A characterization of boolean spaces

C.E. Dickerson and M.E. Moore

A boolean space is a compact Hausdorff space which is zero-dimensional. In this paper, a boolean space X is characterized in terms of its ring of real-valued functions $C(X)$. The result is sharpened for the case when X is an F-space (every finitely generated ideal of $C(X)$ is principal).

1. Introduction

A boolean space is a compact Hausdorff space which is zero-dimensional. The purpose of this paper is to characterize a boolean space X in terms of its ring of real-valued continuous functions $C(X)$. The result will be sharpened for the case when X is an F-space (every finitely generated ideal of $C(X)$ is principal).

2. B-rings

Let S be a commutative ring with identity 1, and let $\{M_\alpha \mid \alpha \in A\}$ be the set of all maximal ideals of S. The Jacobson radical of S is the set $J(S) = \cap\{M_\alpha \mid \alpha \in A\}$. S is called a B-ring if for each integer $n \geq 3$ and each $s_1, \ldots, s_n \in S$ such that $(s_1, \ldots, s_{n-2}) \notin J(S)$ and $1 \in (s_1, \ldots, s_n)$, there exists $t \in S$ such that $1 \in (s_1, \ldots, s_{n-2}, s_{n-1} + ts_n)$; see [4] for details. Here, the notation (s_1, \ldots, s_n) means the ideal of S generated by s_1, \ldots, s_n.

Since every set of the form $M_x = \{f \in C(X) \mid f(x) = 0\}$ is a maximal ideal of $C(X)$, it follows that if $g \in J(C(X))$ then $g \notin M_x$ for each

Received 29 October 1974.
$x \in X$ so that $g(x) = 0$ for each $x \in X$, or equivalently, $g = 0$.

Hence, $J(C(X)) = (0)$. We can now simplify the definition of B-rings in the special case of $C(X)$.

PROPOSITION 2.1. $C(X)$ is a B-ring if and only if $f, g, h \in C(X)$ with $f \neq 0$ and $1 \in (f, g, h)$ implies there exists $t \in C(X)$ such that $1 \in (f, g + th)$.

Proof. The direct implication is obvious. To see the converse let $n \geq 3$ with $(f_1, \ldots, f_{n-2}) \notin (0)$ and $1 \in (f_1, \ldots, f_n)$; then $f_1^2 + \cdots + f_{n-2}^2 \neq 0$ and $2 \left(f_1^2 + \cdots + f_n^2 \right) = \emptyset$, where $Z \left(f_1^2 + \cdots + f_n^2 \right)$ denotes the zero set of the function $f_1^2 + \cdots + f_n^2$. Note that $Z \left(f_1^2 + \cdots + f_{n-2}^2 + f_{n-1}^2 + f_n^2 \right) = \emptyset$ must also hold. Consequently, $1 \in \left(f_1^2 + \cdots + f_{n-2}^2 + f_n \right)$, $1 \in \left(f_1^2 + \cdots + f_{n-2}^2 + f_n - tf_n \right)$. By hypothesis, there exists $t \in C(X)$ such that $1 \in \left(f_1^2 + \cdots + f_{n-2}^2 + f_n - tf_n \right)$. From this we see that $Z \left(f_1^2 + \cdots + f_{n-2}^2 + [f_n - tf_n]^2 \right) = \emptyset$. Therefore, $1 \in \left(f_1, \ldots, f_{n-2}, f_n - tf_n \right)$.

3. B-rings and boolean spaces

In this section we shall assume that X is a compact Hausdorff space. We begin by proving a lemma similar to Lemma 4.3 of [1].

LEMMA 3.1. Let $f, g, h \in C(X)$ and denote $g^{-1}(0, \infty)$ as $P(g)$ and $g^{-1}(-\infty, 0)$ as $N(g)$. If there is a connected subset Z of $Z(f)$ such that $Z \cap P(g) \neq \emptyset$ and $(Z \cap N(g)) \neq \emptyset$, then for each $t \in C(X)$, $1 \notin (f, g + th)$.

Proof. Note that there must be $x, y \in Z$ such that $(g + th)(x) > 0$ and $(g + th)(y) < 0$. Since Z is connected, the continuity of $g + th$ implies the existence of some $z \in Z$ such that $(g + th)(z) = 0$. This shows that $Z(f) \cap Z(g + th) \neq \emptyset$, or equivalently, $1 \notin (f, g + th)$.

LEMMA 3.2. If $C(X)$ is a B-ring, then for each closed connected set Z and each closed set S, $Z \cap S$ must be connected.
Boolean spaces

Proof. The proof follows Lemma 4.5 of [1]. Suppose that Z is a closed connected set and that S is a closed set such that $Z \cap S$ is not connected. Write $Z \cap S = F_1 \cup F_2$ where F_1, F_2 are disjoint non-empty closed subsets of $Z \cap S$, hence closed subsets of X. Since X is assumed to be a compact Hausdorff space, and therefore normal, there are open sets $U_1 \supseteq F_1$ and $U_2 \supseteq F_2$ whose closures are disjoint. Put $U = U_1 \cup U_2$. The closed sets $Z - U$ and $S - U$ are disjoint, hence contained in disjoint open sets V_1, V_2 respectively. By Urysohn’s Lemma, choose $f, g, h \in C(X)$ such that $f(Z) = 0$ and $f(S - V_1 - U) = 1$, $g(U_1) = 1$ and $g(U_2) = -1$, $h(S) = 0$ and $h(U_2 - S - U) = 1$. Then f, g, h satisfy the hypothesis of the previous lemma and $1 \notin (f, g, h)$. It follows that $C(X)$ is not a B-ring.

