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Ranks of Algebras of Continuous
C∗-Algebra Valued Functions
Masaru Nagisa, Hiroyuki Osaka and N. Christopher Phillips

Abstract. We prove a number of results about the stable and particularly the real ranks of tensor products
of C∗-algebras under the assumption that one of the factors is commutative. In particular, we prove the
following:

(1) If X is any locally compact σ-compact Hausdorff space and A is any C∗-algebra, then
RR
(

C0(X)⊗ A
)
≤ dim(X) + RR(A).

(2) If X is any locally compact Hausdorff space and A is any purely infinite simple C∗-algebra, then
RR
(

C0(X)⊗ A
)
≤ 1.

(3) RR
(

C([0, 1])⊗ A
)
≥ 1 for any nonzero C∗-algebra A, and sr

(
C([0, 1]2)⊗ A

)
≥ 2 for any unital

C∗-algebra A.
(4) If A is a unital C∗-algebra such that RR(A) = 0, sr(A) = 1, and K1(A) = 0, then

sr
(

C([0, 1])⊗ A
)
= 1.

(5) There is a simple separable unital nuclear C∗-algebra A such that RR(A) = 1 and
sr
(

C([0, 1])⊗ A
)
= 1.

0 Introduction

The (topological) stable rank of Rieffel [31] and the real rank of Brown and Pedersen
[5] are noncommutative generalizations of the dimension of a compact Hausdorff
space. While it has been known for some time that the covering dimension satisfies
dim(X×Y ) ≤ dim(X) + dim(Y ) for compact Hausdorff spaces X and Y (see Propo-
sition 9.3.2 of [25]), little is known about the analogous situation for C∗-algebras,
namely the stable and real ranks of tensor products of C∗-algebras. In this paper, we
investigate the real rank, and to some extent the stable rank, of tensor products of
C∗-algebras under the assumption that one of the factors is commutative.

If A is a C∗-algebra, we denote its real rank by RR(A) and its stable rank by sr(A).
(We use the term stable rank because it has been shown [14] that for a C∗-algebra,
Rieffel’s topological stable rank is equal to the (Bass) stable rank of the algebra.) Our
main results are then as follows:

(1) If X is any locally compact σ-compact Hausdorff space and A is any C∗-algebra,
then RR

(
C0(X)⊗ A

)
≤ dim(X) + RR(A). (Corollary 1.10.)

(2) If X is any locally compact Hausdorff space and A is any purely infinite simple
C∗-algebra, then RR

(
C0(X)⊗ A

)
≤ 1. (Theorem 3.11.)
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(3) RR
(

C([0, 1])⊗A
)
≥ 1 for any nonzero C∗-algebra A, and sr

(
C([0, 1]2)⊗A

)
≥

2 for any unital C∗-algebra A. (Propositions 5.1 and 5.3.)
(4) If A is a unital C∗-algebra such that RR(A) = 0, such that sr(A) = 1, and such

that K1(A) = 0, then sr
(

C([0, 1])⊗ A
)
= 1. (Theorem 4.3.)

(5) There is a simple separable unital nuclear C∗-algebra A such that RR(A) = 1
and sr

(
C([0, 1])⊗ A

)
= 1. (Example 5.8.)

The result (1) is an analog and generalization of the inequality dim(X × Y ) ≤
dim(X) + dim(Y ). We do not expect equality because this can fail even in the case
of compact metric spaces (see [30]), and also for A = Mn [4] or for purely infinite
simple A (result (2) above). In fact, even the inequality can fail for a tensor product
of two noncommutative C∗-algebras. In [16] and in [24] there are examples of two
separable nuclear C∗-algebras A and B such that

RR(A) = RR(B) = 0 and RR(A⊗ B) = 1.

As corollaries to (1), we give several related results. The one most closely resem-
bling the inequality for dimensions of products is Corollary 1.12: RR

(
C0(X)⊗A

)
≤

RR
(

C0(X)
)

+ RR(A) for any unital A and any X.

The same methods as for real rank prove that sr
(

C0(X) ⊗ A
)
≤ dim(X) + sr(A)

for any locally compact σ-compact Hausdorff space X. While for real rank, this in-
equality is best possible, for stable rank the conjecture is that sr

(
C0(X) ⊗ A

)
≤

〈 dim(X)
2 〉 + sr(A), where 〈α〉 is the least integer n satisfying α ≤ n. This conjecture

remains open.
The result (2) on purely infinite simple C∗-algebras should be compared with the

theorem that RR(B⊗K) ≤ 1 for any B (Proposition 3.3 of [4]), and with the theorem
that RR(B ⊗ A) ≤ 1 for any B and any separable nuclear purely infinite simple C∗-
algebra A (Corollary 1.4 of [28]). The basic idea is that tensoring with a C∗-algebra
containing matrix algebras of arbitrarily large size in an essential way should reduce
the real rank to at most 1. We do not, however, know whether, say, RR(B⊗min A) ≤ 1
for any B and any (separable) purely infinite simple C∗-algebra A.

Along the way to the proof of (2), we prove the following result on hereditary sub-
algebras which may be of independent interest (Corollary 2.13). Let A be a separable
purely infinite simple C∗-algebra, let X ⊂ [0, 1]n be closed, and let D ⊂ C(X)⊗A be
a hereditary subalgebra whose image under every point evaluation map is nonzero
and nonunital. Then D is stable. (The restriction to subsets of [0, 1]n is probably
unnecessary.)

The results (3), (4), and (5) are the main part of a closer investigation of ten-
sor products with C([0, 1]). One expects, for example, that C([0, 1]) ⊗ A should
never be “zero dimensional”, and the inequality RR

(
C([0, 1]) ⊗ A

)
≥ 1 (for any

C∗-algebra A 	= 0) in (3) can be interpreted as saying exactly that. Moreover, if A
is “zero dimensional”, then one expects C([0, 1]) ⊗ A to be “one dimensional”. One
version of this statement follows from (1) and (3): if RR(A) = 0 and A 	= 0, then
RR

(
C([0, 1]) ⊗ A

)
= 1. The result (4) is another, more interesting, version. More-

over, we show that sr
(

C([0, 1]) ⊗ A
)
= 1 implies both sr(A) = 1 and K1(A) = 0.
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One might therefore hope that sr
(

C([0, 1])⊗ A
)
= 1 would also imply RR(A) = 0.

