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Abstract

Let R be the ring of linear transformations of a right vector space over a division ring D. Three results are
proved: (1) if |D|> 4, then for any a ∈ R there exists a unit u of R such that a + u, a − u and a − u−1

are units of R; (2) if |D|> 3, then for any a ∈ R there exists a unit u of R such that both a + u and
a − u−1 are units of R; (3) if |D|> 2, then for any a ∈ R there exists a unit u of R such that both a − u
and a − u−1 are units of R. The second result extends the main result in H. Chen, [‘Decompositions
of countable linear transformations’, Glasg. Math. J. (2010), doi:10.1017/S0017089510000121] and the
third gives an affirmative answer to the question raised in the same paper.
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Let R be a ring with identity and let U (R) be the group of units of R. In this note, we
are concerned with the following three conditions on R:

∀a ∈ R, ∃u ∈U (R) such that a + u, a − u, a − u−1
∈U (R). (O)

∀a ∈ R, ∃u ∈U (R) such that a + u, a − u−1
∈U (R). (P)

∀a ∈ R, ∃u ∈U (R) such that a − u, a − u−1
∈U (R). (Q)

Connections of these conditions with some well-known conditions in ring theory will
be briefly explained later. In 1954 Zelinsky [9] proved that every element in the ring
of linear transformations of a right vector space over a division ring D is a sum of two
units unless D = Z2 and dim(V )= 1. This is the motivation for the work of Chen [4]
where it is proved that the ring of linear transformations of a countably generated
right vector space over a division ring D with |D| 6= 2, 3 satisfies (P). Chen [4]
is also motivated to raise the question whether the ring of linear transformations
of a countably generated right vector space over a division ring D with |D| 6= 2
satisfies (Q). The main result of this note is the following theorem.
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THEOREM 1. Let End(VD) be the ring of linear transformations of a right vector
space V over a division ring D.

(1) If |D|> 4, then End(VD) satisfies (O).
(2) If |D|> 3, then End(VD) satisfies (P).
(3) If |D|> 2, then End(VD) satisfies (Q).

Part (2) of the theorem is an improvement of the main result of [4, Theorem 5]
where (2) is proved for any countably generated vector space V . Part (3) of the
theorem is an affirmative answer to Chen’s question [4, p. 6] whether the ring of linear
transformations of a countably generated right vector space over a division ring of
more than two elements satisfies (Q).

Three lemmas are needed for the proof of the theorem. For a countably infinite-
dimensional right vector space VD , a linear transformation f ∈ End(VD) is called a
shift operator if there exists a basis {v1, v2, . . . , vn, . . .} of V such that f (vi )= vi+1
for all i .

LEMMA 2. Let V be a countably infinite-dimensional right vector space over a
division ring D and let f ∈ End(VD) be a shift operator. Then there exists g ∈
U (End(VD)) such that f + g, f − g, f − g−1

∈U (End(VD)).

PROOF. By fixing a basis of VD , we can identify f with a matrix

A =


X 0 0 · · ·

Y X 0 · · ·

0 Y X · · ·

...
...

...
. . .

 where X =

(
0 0
1 0

)
, Y =

(
0 1
0 0

)
.

Let

B =


X 0 0 · · ·

0 X 0 · · ·

0 0 X · · ·

...
...

...
. . .

 and C =


0 0 0 · · ·

Y 0 0 · · ·

0 Y 0 · · ·

...
...

...
. . .

.
Then B2

= C2
= 0 and A = B + C . Thus, 1+ B is invertible with inverse 1− B. We

see that A − (1+ B)= C − 1 is invertible, and

A − (1− B)=


2X − 1 0 0 · · ·

Y 2X − 1 0 · · ·

0 Y 2X − 1 · · ·

...
...

...
. . .


is invertible with inverse

−(2X + 1) 0 0 · · ·

−(2X + 1)Y (2X + 1) −(2X + 1) 0 · · ·

0 −(2X + 1)Y (2X + 1) −(2X + 1) · · ·
...

...
...

. . .

,
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and

A + (1+ B)=


1+ 2X 0 0 · · ·

Y 1+ 2X 0 · · ·

0 Y 1+ 2X · · ·

...
...

...
. . .


is invertible with inverse

1− 2X 0 0 · · ·

−(1− 2X)Y (1− 2X) 1− 2X 0 · · ·

0 −(1− 2X)Y (1− 2X) 1− 2X · · ·

...
...

...
. . .

.
This completes the proof. 2

The n × n matrix ring over a ring R is denoted by Mn(R). Part (3) of Lemma 3
comes from Chen [3, Theorem 4.1]. But the proof given here is shorter.

LEMMA 3. Let R be a ring and n ≥ 1.