THEOREM 3.3. Let X be a compact Hausdorff space. If $C(X)$ is a B-ring, then X is a boolean space.

Proof. Let $x \in X$. If C is the connected component of X containing x, then C is a closed connected set. If $C \neq \{x\}$ then it would follow that the discrete set $C \cap \{x, y\} = \{x, y\}$ must be connected, where $y \in C - \{x\}$. We conclude that $C = \{x\}$ and, hence, X is totally disconnected. By compactness, X is zero-dimensional.

Next we prove the converse of Theorem 3.3. We begin by defining $A(X)$ to be all those functions $f \in C(X)$ whose range is a finite set. In particular, $A(X)$ contains the constant functions. It is well known that for compact spaces X, we may apply the Stone-Weierstrass Theorem to conclude that $A(X)$ is dense in $C(X)$, under the topology of uniform convergence, if X is zero-dimensional.

THEOREM 3.4. If X is a boolean space, then $C(X)$ is a B-ring.

Proof. If $f, g, h \in C(X)$ with $1 \notin (f, g, h)$, then a straightforward computation shows that there exist $\delta, \varepsilon > 0$ such that if $f', g', h' \in C(X)$ with $|f - f'| < \varepsilon$, $|g - g'| < \varepsilon$, and $|h - h'| < \varepsilon$ then $|f'| + |g'| + |h'| > \delta$. Let $\xi = \min(\varepsilon, \delta/3)$ and choose $f', g', h' \in A(X)$ within ξ of f, g, h respectively. Note then that $|f'| + |g'| + |h'| > \delta$.

Since functions in $A(X)$ have finite range, it follows that there
exist functions \(u, v, w \in A(X) \) satisfying \(uf' = |f'| \), \(vg' = |g'| \), \(wh' = |h'| \), and \(|u| = |v| = |w| = 1 \). Define \(\sigma \in A(X) \) by
\[
\sigma = 1/(|f'| + |g'| + |h'|) < 1/\delta .
\]
Choosing \(p = wa \), \(g = va \), and \(t = w/v \) gives \(1 = pf' + q(g'+th') \). Thus, we have appropriately written the identity in the subring \(A(X) \).

Now set \(d_1 = f' - f \), \(d_2 = g' - g \), and \(d_3 = h' - h \); then \(|d_i| < \xi \) for each \(i \) and
\[
1 = p(f+d_1) + q((g+d_2)+t(h+d_3)) = |pf+q(g+th)| + |pd_1+qd_2+qtd_3| .
\]
Letting \(s = |pd_1+qd_2+qtd_3| \) it follows that \(1 - s \leq |pf+q(g+th)| \). By direct calculation,
\[
s \leq |p|\cdot|d_1| + |q|\cdot|d_2| + |q|\cdot|d_3|
\leq (1/\delta)\cdot\xi + (1/\delta)\cdot\xi + (1/\delta)\cdot\xi \leq 1 .
\]
This gives that \(0 < 1 - s \leq |pf+q(g+th)| \) so that \(pf + q(g+th) \) is a unit in \(C(X) \). Since \(pf + q(g+th) \in (f, g+th) \), it follows that \(1 \in (f, g+th) \).

Thus, we have shown that a compact space \(X \) is a boolean space if and only if \(C(X) \) is a \(B \)-ring. It is interesting to note that we did not need \(f \neq 0 \).

By assuming \(X \) is Lindelöf and using the Stone-Čech compactification of \(X \), one can easily show that \(X \) is zero-dimensional if and only if \(C^*(X) \) is a \(B \)-ring.

4. \(SB \)-rings and boolean \(F \)-spaces

Let \(S \) be a commutative ring with identity. \(S \) is called an \(SB \)-ring if for each \(s, c, d, e \in S \) with \(s \in (c, d, e) \) and \(c \not\in J(S) \), it follows that \(s \in (c, d+te) \) for some \(t \in S \); see [4] for details.

A topological space \(X \) is called an \(F \)-space if every finitely generated ideal of \(C(X) \) is principal. \(X \) is called a \(T \)-space if \(C(X) \) is an Hermite ring; and \(X \) is called a \(U \)-space if for each \(f \in C(X) \) there exists a unit \(u \in C(X) \) such that \(f = u|f| \). In [1] it is shown that every \(U \)-space is a \(T \)-space.
THEOREM 4.1. Suppose X is a compact F-space. Then X is a boolean space if and only if $C(X)$ is an SB-ring.

Proof. Since every SB-ring is a B-ring [4, p. 457], it suffices to show that if X is a boolean F-space then $C(X)$ is an SB-ring. Now, every boolean F-space is a U-space [1, Theorem 5.5]. Hence, X is a T-space and $C(X)$ is a Hermite ring. Since Hermite B-rings are SB-rings [4, Theorem 3.3], it follows that $C(X)$ is an SB-ring.

References