Unfortunately, as our result (5) shows, this is not true.

This paper is organized as follows. In the first section we prove that
RR

(
C0(X) ⊗ A

)
≤ dim(X) + RR(A) for X locally compact and σ-compact, and

other results related to (1). In the second section we prove the result on hereditary
subalgebras of C(X) ⊗ A for A purely infinite and simple. We use this (actually, a
more precise form) in the third section to derive the bound (2) on RR

(
C0(X)⊗ A

)
.

Section 4 contains the proof that RR(A) = 0, sr(A) = 1, and K1(A) = 0 imply
sr
(

C([0, 1])⊗A
)
= 1. Section 5 contains the lower bound results (3) and the coun-

terexample (5).

Some of this work was carried out during visits by the second two authors to
Københavns Universitet during the Fall Semester 1995, and they are grateful to that
institution for its hospitality. The third author would also like to thank Purdue Uni-
versity; some of the work reported here was done during a sabbatical year there in
1997–1998.

Throughout this paper, dim(X) means the covering dimension of X (Section 3.1
of [25]). We recall, however, that all three common dimensions agree for compact
metric spaces. (This follows from Corollary 4.5.10 of [25].) We use [25] as our stan-
dard reference for dimension theory. Note, however, that the terminology there is
unusual. (“Bicompact” in [25] is what is usually called compact Hausdorff, and “Ti-
honov” in [25] is what is usually called completely regular, that is, points are closed
and can be separated from closed sets by continuous functions.) We use without
comment the standard identifications of tensor products with algebras of continuous
functions: C(X)⊗A ∼= C(X,A) for compact X and C0(X)⊗A ∼= C0(X,A) for locally
compact X. We denote by Asa the set of selfadjoint elements of a C∗-algebra A, by
U (A) and inv(A) the groups of unitaries and invertible elements (when A is unital),
and by U0(A) and inv0(A) the identity components of these groups. The unitization
of a C∗-algebra A is A+. This means an identity is added even if one is already present.
We write Ã for the algebra in which the identity is added only if A is nonunital.

1 Real Rank of C0(X)⊗ A

The main result in this section is that if A is unital and X is compact, then
RR

(
C(X)⊗ A

)
≤ RR(A) + dim(X). The various formulations involving spaces that

are only locally compact and C∗-algebras without identities are then derived from
this result by compactifying and passing to ideals.

The basic case is X = [0, 1], which is done by a direct argument. The case X =
[0, 1]n follows by induction, and the case of a finite complex follows by attaching cells.
We pass to a general compact space X by realizing it as an approximate inverse limit
of finite complexes with dimension at most dim(X), following Mardešić and Rubin
[21]. (It is known that an exact realization of this type is not in general possible.)

Lemma 1.1 Let A be a unital C∗-algebra with RR(A) = n. For any ε > 0, N ≥ n,
and a0, a1, . . . , aN ∈ Asa, there exist b0, b1, . . . , bN ∈ Asa such that ‖ai − bi‖ < ε for

0 ≤ i ≤ N and
∑k+n

j=k b2
j is invertible for 0 ≤ k ≤ N − n.
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Proof We prove this statement by induction. In the case N = n + 1, it follows
immediately from the assumption RR(A) = n.

We assume that it is valid for N , and we prove it for N+1. Since RR(A) = n, we can
choose c0, c1, . . . , cn ∈ Asa such that ‖ai − ci‖ <

ε
2 for 0 ≤ i ≤ n and c2

0 + c2
1 + · · ·+ c2

n

is invertible. Therefore there exists a positive number δ such that

c2
0 + c2

1 + · · · + c2
n ≥ δ · 1A.

Choose α > 0 satisfying

(2 max
0≤i≤n

‖ci‖ + α)α ≤
δ

2n
.

By the induction assumption, there exist b1, b2, . . . , bN+1 ∈ Asa such that ‖ci − bi‖ <

min(α, ε2 ) for 1 ≤ i ≤ n, ‖ai−bi‖ < min(α, ε2 ) for n+1 ≤ i ≤ N +1, and
∑k+n

j=k b2
j is

invertible for 1 ≤ k ≤ N +1−n. We set b0 = c0; then ‖ai−bi‖ < ε for 0 ≤ i ≤ N +1.
Moreover, for 0 ≤ i ≤ n,

‖b2
i − c2

i ‖ ≤ (‖bi‖ + ‖ci‖)‖bi − ci‖ ≤ (2 max
0≤i≤n

‖ci‖ + α)α ≤
δ

2n
,

so we have

b2
0 + b2

1 + · · · + b2
n ≥

δ

2
· 1A.

This completes the proof.

Theorem 1.2 Let A be a unital C∗-algebra. Then RR
(

C([0, 1])⊗ A
)
≤ RR(A) + 1.

Proof Without loss of generality, we assume RR(A) = n < ∞. Let f0, f1, . . . , fn+1

be selfadjoint elements in C([0, 1],A). Let ε > 0. By uniform continuity, there is
δ > 0 such that ‖ fi(s)− fi(t)‖ < ε

3 whenever |s− t| < δ and 0 ≤ i ≤ n + 1. Choose

a positive integer N such that 1
N < δ. Define tk =

k
N(n+2) . Note that t0 = 0 and

tN(n+2) = 1. Define selfadjoint elements in A by

ak(n+2)+ j = f j(tk(n+2)+ j)

for 0 ≤ k < N and 0 ≤ j ≤ n + 1. Further define

aN(n+2)+ j = f j(1)

for 0 ≤ j ≤ n + 1. By Lemma 1.1, we can choose elements b0, b1, . . . , bN(n+2)+n+1 in

Asa such that ‖ai − bi‖ <
ε
3 for all i, and such that

∑k+n
j=k b2

j is invertible for 0 ≤ k ≤
N(n + 2) + 1.