(1) If for any a, b, c ∈ R there exists u ∈U (R) such that a + u, b − u, c − u−1 are
units of R, then the same is true of Mn(R).

(2) If for any a, b ∈ R there exists u ∈U (R) such that a + u, b − u−1 are units of R,
then the same is true of Mn(R).

(3) If for any a, b ∈ R there exists u ∈U (R) such that a − u, b − u−1 are units of R,
then the same is true of Mn(R).

PROOF. (1) If n = 1, there is nothing to prove. Suppose that n > 1 and let

α =

(
α11 α12
α21 α22

)
, β =

(
β11 β12
β21 β22

)
and γ =

(
γ11 γ12
γ21 γ22

)
be matrices in Mn(R), where the upper left-hand blocks are elements of R, the
upper right-hand blocks are 1× (n − 1) matrices, the lower left-hand blocks are
(n − 1)× 1 matrices, and the lower right-hand blocks are matrices in Mn−1(R).
By our assumption, there exists u ∈U (R) such that x := α11 + u, y := β11 − u,
z := γ11 − u−1 are all units of R. Now α22 − α21x−1α12, β22 − β21 y−1β12,

γ22 − γ21z−1γ12 are matrices in Mn−1(R). By the induction hypothesis, there exists
a unit µ of Mn−1(R) such that

X := (α22 + α21x−1α12)+ µ,

Y := (β22 − β21 y−1β12)− µ,

Z := (γ22 − γ21z−1γ12)− µ
−1
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are units of Mn−1(R). Then λ :=
(u 0

0 µ

)
is a unit of Mn(R) such that

α + λ=

(
x α12

α21 α21x−1α12 + X

)
=

(
1 0

α21x−1 1

) (
x α12
0 X

)
,

β − λ=

(
y β12

β21 β21 y−1β12 + Y

)
=

(
1 0

β21 y−1 1

) (
y β12
0 Y

)
,

γ − λ−1
=

(
z γ12

γ21 γ21z−1γ12 + Z

)
=

(
1 0

γ21z−1 1

) (
z γ12
0 Z

)
are all units of Mn(R). This completes the proof.

The proofs of (2) and (3) are similar to the proof of (1). 2

Part (2) of Lemma 4 below comes from Chen [4, Lemma 2].

LEMMA 4. Let D be a division ring and n ≥ 1.

(1) If |D|> 4, then Mn(D) satisfies (O).
(2) If |D|> 3, then Mn(D) satisfies (P).
(3) If |D|> 2, then Mn(D) satisfies (Q).

PROOF. (1) It is easily seen that if |D|> 4 then for any a, b, c ∈ D there exists
u ∈U (D) such that a + u, b − u, c − u−1 are units of D. Thus (1) follows from
Lemma 3(1).

The proofs of (2) and (3) are similar to the proof of (1). 2

PROOF OF THEOREM 1. (1) Let f ∈ End(VD). Let S be the set of all ordered pairs
(W, g), where W is an f -invariant subspace of V and g, f |W + g, f |W − g, and
f |W − g−1 are units of End(WD) (where f |W is the restriction of f to W ). Clearly,
((0), 1) ∈ S .

Define a partial ordering on S by setting (W ′, g′)≤ (W, g) whenever both are in
S , W ′ ⊆W and g′ = g|W ′ .

Suppose that {(Wα, gα) : α ∈3} is a totally ordered subset of S . We define
g ∈ End((∪Wα)D) by setting g(x)= gα(x) (α ∈3, x ∈Wα), and it is easy to see that
(∪Wα, g) ∈ S and (Wα, gα)≤ (∪Wα, g) for all α ∈3. It follows from Zorn’s lemma
that there exists a maximal element (U, h) in S ; we prove (1) by showing that U = V .
Hence we assume that U 6= V , and show that this leads to a contradiction.

Let us fix x ∈ V \U . Let V0 :=U + K where K is the subspace of V spanned
by {x, f (x), f 2(x), . . .}, and write V0 =U ⊕ N where N is a nonzero subspace
of V0. Since U is f -invariant, there is a linear transformation f̄ : V0/U → V0/U
given by f̄ (v̄)= f (v) (for v ∈ V0). Let π : V0→ N be the projection on N
along U . There is a natural isomorphism ϕ : V0/U → N such that ϕ(v̄)= π(v)
(for v ∈ V0). Thus θ := ϕ f̄ ϕ−1

∈ End(ND), and so θϕ = ϕ f̄ . Since V0/U is
spanned by {x̄, f̄ (x̄), f̄ 2(x̄), . . .}, N is spanned by {ϕ(x̄), ϕ( f̄ (x̄)), ϕ( f̄ 2(x̄)), . . .} =
{ϕ(x̄), θϕ(x̄), θ2ϕ(x̄), . . .}. Thus, either θ ∈ End(ND) is a shift operator or ND is
finite-dimensional. So, by Lemmas 2 and 4(1), there exists α ∈U (End(ND)) such
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that θ + α, θ − α and θ − α−1 are all units of End(ND). Let g : V0→ V0 be given by
g(u + v)= h(u)+ α(v) (u ∈U, v ∈ N ). Then g is a unit of End((V0)D).

