DECOMPOSING LINEAR TRANSFORMATIONS

LU WANG and YIQIANG ZHOU ${ }^{凶}$

(Received 3 June 2010)

Abstract

Let R be the ring of linear transformations of a right vector space over a division ring D. Three results are proved: (1) if $|D|>4$, then for any $a \in R$ there exists a unit u of R such that $a+u, a-u$ and $a-u^{-1}$ are units of R; (2) if $|D|>3$, then for any $a \in R$ there exists a unit u of R such that both $a+u$ and $a-u^{-1}$ are units of $R ;(3)$ if $|D|>2$, then for any $a \in R$ there exists a unit u of R such that both $a-u$ and $a-u^{-1}$ are units of R. The second result extends the main result in H . Chen, ['Decompositions of countable linear transformations', Glasg. Math. J. (2010), doi:10.1017/S0017089510000121] and the third gives an affirmative answer to the question raised in the same paper.

2000 Mathematics subject classification: primary 16S50; secondary 16U99.
Keywords and phrases: linear transformation, unit, unit 1-stable range.

Let R be a ring with identity and let $U(R)$ be the group of units of R. In this note, we are concerned with the following three conditions on R :

$$
\begin{align*}
& \forall a \in R, \exists u \in U(R) \text { such that } a+u, a-u, a-u^{-1} \in U(R) \tag{O}\\
& \forall a \in R, \exists u \in U(R) \text { such that } a+u, a-u^{-1} \in U(R) \tag{P}\\
& \forall a \in R, \exists u \in U(R) \text { such that } a-u, a-u^{-1} \in U(R) \tag{Q}
\end{align*}
$$

Connections of these conditions with some well-known conditions in ring theory will be briefly explained later. In 1954 Zelinsky [9] proved that every element in the ring of linear transformations of a right vector space over a division ring D is a sum of two units unless $D=\mathbb{Z}_{2}$ and $\operatorname{dim}(V)=1$. This is the motivation for the work of Chen [4] where it is proved that the ring of linear transformations of a countably generated right vector space over a division ring D with $|D| \neq 2,3$ satisfies (P). Chen [4] is also motivated to raise the question whether the ring of linear transformations of a countably generated right vector space over a division ring D with $|D| \neq 2$ satisfies (Q). The main result of this note is the following theorem.

[^0](C) 2010 Australian Mathematical Publishing Association Inc. 0004-9727/2010 \$16.00

THEOREM 1. Let $\operatorname{End}\left(V_{D}\right)$ be the ring of linear transformations of a right vector space V over a division ring D.
(1) If $|D|>4$, then $\operatorname{End}\left(V_{D}\right)$ satisfies (O).
(2) If $|D|>3$, then $\operatorname{End}\left(V_{D}\right)$ satisfies (P).
(3) If $|D|>2$, then $\operatorname{End}\left(V_{D}\right)$ satisfies (Q).

Part (2) of the theorem is an improvement of the main result of [4, Theorem 5] where (2) is proved for any countably generated vector space V. Part (3) of the theorem is an affirmative answer to Chen's question [4, p. 6] whether the ring of linear transformations of a countably generated right vector space over a division ring of more than two elements satisfies (Q).

Three lemmas are needed for the proof of the theorem. For a countably infinitedimensional right vector space V_{D}, a linear transformation $f \in \operatorname{End}\left(V_{D}\right)$ is called a shift operator if there exists a basis $\left\{v_{1}, v_{2}, \ldots, v_{n}, \ldots\right\}$ of V such that $f\left(v_{i}\right)=v_{i+1}$ for all i.

Lemma 2. Let V be a countably infinite-dimensional right vector space over a division ring D and let $f \in \operatorname{End}\left(V_{D}\right)$ be a shift operator. Then there exists $g \in$ $U\left(\operatorname{End}\left(V_{D}\right)\right)$ such that $f+g, f-g, f-g^{-1} \in U\left(\operatorname{End}\left(V_{D}\right)\right)$.