For each integer l, we define the function h(0)
l : R → [0, 1] by

h(0)
l (t) =



0 t ≤ tl−n−2

N(n + 2)(t − tl−n−2) tl−n−2 ≤ t ≤ tl−n−1

1 tl−n−1 ≤ t ≤ tl

−N(n + 2)(t − tl+1) tl ≤ t ≤ tl+1

0 tl+1 ≤ t.
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Thus h(0)
l is continuous, piecewise linear, equal to 1 on [tl−n−1, tl], and equal to 0 on

(−∞, tl−n−2] ∪ [tl+1,∞). Set hl = h(0)
l |[0,1]. Define

S j = {l ∈ Z : l = j mod (n + 2)}

and
S = {l ∈ Z : hl = h(0)

l |[0,1] 	= 0} = {0, 1, . . . ,N(n + 2) + n + 1}.

Note that
∑

l∈S j
h(0)

l (t) = 1 for 0 ≤ j ≤ n + 1 and t ∈ R, so
∑

l∈S∩S j
hl(t) = 1 for

0 ≤ j ≤ n + 1 and t ∈ [0, 1].
We now define functions g0, g1, . . . , gn+1 ∈

(
C([0, 1])⊗ A

)
sa

by

g j(t) =
∑

l∈S∩S j

hl(t)bl

for t ∈ [0, 1]. Note that if l ∈ S ∩ S j then al = f j(s) for some s ∈ supp(hl). Since the
support of hl has length at most (n + 3)/

(
N(n + 2)

)
< 2/N , the choice of N implies

that ‖ f j(t)− al‖ < 2ε/3 whenever hl(t) 	= 0. Therefore

‖g j− f j‖ ≤ max
l∈S
‖bl−al‖+sup{‖al− f j (t)‖ : l ∈ S∩S j , t ∈ supp(hl)} <

ε

3
+

2ε

3
= ε.

Moreover, for any t ∈ [0, 1], there is k such that hk(t), hk+1(t), . . . , hk+n(t) are all
equal to 1. It follows that n + 1 of the n + 2 elements g j(t) are exactly the elements
bk, bk+1, . . . , bk+n, whence

n+1∑
j=0

g j(t)2 ≥
n+k∑
i=k

b2
i .

The right hand side is invertible, so the left hand side is too. Thus
∑n+1

j=0 g j(t)2 is
invertible.

We now recall the definition of the pullback (or fibered product).

Definition 1.3 Let A, B, and C be C∗-algebras, and let ϕ : A→ C and ψ : B→ C be
homomorphisms. Define

A⊕(C,ϕ,ψ) B = {(a, b) ∈ A⊕ B : ϕ(a) = ψ(b)}.

When ϕ and ψ are understood, we simply write A⊕C B.

Lemma 1.4 Let X0 be a compact Hausdorff space, and let X = X0 ∪h Dn be the com-
pact Hausdorff space obtained by attaching an n-cell Dn to X0 via the attaching map
h : Sn−1 → X0. (Here Sn−1 is the boundary of Dn.) Let A0 be any C∗-algebra, set
A = C(X0) ⊗ A0, B = C(Dn) ⊗ A0, and C = C(Sn−1) ⊗ A0, and define ϕ : A → C
and ψ : B → C by ϕ( f ) = f ◦ h for f : X0 → C continuous and ψ( f ) = f |Sn−1 for
f : Dn → C continuous. Then

A⊕(C,ϕ,ψ) B ∼= C(X0 ∪h Dn)⊗ A0.
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Proof Let h̃ : Dn → X0 ∪h Dn be the obvious extension of h : Sn−1 → X0. Then the
isomorphism α : C(X0 ∪h Dn,A0) → A ⊕(C,ϕ,ψ) B is given by α( f ) = ( f |X0 , f ◦ h̃).

We need a result on the real rank of pullbacks. The result is stated in Proposi-
tion 1.3 of [23], but the proof given there contains an error: too much surjectivity is
assumed. We are grateful to Takashi Sakamoto for calling our attention to this.

The following lemma will be used in the proof of the estimate for the real rank of
a pullback. It is well known, and we omit its proof. (Compare with the introduction
to [10].)

Lemma 1.5 Let A be a unital C∗-algebra, and let a0, a1, . . . , an ∈ A. Then the follow-
ing are equivalent:

(1) There are c0, c1, . . . , cn ∈ A such that c0a0 + c1a1 + · · · + cnan is invertible.
(2) There are c0, c1, . . . , cn ∈ A such that c0a0 + c1a1 + · · · + cnan = 1.
(3) a∗0 a0 + a∗1 a1 + · · · + a∗n an is invertible.

Proposition 1.6 Let A, B, and C be unital C∗-algebras, let ϕ : A → C be a unital
homomorphism, and let ψ : B→ C be a surjective unital homomorphism. Then

RR(A⊕C B) ≤ max
(

RR(A),RR(B)
)
.

Proof Without loss of generality RR(A) and RR(B) are finite. Let

n = max
(

RR(A),RR(B)
)
.

Let
(a0, b0), (a1, b1), . . . , (an, bn) ∈ (A⊕C B)sa,

and let ε > 0. We approximate the (a j , b j) within ε by selfadjoint elements (r j , y j) ∈
A⊕C B such that

∑n
j=0(r j , y j)2 is invertible.