We next show that f + g, f − g and f − g−1 are units of End((V0)D). For u ∈U
and v ∈ N ,

( f − g)(u + v)= ( f − h)(u)+ [ f (v)− α(v)]. (∗)

Applying π to both sides of (∗) gives

π( f − g)(u + v) = π f (v)− α(v)= ϕ f (v)− α(v)= ϕ f̄ (v̄)− α(v)

= θϕ(v̄)− α(v)= θπ(v)− α(v)= θ(v)− α(v)

= (θ − α)(v).

If ( f − g)(u + v)= 0, then (θ − α)(v)= 0 and so v = 0. It follows from (∗) that
( f − h)(u)= 0, and hence u = 0. Thus, f − g : V0→ V0 is one-to-one.

Clearly, U ⊆ Im( f − g). For any w ∈ N , there exists an element v ∈ N such that
(θ − α)(v)= w. Thus, w = (θ − α)(v)= π( f − g)(u + v) ∈ Im( f − g) because
U ⊆ Im( f − g). So f − g : V0→V0 is onto. Hence f − g is a unit of End((V0)D).

Similarly, one can show that f + g, f − g−1 are units of End((V0)D).
Thus, (V0, g) ∈ S and (U, h)≤ (V0, g), contradicting the maximality of (U, h). So

U = V and the proof is complete.
The proofs of (2) and (3) are similar to the proof of (1). 2

Following Menal and Moncasi [6], a ring R is said to satisfy unit 1-stable
range if, whenever a R + bR = R, there exists u ∈U (R) such that a + bu ∈U (R).
This condition has been discussed by several authors. For example, Menal and
Moncasi [6] proved that if R satisfies the unit 1-stable range condition, then
K1(R)=U (R)/V (R), where V (R) is the subgroup of U (R) generated by
{(ab + 1)(ba + 1)−1

: ab + 1 ∈U (R)}. The unit 1-stable range is always satisfied
by a ring R such that, for any x, y ∈ R, there exists u ∈U (R) such that x − u and
y − u−1 are both units of R (see Goodearl and Menal [5]). The latter
condition is called the Goodearl–Menal condition by Chen [4]. Proposition 9
in [4] and the remarks on page 6 in [4] indicate that, for a semilocal ring R,
R satisfies (P) if and only if R satisfies the Goodearl–Menal condition if and only
if no homomorphic image of R is isomorphic to Z2 or Z3. On the other hand, by [8,
Corollary 4] and the remarks on page 6 in [4], one has that, for a semilocal ring R, R
satisfies (Q) if and only if R satisfies unit 1-stable range if and only if no homomorphic
image of R is isomorphic to Z2.

It is easy to verify that the ring Z3 satisfies (Q), but not (P); and any field of four
elements satisfies (P), but not (O). Condition (O) certainly implies both (P) and (Q),
but it is unknown whether (P) implies (Q). We close with a sufficient condition for (P)
to imply (Q). A ring R is called right continuous if every right ideal is essential in a
direct summand of RR and every right ideal isomorphic to a direct summand of RR is
itself a direct summand. The Jacobson radical of a ring R is denoted by J (R).
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PROPOSITION 5. Let R/J (R) be a right continuous ring. If R satisfies (P), then it
satisfies (Q).

PROOF. Because every unit of R/J (R) can be lifted to a unit of R, R satisfies (P)
(respectively (Q)) if and only if R/J (R) satisfies (P) (respectively (Q)). Thus, we can
assume that R is semiprimitive, right continuous. By Utumi [7], R is von Neumann
regular; so 2 is a regular element of R. By [10, Lemma 7], R = S × T where 2 is a
unit of S and 2 is a nilpotent element of T . Thus 2 ∈ J (T )⊆ J (R). Since J (R)= 0,
2= 0 in T . Since R satisfies (P), T satisfies (P). This, together with the fact that 2= 0
in T , implies that T satisfies (Q). It remains to show that S satisfies (Q). Because R
is right continuous, S is right continuous. So S is a clean ring by [1, Theorem 3.9],
and 2 ∈U (S). Thus, by [2, Theorem 11], for any a ∈ S, a = u + v where u ∈U (S)
and v2

= 1. This shows a − v = a − v−1
= u ∈U (S). So S satisfies (Q). Hence

R = S × T satisfies (Q). 2
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