Proof. By fixing a basis of V_{D}, we can identify f with a matrix

$$
A=\left(\begin{array}{cccc}
X & 0 & 0 & \cdots \\
Y & X & 0 & \cdots \\
0 & Y & X & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right) \quad \text { where } X=\left(\begin{array}{cc}
0 & 0 \\
1 & 0
\end{array}\right), Y=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) .
$$

Let

$$
B=\left(\begin{array}{cccc}
X & 0 & 0 & \cdots \\
0 & X & 0 & \cdots \\
0 & 0 & X & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right) \quad \text { and } \quad C=\left(\begin{array}{cccc}
0 & 0 & 0 & \cdots \\
Y & 0 & 0 & \cdots \\
0 & Y & 0 & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

Then $B^{2}=C^{2}=0$ and $A=B+C$. Thus, $1+B$ is invertible with inverse $1-B$. We see that $A-(1+B)=C-1$ is invertible, and

$$
A-(1-B)=\left(\begin{array}{cccc}
2 X-1 & 0 & 0 & \cdots \\
Y & 2 X-1 & 0 & \cdots \\
0 & Y & 2 X-1 & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

is invertible with inverse

$$
\left(\begin{array}{cccc}
-(2 X+1) & 0 & 0 & \cdots \\
-(2 X+1) Y(2 X+1) & -(2 X+1) & 0 & \cdots \\
0 & -(2 X+1) Y(2 X+1) & -(2 X+1) & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

and

$$
A+(1+B)=\left(\begin{array}{cccc}
1+2 X & 0 & 0 & \cdots \\
Y & 1+2 X & 0 & \cdots \\
0 & Y & 1+2 X & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

is invertible with inverse

$$
\left(\begin{array}{cccc}
1-2 X & 0 & 0 & \cdots \\
-(1-2 X) Y(1-2 X) & 1-2 X & 0 & \cdots \\
0 & -(1-2 X) Y(1-2 X) & 1-2 X & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right) .
$$

This completes the proof.
The $n \times n$ matrix ring over a ring R is denoted by $\mathbb{M}_{n}(R)$. Part (3) of Lemma 3 comes from Chen [3, Theorem 4.1]. But the proof given here is shorter.

Lemma 3. Let R be a ring and $n \geq 1$.
(1) If for any $a, b, c \in R$ there exists $u \in U(R)$ such that $a+u, b-u, c-u^{-1}$ are units of R, then the same is true of $\mathbb{M}_{n}(R)$.
(2) Iffor any $a, b \in R$ there exists $u \in U(R)$ such that $a+u, b-u^{-1}$ are units of R, then the same is true of $\mathbb{M}_{n}(R)$.
(3) Iffor any $a, b \in R$ there exists $u \in U(R)$ such that $a-u, b-u^{-1}$ are units of R, then the same is true of $\mathbb{M}_{n}(R)$.

PROOF. (1) If $n=1$, there is nothing to prove. Suppose that $n>1$ and let

$$
\alpha=\left(\begin{array}{ll}
\alpha_{11} & \alpha_{12} \\
\alpha_{21} & \alpha_{22}
\end{array}\right), \quad \beta=\left(\begin{array}{ll}
\beta_{11} & \beta_{12} \\
\beta_{21} & \beta_{22}
\end{array}\right) \quad \text { and } \quad \gamma=\left(\begin{array}{ll}
\gamma_{11} & \gamma_{12} \\
\gamma_{21} & \gamma_{22}
\end{array}\right)
$$

be matrices in $\mathbb{M}_{n}(R)$, where the upper left-hand blocks are elements of R, the upper right-hand blocks are $1 \times(n-1)$ matrices, the lower left-hand blocks are $(n-1) \times 1$ matrices, and the lower right-hand blocks are matrices in $\mathbb{M}_{n-1}(R)$. By our assumption, there exists $u \in U(R)$ such that $x:=\alpha_{11}+u, y:=\beta_{11}-u$, $z:=\gamma_{11}-u^{-1}$ are all units of R. Now $\alpha_{22}-\alpha_{21} x^{-1} \alpha_{12}, \beta_{22}-\beta_{21} y^{-1} \beta_{12}$, $\gamma_{22}-\gamma_{21} z^{-1} \gamma_{12}$ are matrices in $\mathbb{M}_{n-1}(R)$. By the induction hypothesis, there exists a unit μ of $\mathbb{M}_{n-1}(R)$ such that

$$
\begin{aligned}
& X:=\left(\alpha_{22}+\alpha_{21} x^{-1} \alpha_{12}\right)+\mu \\
& Y:=\left(\beta_{22}-\beta_{21} y^{-1} \beta_{12}\right)-\mu \\
& Z:=\left(\gamma_{22}-\gamma_{21} z^{-1} \gamma_{12}\right)-\mu^{-1}
\end{aligned}
$$

are units of $\mathbb{M}_{n-1}(R)$. Then $\lambda:=\left(\begin{array}{ll}u & 0 \\ 0 & \mu\end{array}\right)$ is a unit of $\mathbb{M}_{n}(R)$ such that