Without loss of generality assume ε < 3
4 . Since RR(A) ≤ n, there exist elements

r0, r1, . . . , rn ∈ Asa such that ‖r j − a j‖ <
ε
3 and

∑n
j=0 r2

j is invertible. Since ψ
is surjective, and ‖ϕ(r j) − ψ(b j )‖ <

ε
3 , there exist t0, t1, . . . , tn ∈ Bsa such that

ψ(t j) = ϕ(r j) − ψ(b j ) and ‖t j‖ <
ε
3 . Set w j = b j + t j , which is in Bsa and satisfies

ψ(w j) = ϕ(r j) and ‖w j − b j‖ <
ε
3 for all j. Since

n∑
j=0

ψ(w j)
2 =

n∑
j=0

ϕ(r j)
2

is invertible, we can apply Lemma 1.5 in C and use the surjectivity of ψ to find
f0, f1, . . . , fn ∈ B such that the element

d = 1−
n∑

j=0

f jw j ∈ B
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is in ker(ψ). Set
M1 = max(‖ f0‖, ‖ f1‖, . . . , ‖ fn‖).

Since RR(B) ≤ n, there are also x0, x1, . . . , xn ∈ Bsa such that
∑n

j=0 x2
j is invertible

and
‖x j − w j‖ <

ε

3(n + 1)(M1 + 1)
.

Apply Lemma 1.5 again to find g0, g1, . . . , gn ∈ B such that

n∑
j=0

g jx j = 1.

Set
M2 = max(‖g0‖, ‖g1‖, . . . , ‖gn‖),

and set
N = max(‖w0‖, ‖w1‖, . . . , ‖wn‖, ‖x0‖, ‖x1‖, . . . , ‖xn‖).

Let (eλ)λ∈Λ be an approximate identity for ker(ψ) which is quasicentral for B. (See
Theorem 1 of [3].) Choose λ large enough that ‖(1− eλ)d‖ < ε

3 . Define

r = d + eλ
(

1− d−
n∑

j=0

g jw j

)
∈ ker(ψ).

Choose δ > 0 small enough that if D is a C∗-algebra, and if s ∈ Dsa and z ∈ D satisfy

s ≥ 0, ‖s‖ ≤ 1, ‖z‖ ≤ N + 1, and ‖sz − zs‖ < δ,

then
‖s1/2z − zs1/2‖ <

ε

6(n + 1)(M1 + M2 + 1)
.

Choose µ large enough that

‖eµw j − w jeµ‖ < δ, ‖eµx j − x jeµ‖ < δ, and ‖r(1− eµ)‖ <
ε

3
.

Now define

y j = (1− eµ)1/2w j(1− eµ)1/2 + e1/2
µ x je

1/2
µ ∈ Bsa and h j = (1− eλ) f j + eλg j ∈ B.

Clearly ψ(y j) = ψ(w j) = ϕ(r j). We will show below that ‖y j − b j‖ < ε, and that∑n
j=0 h j y j is invertible. Lemma 1.5 then implies that

∑n
j=0 y2

j is invertible, so that∑n
j=0(r j , y j)2 is invertible, and we have ‖(r j , y j)− (a j , b j)‖ < ε. Thus, we will have

shown that RR(A⊕C B) ≤ max
(

RR(A),RR(B)
)

.
We start our proof of the required conditions with a preliminary estimate. Since

‖x j‖ ≤ N + 1, the choices of δ and µ imply that

‖e1/2
µ x j − x je

1/2
µ ‖ <

ε

6(n + 1)(M1 + M2 + 1)
.
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Therefore
‖e1/2
µ x je

1/2
µ − x jeµ‖ <

ε

6(n + 1)(M1 + M2 + 1)
.

Also,
‖(1− eµ)w j − w j(1− eµ)‖ = ‖eµw j − w jeµ‖ < δ,

so similarly

‖(1− eµ)1/2w j(1− eµ)1/2 − w j(1− eµ)‖ <
ε

6(n + 1)(M1 + M2 + 1)
.

Now we estimate ‖y j − b j‖. Using the definition of y j and the preliminary esti-
mate, we have:

‖y j − b j‖ ≤ ‖y j − w j‖ + ‖w j − b j‖

< 2 ·
ε

6(n + 1)(M1 + M2 + 1)
+ ‖w j(1− eµ) + x jeµ − w j‖ + ‖w j − b j‖

<
ε

3
+ ‖(x j − w j)eµ‖ + ‖w j − b j‖ <

ε

3
+

ε

3(n + 1)(M1 + 1)
+
ε

3
≤ ε.

It remains to prove that
∑n

j=0 h j y j is invertible. We calculate:

n∑
j=0

h jw j = (1− eλ)
n∑

j=0

f jw j + eλ

n∑
j=0

g jw j = (1− eλ)(1− d) + eλ

n∑
j=0

g jw j

= 1−
[

d + eλ
(

1− d−
n∑

j=0

g jw j

)]
= 1− r.

Also, since

‖x j − w j‖ <
ε

3(n + 1)(M1 + 1)
,

n∑
j=0

f jw j = 1− d, and
n∑

j=0

g jx j = 1,

we have ∥∥∥ n∑
j=0

h jx j − [1− (1− eλ)d]
∥∥∥

=
∥∥∥ (1− eλ)

n∑
j=0

f jx j + eλ

n∑
j=0

g jx j − [1− (1− eλ)d]
∥∥∥

=
∥∥∥ (1− eλ)

n∑
j=0

f j(x j − w j)
∥∥∥

< (n + 1) max
j
‖ f j‖ ·

ε

3(n + 1)(M1 + 1)
≤
ε

3
.

https://doi.org/10.4153/CJM-2001-039-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2001-039-8


Real and Stable Rank 987

Using our preliminary estimate above, we get

‖h j y j − [h jw j(1− eµ) + h jx jeµ]‖ ≤ 2 ·
‖h j‖ε

6(n + 1)(M1 + M2 + 1)

≤
(‖ f j‖ + ‖g j‖)ε

3(n + 1)(M1 + M2 + 1)
≤

ε

3(n + 1)
.

