n), we have
"<d(u) d(b)( )055 « OSsd(()Q H( 50562

p|b=p|u
< x 05‘*“058 [T(1-279%)7% « x% 05s(d(u))f( ) « x5
plu
Thus p'/28" contributes to D(x; g, ) a term << (%)l/zxe.

In case (q,7) = u =1, there is only one term a = 1 in the summation

>

ula
pla=plu
(afu,p)=1

asx

Thus certain treatments can be omitted. The proof of Theorem 1.1 is finished.
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