$$
\begin{aligned}
& \alpha+\lambda=\left(\begin{array}{cc}
x & \alpha_{12} \\
\alpha_{21} & \alpha_{21} x^{-1} \alpha_{12}+X
\end{array}\right)=\left(\begin{array}{cc}
1 & 0 \\
\alpha_{21} x^{-1} & 1
\end{array}\right)\left(\begin{array}{cc}
x & \alpha_{12} \\
0 & X
\end{array}\right), \\
& \beta-\lambda=\left(\begin{array}{cc}
y & \beta_{12} \\
\beta_{21} & \beta_{21} y^{-1} \beta_{12}+Y
\end{array}\right)=\left(\begin{array}{cc}
1 & 0 \\
\beta_{21} y^{-1} & 1
\end{array}\right)\left(\begin{array}{cc}
y & \beta_{12} \\
0 & Y
\end{array}\right), \\
& \gamma-\lambda^{-1}=\left(\begin{array}{cc}
z & \gamma_{12} \\
\gamma_{21} & \gamma_{21} z^{-1} \gamma_{12}+Z
\end{array}\right)=\left(\begin{array}{cc}
1 & 0 \\
\gamma_{21} z^{-1} & 1
\end{array}\right)\left(\begin{array}{cc}
z & \gamma_{12} \\
0 & Z
\end{array}\right)
\end{aligned}
$$

are all units of $\mathbb{M}_{n}(R)$. This completes the proof.
The proofs of (2) and (3) are similar to the proof of (1).
Part (2) of Lemma 4 below comes from Chen [4, Lemma 2].
Lemma 4. Let D be a division ring and $n \geq 1$.
(1) If $|D|>4$, then $\mathbb{M}_{n}(D)$ satisfies (O).
(2) If $|D|>3$, then $\mathbb{M}_{n}(D)$ satisfies (P).
(3) If $|D|>2$, then $\mathbb{M}_{n}(D)$ satisfies (Q).

Proof. (1) It is easily seen that if $|D|>4$ then for any $a, b, c \in D$ there exists $u \in U(D)$ such that $a+u, b-u, c-u^{-1}$ are units of D. Thus (1) follows from Lemma 3(1).

The proofs of (2) and (3) are similar to the proof of (1).
Proof of Theorem 1. (1) Let $f \in \operatorname{End}\left(V_{D}\right)$. Let \mathcal{S} be the set of all ordered pairs (W, g), where W is an f-invariant subspace of V and $g,\left.f\right|_{W}+g,\left.f\right|_{W}-g$, and $\left.f\right|_{W}-g^{-1}$ are units of $\operatorname{End}\left(W_{D}\right)$ (where $\left.f\right|_{W}$ is the restriction of f to W). Clearly, $((0), 1) \in \mathcal{S}$.

Define a partial ordering on \mathcal{S} by setting $\left(W^{\prime}, g^{\prime}\right) \leq(W, g)$ whenever both are in $\mathcal{S}, W^{\prime} \subseteq W$ and $g^{\prime}=\left.g\right|_{W^{\prime}}$.

Suppose that $\left\{\left(W_{\alpha}, g_{\alpha}\right): \alpha \in \Lambda\right\}$ is a totally ordered subset of \mathcal{S}. We define $g \in \operatorname{End}\left(\left(\cup W_{\alpha}\right)_{D}\right)$ by setting $g(x)=g_{\alpha}(x)\left(\alpha \in \Lambda, x \in W_{\alpha}\right)$, and it is easy to see that $\left(\cup W_{\alpha}, g\right) \in \mathcal{S}$ and $\left(W_{\alpha}, g_{\alpha}\right) \leq\left(\cup W_{\alpha}, g\right)$ for all $\alpha \in \Lambda$. It follows from Zorn's lemma that there exists a maximal element (U, h) in \mathcal{S}; we prove (1) by showing that $U=V$. Hence we assume that $U \neq V$, and show that this leads to a contradiction.