Therefore∥∥∥1−
n∑

j=0

h j y j

∥∥∥ <
ε

3
+
∥∥∥1−

( n∑
j=0

h jw j

)
(1− eµ)−

( n∑
j=0

h jx j

)
eµ
∥∥∥

<
ε

3
+
ε

3
+ ‖1− (1− r)(1− eµ)− [1− (1− eλ)d]eµ‖

=
2ε

3
+ ‖r(1− eµ) + (1− eλ)deµ‖ <

2ε

3
+
ε

3
+
ε

3
< 1,

where the last inequality follows from the assumption ε < 3
4 . So

∑n
j=0 h j y j is invert-

ible.
We have completed the proof.

Proposition 1.7 Let A be a unital C∗-algebra, and let X be a finite CW-complex of
dimension n. Then

RR
(

C(X)⊗ A
)
= RR

(
C([0, 1]n)⊗ A

)
.

Proof The algebra C([0, 1]n)⊗ A is a quotient of C(X)⊗ A, so certainly

RR
(

C(X)⊗ A
)
≥ RR

(
C([0, 1]n)⊗ A

)
.

The proof of the reverse inequality is by induction on the number of cells of X. If
there is only one cell, it is a 0-cell, n = 0, and

RR
(

C(X)⊗ A
)
= RR(A) = RR

(
C([0, 1]n)⊗ A

)
.

For the induction step, we can assume X is obtained by adjoining an n-cell Dn to a
finite CW-complex X0 with dim(X0) ≤ n and for which the result is already known
to hold. By Lemma 1.4, we have

C(X)⊗ A ∼=
(

C(X0)⊗ A
)
⊕C(Sn−1)⊗A

(
C(Dn)⊗ A

)
.

Proposition 1.6 therefore implies that

RR
(

C(X)⊗ A
)
≤ max

(
RR

(
C(X0)⊗ A

)
,RR

(
C(Dn)⊗ A

))
= max

(
RR

(
C(X0)⊗ A

)
,RR

(
C([0, 1]n)⊗ A

))
≤ RR

(
C([0, 1]n)⊗ A

)
.
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We now pass from finite CW-complexes to compact Hausdorff spaces. For this,
we use the notion of an approximate inverse system of compact metric spaces, due to
Mardešić and Rubin [21, Definition 1]. An approximate inverse system of compact
metric spaces consists of a directed set Λ with no maximal element, for each λ ∈ Λ
a compact metric space Xλ with metric dλ and a real number ελ > 0, and for each
λ, λ ′ ∈ Λ with λ ≤ λ ′ a not necessarily continuous function pλλ ′ : Xλ ′ → Xλ.
Moreover, the following conditions must be satisfied:

(1) dλ1

(
pλ1λ2 ◦ pλ2λ3 (x), pλ1λ3 (x)

)
≤ ελ1 for λ1 ≤ λ2 ≤ λ3 and x ∈ Xλ3 .

(2) pλλ = id for all λ.
(3) For all λ ∈ Λ and all η > 0 there is λ ′ ≥ λ such that for all λ2 ≥ λ1 > λ ′ and

all x ∈ Xλ2 , we have dλ
(

pλλ1 ◦ pλ1λ2 (x), pλλ2 (x)
)
≤ η.

(4) For all λ ∈ Λ and all η > 0, there is λ ′ ≥ λ such that for all λ ′′ ≥ λ ′ and all
x, x ′ ∈ Xλ ′ ′ , if dλ ′′(x, x ′) ≤ ελ ′ ′ then dλ

(
pλλ ′′(x), pλλ ′ ′(x ′)

)
≤ η.

The (inverse) limit [21, Definition 2] X = lim(Xλ, ελ, pλλ ′ ,Λ) is the subspace of∏
λ∈Λ Xλ defined by

X =
{

x = (xλ) ∈
∏
λ∈Λ

Xλ : xλ = lim
λ ′≥λ

pλ,λ ′(xλ ′) for all λ ∈ Λ
}
,

with the relative product topology. (See also Theorem 2 of [21].)

Lemma 1.8 Let (Xλ, ελ, pλλ ′ ,Λ) be an approximate inverse system of compact met-
ric spaces, with limit X. Let pλ : X → Xλ be the restriction to X of the projection∏

λ∈Λ Xλ → Xλ. Let A be a C∗-algebra, and let αλ : C(Xλ)⊗ A→ C(X)⊗ A be given
by αλ( f ) = f ◦ pλ. Then for any f1, f2, . . . , fn ∈ C(X)⊗ A and any ε > 0, there exist
λ ∈ Λ and g1, g2, . . . , gn ∈ C(Xλ)⊗ A such that ‖αλ(gm)− fm‖ < ε for 1 ≤ m ≤ n.

Proof Choose an open cover {U1,U2, . . . ,Uk} of X and, for each m, elements
a(m)

1 , a(m)
2 , . . . , a(m)

k ∈ A such that ‖ fm(x) − a(m)
i ‖ < ε whenever x ∈ Ui . By The-

orem 3 of [21], there exist λ ∈ Λ and an open cover {V1,V2, . . . ,Vl} of Xλ such
that {p−1

λ (V1), p−1
λ (V2), . . . , p−1

λ (Vl)} refines {U1,U2, . . . ,Uk}. That is, for any
i ∈ {1, 2, . . . , l} there exists j(i) ∈ {1, 2, . . . , k} such that p−1

λ (Vi) ⊂ U j(i). Let {hi :
1 ≤ i ≤ l} be a partition of unity subordinate to {Vi}. (We can take supp(hi) ⊂ Vi by
choosing an arbitrary partition of unity subordinate to {Vi}, assigning to each func-
tion in it some i such that Vi contains its support, and taking hi to be the sum of all
the functions assigned to i.) Note that {hi ◦ pλ} is a partition of unity subordinate to
the open cover {p−1

λ (V1), p−1
λ (V2), . . . , p−1

λ (Vl)} of X. Now define gm ∈ C(Xλ)⊗ A
by

gm(x) =
l∑

i=1

hi(x)a(m)
j(i)

for x ∈ Xλ. Then for x ∈ X we have

∥∥gm

(
pλ(x)

)
− fm(x)

∥∥ ≤ l∑
i=1

hi

(
pλ(x)

)
‖a(m)

j(i) − fm(x)‖ < ε,
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since ‖a(m)
j − fm(x)‖ < ε whenever x ∈ U j . This shows that ‖αλ(gm)− fm‖ < ε.

In the following results, Ã denotes A if A is unital and the unitization A+ of A if A
is not unital. By definition, we have RR(A) = RR(Ã).

Theorem 1.9 Let X be a locally compact Hausdorff space and let βX be its Stone-Čech
compactification. Let n = dim(βX). Then for any C∗-algebra A we have

RR
(

C0(X)⊗ A
)
≤ RR

(
C([0, 1]n)⊗ Ã

)
≤ RR(A) + dim(βX).

Proof The inequality RR
(

C([0, 1]n)⊗ Ã
)
≤ RR(Ã) + dim(βX) follows from Theo-

rem 1.2. Since RR(A) = RR(Ã), this gives the second half of the inequality. For the
first half of the inequality, we first assume X is compact and A is unital. In this case,
dim(βX) = dim(X).

By Theorem 5 of [21], there exists an approximate inverse system of compact met-
ric spaces (Xλ, ελ, pλλ ′ ,Λ), with limit X, such that each Xλ is a polyhedron (and thus
in particular a finite CW-complex) of dimension at most n. It follows from Proposi-
tion 1.7 that RR

(
C(Xλ)⊗ A

)
≤ RR

(
C([0, 1]n)⊗ A

)
.

Let N = RR
(

C([0, 1]n) ⊗ A
)

, let a0, a1, . . . , aN ∈
(

C(X) ⊗ A
)

sa
, and let ε > 0.

By Lemma 1.8, there is λ ∈ Λ, a unital homomorphismαλ : C(Xλ)⊗A→ C(X)⊗A,
and b0, b1, . . . , bN ∈ C(Xλ) ⊗ A, such that ‖αλ(b j) − a j‖ <

ε
2 for 0 ≤ j ≤ N .

Replacing b j by 1
2 (b j + b∗j ), we may assume each b j is selfadjoint without increasing

‖αλ(b j)− a j‖. By Proposition 1.7, there are c0, c1, . . . , cN ∈ (C(Xλ)⊗ A)sa such that

‖c j − b j‖ <
ε
2 for 0 ≤ j ≤ N and such that

∑N
j=0 c2

j is invertible. Then the elements

αλ(c0), αλ(c1), . . . , αλ(cN ) are in
(

C(X) ⊗ A
)

sa
, and satisfy ‖αλ(c j) − a j‖ < ε and∑N

j=0 αλ(c j)2 is invertible. This proves that RR
(

C(X)⊗ A
)
≤ N .

Now we consider the first half of the inequality for general A. The case we have
already done gives

RR
(

C(βX)⊗ Ã
)
≤ RR

(
C([0, 1]n)⊗ Ã

)
.

Moreover, the real rank of an ideal is at most the real rank of the algebra containing
it, by Theorem 1.4 of [11]. So

RR
(

C0(X)⊗ A
)
≤ RR

(
C(βX)⊗ Ã

)
≤ RR

(
C([0, 1]n)⊗ Ã

)
.

We could use any other compactification in place of βX and obtain the same esti-
mate.

The theorem is the best possible for general C∗-algebras, as is seen by taking A =
C([0, 1]m).

Corollary 1.10 Let X be a normal locally compact Hausdorff space (in particular, a
σ-compact locally compact Hausdorff space), and let n = dim(X). Then for any C∗-
algebra A we have

RR
(

C0(X)⊗ A
)
≤ RR

(
C([0, 1]n)⊗ Ã

)
≤ RR(A) + dim(X).
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Proof For a normal space X, we have dim(βX) = dim(X) by Proposition 6.4.3 or
Corollary 10.1.7 of [25].

In Remark 6.4.6 of [25] there is a locally compact Hausdorff space X satisfying
dim(X) = 1 and dim(βX) = 0. Theorem 1.4 of [11] implies that RR

(
C0(X)

)
≤

RR
(

C(βX)
)

. Therefore, for this X, we get RR
(

C0(X)
)
= 0 < dim(X).

We don’t know if the opposite inequality dim(βX) > dim(X) can occur.
It turns out that the correct notion of dimension to use in this context is the mod-

ified covering dimension, which we denote by dim0(X). It is defined by restricting the
open sets in the usual definition of covering dimension (Definition 3.1.1 of [25]) to
be complements of zero sets of continuous real valued functions on the space. See
Definition 10.1.3 of [25], where it is called ∂im(X). We have dim0(X) = dim(X) for
normal X (Proposition 10.1.6 of [25]) and dim(βX) = dim0(X) for any completely
regular X (Theorem 10.1.4 of [25]). In particular, we have the following corollary.

Corollary 1.11 Let X be a locally compact Hausdorff space and let n = dim0(X). Then
for any C∗-algebra A we have

RR
(

C0(X)⊗ A
)
≤ RR

(
C([0, 1]n)⊗ Ã

)
≤ RR(A) + dim0(X).

Letting X+ denote the one point compactification of X, using Theorem 1.4 of [11]
on C0(X)⊗A as an ideal in C(X+)⊗Ã, and noting that RR

(
C0(X)

)
= RR

(
C0(X)+

)
=

RR
(

C(X+)
)

, we also obtain the following corollary:

Corollary 1.12 Let X be a locally compact Hausdorff space and let n = RR
(

C0(X)
)

.
Then for any C∗-algebra A we have

RR
(

C0(X)⊗ A
)
≤ RR

(
C([0, 1]n)⊗ Ã

)
≤ RR(A) + RR

(
C0(X)

)
.