Let us fix $x \in V \backslash U$. Let $V_{0}:=U+K$ where K is the subspace of V spanned by $\left\{x, f(x), f^{2}(x), \ldots\right\}$, and write $V_{0}=U \oplus N$ where N is a nonzero subspace of V_{0}. Since U is f-invariant, there is a linear transformation $\bar{f}: V_{0} / U \rightarrow V_{0} / U$ given by $\bar{f}(\bar{v})=\overline{f(v)}$ (for $v \in V_{0}$). Let $\pi: V_{0} \rightarrow N$ be the projection on N along U. There is a natural isomorphism $\varphi: V_{0} / U \rightarrow N$ such that $\varphi(\bar{v})=\pi(v)$ (for $v \in V_{0}$). Thus $\theta:=\varphi \bar{f} \varphi^{-1} \in \operatorname{End}\left(N_{D}\right)$, and so $\theta \varphi=\varphi \bar{f}$. Since V_{0} / U is spanned by $\left\{\bar{x}, \bar{f}(\bar{x}), \bar{f}^{2}(\bar{x}), \ldots\right\}, N$ is spanned by $\left\{\varphi(\bar{x}), \varphi(\bar{f}(\bar{x})), \varphi\left(\bar{f}^{2}(\bar{x})\right), \ldots\right\}=$ $\left\{\varphi(\bar{x}), \theta \varphi(\bar{x}), \theta^{2} \varphi(\bar{x}), \ldots\right\}$. Thus, either $\theta \in \operatorname{End}\left(N_{D}\right)$ is a shift operator or N_{D} is finite-dimensional. So, by Lemmas 2 and 4(1), there exists $\alpha \in U\left(\operatorname{End}\left(N_{D}\right)\right)$ such
that $\theta+\alpha, \theta-\alpha$ and $\theta-\alpha^{-1}$ are all units of $\operatorname{End}\left(N_{D}\right)$. Let $g: V_{0} \rightarrow V_{0}$ be given by $g(u+v)=h(u)+\alpha(v)(u \in U, v \in N)$. Then g is a unit of $\operatorname{End}\left(\left(V_{0}\right)_{D}\right)$.

We next show that $f+g, f-g$ and $f-g^{-1}$ are units of $\operatorname{End}\left(\left(V_{0}\right)_{D}\right)$. For $u \in U$ and $v \in N$,

$$
\begin{equation*}
(f-g)(u+v)=(f-h)(u)+[f(v)-\alpha(v)] . \tag{*}
\end{equation*}
$$

Applying π to both sides of $(*)$ gives

$$
\begin{aligned}
\pi(f-g)(u+v) & =\pi f(v)-\alpha(v)=\varphi \overline{f(v)}-\alpha(v)=\varphi \bar{f}(\bar{v})-\alpha(v) \\
& =\theta \varphi(\bar{v})-\alpha(v)=\theta \pi(v)-\alpha(v)=\theta(v)-\alpha(v) \\
& =(\theta-\alpha)(v)
\end{aligned}
$$

If $(f-g)(u+v)=0$, then $(\theta-\alpha)(v)=0$ and so $v=0$. It follows from (*) that $(f-h)(u)=0$, and hence $u=0$. Thus, $f-g: V_{0} \rightarrow V_{0}$ is one-to-one.

Clearly, $U \subseteq \operatorname{Im}(f-g)$. For any $w \in N$, there exists an element $v \in N$ such that $(\theta-\alpha)(v)=w$. Thus, $w=(\theta-\alpha)(v)=\pi(f-g)(u+v) \in \operatorname{Im}(f-g)$ because $U \subseteq \operatorname{Im}(f-g)$. So $f-g: V_{0} \rightarrow V_{0}$ is onto. Hence $f-g$ is a unit of $\operatorname{End}\left(\left(V_{0}\right)_{D}\right)$.

Similarly, one can show that $f+g, f-g^{-1}$ are units of $\operatorname{End}\left(\left(V_{0}\right)_{D}\right)$.
Thus, $\left(V_{0}, g\right) \in \mathcal{S}$ and $(U, h) \leq\left(V_{0}, g\right)$, contradicting the maximality of (U, h). So $U=V$ and the proof is complete.