All the steps in the proof of Theorem 1.9, in the lemmas leading up to it, and in the
corollaries, go through just as easily for the stable rank in place of the real rank. (The
proofs require the result that if J is an ideal in a C∗-algebra B, then sr( J) ≤ sr(B).
This is Theorem 4.4 of [31].) We state the final result, and, for later use, a special
case of the analog of Proposition 1.7. We omit the analogs of the corollaries. Note,
however, that for stable rank this is presumably not the best possible: one hopes that
sr
(

C([0, 1]2)⊗ A
)
≤ sr(A) + 1 for any A. (Compare with Question 1.8 of [31].) We

also point out that the analog for stable rank of Theorem 1.2 has already been proved
by Rieffel (Corollary 7.2 of [31]), using different methods.

Theorem 1.13 Let X be a locally compact Hausdorff space and let n = dim(βX). Then
for any C∗-algebra A we have

sr
(

C0(X)⊗ A
)
≤ sr

(
C([0, 1]n)⊗ Ã

)
≤ sr(A) + dim(βX).

Lemma 1.14 Let A be a unital C∗-algebra. Then

sr
(

C([0, 1])⊗ A
)
= sr

(
C(S1)⊗ A

)
.

Proof The proof is the same as for Proposition 1.7.
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2 Hereditary Subalgebras of Algebras of Continuous Functions

The results of this section will play an important technical role in the estimation of
RR

(
C(X)⊗ A

)
when A is purely infinite simple.

In this section, we will essentially always regard elements of C(X)⊗A as A-valued
functions on X. We therefore write C(X,A) rather than C(X)⊗ A.

Let A be a separable purely infinite simple C∗-algebra. If D is a hereditary subal-
gebra of A, then D is either unital or stable (by Theorem 1.2 of [34]). Now let X be a
compact Hausdorff space, and let D be a hereditary subalgebra of C(X,A). It is easy
to construct examples in which D is neither unital nor stable, by arranging to have
the images of D under the point evaluation maps evx : C(X,A) → A be sometimes
unital and sometimes stable. In this section we show that when D is full, and at least
for X ⊂ [0, 1]n closed, this is the worst that can happen. Specifically, if every image
evx(D) is nonzero and nonunital, then D is stable. This generalizes a result implicit
in Section 2 of [18] (see the remark before Proposition 2.6 of [18]), which is the case
X = [0, 1]. The proof we give here is essentially an adaptation of the methods there
to an induction argument on n for the case X = [0, 1]n.

Presumably the restriction X ⊂ [0, 1]n can be dropped by a direct limit argument.
However, for the purposes of this paper it is more convenient to restrict to subsets of
[0, 1]n until the end of the proof of the estimate for RR

(
C(X)⊗ A

)
.

Notation 2.1 ([18]) If B is a C∗-algebra, X is a compact Hausdorff space, and D is a
hereditary subalgebra of C(X,B), we let evx : C(X,B) → B be the evaluation map at
x ∈ X, and define

Dx = evx(D) = {b(x) : b ∈ D}.

Recall (see Lemma 2.3 of [18]) that each Dx is a hereditary subalgebra of B, and
that if b ∈ C(X,B) satisfies b(x) ∈ Dx for all x ∈ X, then b ∈ D.

We now give three important lemmas on projections.

Lemma 2.2 Let X, B, and D be as in Notation 2.1, and let x0 ∈ X. Let p0 ∈ Dx0 be
a nonzero projection. Then there exists an open set U containing x0 and a continuous
projection valued function p : U → B such that p(x0) = p0.

Proof Choose b ∈ Dsa such that b(x0) = p0. Set U =
{

x ∈ X : 1
2 /∈ sp

(
b(x)

)}
. For

x ∈ U , set p(x) = χ( 1
2 ,∞)

(
b(x)

)
.

Lemma 2.3 For every ε > 0 and positive integer d, there is δ > 0 such that the follow-
ing holds. Let X be compact Hausdorff, let A be a C∗-algebra, let U1, . . . ,Un be open
sets which cover X and such that any distinct d+2 of the U j have empty intersection, and
let p j : U j → A be projection valued continuous functions such that ‖p j(x)pk(x)‖ < δ
for j 	= k and x ∈ U j ∩Uk. Then there exist open sets V j ⊂ U j which cover X, and
projection valued continuous functions q j : V j → A such that q j(x)qk(x) = 0 for j 	= k
and x ∈ V j ∩ Vk, such that ‖q j(x) − p j(x)‖ < ε for x ∈ V j, and such that for every
x and j, the projection q j(x) is in the C*-subalgebra of A generated by those pk(x) for
which x ∈ Uk.
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Proof Set εd+1 = ε. Given εr+1 > 0, choose εr > 0 so that εr ≤ εr+1 and such that
if e is a projection in a C∗-algebra A and a ∈ Asa satisfies ‖a − e‖ < 5 · 4r · εr , then
1
2 /∈ sp(a) and ‖χ( 1

2 ,∞)(a)− e‖ < εr+1. Choose δ = ε1.

Choose open sets V j with V j ⊂ V j ⊂ U j and such that the V j still cover X.

Further choose open sets U (k)
j with

V j = U (n)
j ⊂ U (n)

j ⊂ U (n−1)
j ⊂ U (n−1)

j ⊂ · · · ⊂ U (1)
j ⊂ U (1)

j ⊂ U (0)
j = U j .

We now construct families of projection valued functions q(k)
1 , . . . , q(k)

k , by induc-
tion on k, which satisfy:

(1) q(k)
j : U (k)

j → A is continuous.

(2) q(k)
i (x)q(k)

j (x) = 0 for i 	= j and x ∈ U (k)
i ∩U (k)

j .

(3) ‖q(k)
j (x)− p j(x)‖ < εr whenever x is in no more than r of the sets U1, . . . ,Uk.

(4) q(k)
j (x) is in the C*-subalgebra of A generated by those pl(x) for which x ∈ Ul.