The proofs of (2) and (3) are similar to the proof of (1).
Following Menal and Moncasi [6], a ring R is said to satisfy unit 1-stable range if, whenever $a R+b R=R$, there exists $u \in U(R)$ such that $a+b u \in U(R)$. This condition has been discussed by several authors. For example, Menal and Moncasi [6] proved that if R satisfies the unit 1 -stable range condition, then $K_{1}(R)=U(R) / V(R)$, where $V(R)$ is the subgroup of $U(R)$ generated by $\left\{(a b+1)(b a+1)^{-1}: a b+1 \in U(R)\right\}$. The unit 1 -stable range is always satisfied by a ring R such that, for any $x, y \in R$, there exists $u \in U(R)$ such that $x-u$ and $y-u^{-1}$ are both units of R (see Goodearl and Menal [5]). The latter condition is called the Goodearl-Menal condition by Chen [4]. Proposition 9 in [4] and the remarks on page 6 in [4] indicate that, for a semilocal ring R, R satisfies (P) if and only if R satisfies the Goodearl-Menal condition if and only if no homomorphic image of R is isomorphic to \mathbb{Z}_{2} or \mathbb{Z}_{3}. On the other hand, by [8, Corollary 4] and the remarks on page 6 in [4], one has that, for a semilocal ring R, R satisfies (Q) if and only if R satisfies unit 1-stable range if and only if no homomorphic image of R is isomorphic to \mathbb{Z}_{2}.

It is easy to verify that the ring \mathbb{Z}_{3} satisfies (Q), but not (P); and any field of four elements satisfies (P), but not (O). Condition (O) certainly implies both (P) and (Q), but it is unknown whether (P) implies (Q). We close with a sufficient condition for (P) to imply (Q). A ring R is called right continuous if every right ideal is essential in a direct summand of R_{R} and every right ideal isomorphic to a direct summand of R_{R} is itself a direct summand. The Jacobson radical of a ring R is denoted by $J(R)$.

Proposition 5. Let $R / J(R)$ be a right continuous ring. If R satisfies (P), then it satisfies (Q).
Proof. Because every unit of $R / J(R)$ can be lifted to a unit of R, R satisfies (P) (respectively (Q)) if and only if $R / J(R)$ satisfies (P) (respectively (Q)). Thus, we can assume that R is semiprimitive, right continuous. By Utumi [7], R is von Neumann regular; so 2 is a regular element of R. By [10, Lemma 7], $R=S \times T$ where 2 is a unit of S and 2 is a nilpotent element of T. Thus $2 \in J(T) \subseteq J(R)$. Since $J(R)=0$, $2=0$ in T. Since R satisfies (P), T satisfies (P). This, together with the fact that $2=0$ in T, implies that T satisfies (Q). It remains to show that S satisfies (Q). Because R is right continuous, S is right continuous. So S is a clean ring by [1, Theorem 3.9], and $2 \in U(S)$. Thus, by [2, Theorem 11], for any $a \in S, a=u+v$ where $u \in U(S)$ and $v^{2}=1$. This shows $a-v=a-v^{-1}=u \in U(S)$. So S satisfies (Q). Hence $R=S \times T$ satisfies (Q).

References

[1] V. P. Camillo, D. Khurana, T. Y. Lam, W. K. Nicholson and Y. Zhou, 'Continuous modules are clean', J. Algebra 304(1) (2006), 94-111.
[2] V. P. Camillo and H. P. Yu, 'Exchange rings, units and idempotents', Comm. Algebra 22(12) (1994), 4737-4749.
[3] H. Chen, 'Units, idempotents, and stable range conditions', Comm. Algebra 29(2) (2001), 703-717.
[4] H. Chen, 'Decompositions of countable linear transformations', Glasg. Math. J. (2010), doi:10.1017/S0017089510000121.
[5] K. R. Goodearl and P. Menal, 'Stable range one for rings with many units', J. Pure Appl. Algebra 54 (1988), 261-287.
[6] P. Menal and J. Moncasi, ' K_{1} of von Neumann regular rings', J. Pure Appl. Algebra 33 (1984), 295-312.
[7] Y. Utumi, 'On continuous rings and self injective rings', Trans. Amer. Math. Soc. 118 (1965), 158-173.
[8] T. S. Wu, 'Unit 1-stable range condition', Chinese Ann. Math. A 16(6) (1995), 760-768.
[9] D. Zelinsky, 'Every linear transformation is a sum of nonsingular ones', Proc. Amer. Math. Soc. 5 (1954), 627-630.
[10] Y. Zhou, 'On clean group rings', in: Advances in Ring Theory, Trends in Mathematics (Birkhäuser, Basel, 2009), pp. 335-345.

LU WANG, Department of Mathematics and Statistics, Memorial University of Newfoundland, St. John's, Nfld A1C 5S7, Canada e-mail: lu.wang @mun.ca

YIQIANG ZHOU, Department of Mathematics and Statistics, Memorial University of Newfoundland, St. John's, Nfld A1C 5S7, Canada e-mail: zhou@mun.ca

[^0]: The work was supported by a Discovery Grant from the Natural Sciences and Engineering Research Council of Canada.