We start the induction by taking q(1)
1 to be the restriction of p1 to U (1)

1 .

Given q(k)
1 , . . . , q(k)

k satisfying the properties above, we let q(k+1)
j be the restriction

of q(k)
j to U (k+1)

j for 1 ≤ j ≤ k. The construction of q(k+1)
k+1 requires a further induction.

Choose continuous functions f1, . . . , fk : X → [0, 1] such that f j = 1 on U (k+1)
j

and f j = 0 outside the set U (k)
j . For x ∈ U (k+1)

k+1 successively define a0(x) = pk+1(x),
and

a j(x) = f j(x)
(

1− q(k)
j (x)

)
a j−1(x)

(
1− q(k)

j (x)
)

+
(

1− f j(x)
)

a j−1(x).

Then
‖a j+1(x)‖ ≤ ‖a j(x)‖ ≤ · · · ≤ ‖a0(x)‖ ≤ 1.

Note that if x /∈ U (k)
j+1 then a j+1(x) = a j(x). If x ∈ U (k)

j+1, then

‖a j+1(x)− a j(x)‖ ≤
∥∥(1− q(k)

j+1(x)
)

a j(x)
(

1− q(k)
j+1(x)

)
− a j(x)

∥∥
≤ 2‖q(k)

j+1(x)− p j+1(x)‖ + 2‖a j(x)− pk+1(x)‖

+
∥∥(1− p j+1(x)

)
pk+1(x)

(
1− p j+1(x)

)
− pk+1(x)

∥∥
≤ 2‖q(k)

j+1(x)− p j+1(x)‖ + 2‖a j(x)− pk+1(x)‖

+ 3‖p j+1(x)pk+1(x)‖.

Therefore

‖a j+1(x)− pk+1(x)‖ < 2‖q(k)
j+1(x)− p j+1(x)‖ + 3‖a j(x)− pk+1(x)‖ + 3δ.
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Suppose now that x ∈ Uk+1 is in exactly r of the sets U1, . . . ,Uk. Then r ≤ d by
hypothesis. We have a j+1(x) 	= a j(x) for at most r values of j, say j(1) < j(2) <

· · · < j(s) with s ≤ r. We have ‖q(k)
j+1(x) − p j+1(x)‖ < εr for these values of j.

Therefore

‖a j(1)+1(x)− pk+1(x)‖ < 2εr + 3δ,

‖a j(2)+1(x)− pk+1(x)‖ < 2εr + 3(2εr + 3δ) + 3δ = 4(2εr + 3δ),

‖a j(3)+1(x)− pk+1(x)‖ < 2εr + 3
(

4(2εr + 3δ)
)

+ 3δ ≤ (42)(2εr + 3δ),

etc. So
‖ak(x)− pk+1(x)‖ < (4s)(2εr + 3δ) ≤ (4r)(5εr).

It follows from the choice of εr that

q(k+1)
k+1 (x) = χ( 1

2 ,∞)

(
ak(x)

)
is defined and satisfies

‖q(k+1)
k+1 (x)− pk+1(x)‖ < εr+1.

This defines q(k+1)
k+1 , and verifies (3) of the induction hypothesis for k + 1 for those x

which are in Uk+1. If x /∈ Uk+1, then (3) for k + 1 follows immediately from (3) for k.
For (2), we note that, because any two of the projections q(k)

j (x) are orthogonal where
both are defined, it follows that

q(k)
j (x)ak(x) = ak(x)q(k)

j (x) = 0

whenever x ∈ U (k+1)
j . Therefore

q(k)
j (x)q(k+1)

k+1 (x) = q(k+1)
k+1 (x)q(k)

j (x) = 0

whenever x ∈ U (k+1)
j . Conditions (1) and (4) are immediate.

We have completed the inductive construction of the projections q(k)
1 , . . . , q(k)

k for

1 ≤ k ≤ n. The proof of the lemma is completed by taking q j = q(n)
j |V j for 1 ≤ j ≤ n.

Lemma 2.4 Let A be a C∗-algebra, let a, h ∈ A be selfadjoint elements with 0 ≤ a ≤ 1
and 0 ≤ h ≤ 1, and let q ∈ A be a projection. Then ‖qa− q‖ ≤ 12‖qhah− q‖1/3.

Proof Represent A faithfully on a Hilbert space H. Note that ‖qa − q‖ = ‖aq − q‖
and ‖qhah − q‖ = ‖hahq − q‖. It suffices to show that if ξ ∈ qH, then ‖aξ − ξ‖ ≤
12‖hahξ − ξ‖1/3.

We first claim that if b ∈ L(H) satisfies 0 ≤ b ≤ 1 and η ∈ H satisfies ‖η‖ = 1,
then ‖bη − η‖ ≤ 4(1− ‖bη‖)1/3. To see this, set δ = 1− ‖bη‖, let ρ = δ1/3, and let
p ∈ L(H) be the spectral projection for b corresponding to [1− ρ, 1]. Then

(1− δ)2 = ‖bη‖2 = ‖bpη‖2 + ‖b(1− p)η‖2 ≤ ‖pη‖2 + (1− ρ)2‖(1− p)η‖2

= 1− ‖(1− p)η‖2 + (1− ρ)2‖(1− p)η‖2 = 1− ρ(2− ρ)‖(1− p)η‖2.
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It follows that

‖(1− p)η‖ ≤

√(
2− δ

2− ρ

)(
δ

ρ

)
≤
√

2δ1/3.

So

‖bη − η‖ ≤ ‖b‖ ‖(1− p)η‖ + ‖bpη − pη‖ + ‖(1− p)η‖ ≤ 2
√

2δ1/3 + ρ < 4δ1/3.

This proves the claim.
Now let ξ ∈ qH satisfy ‖ξ‖ = 1. Since ‖a‖, ‖h‖ ≤ 1, we have

‖hξ‖ ≥ ‖hahξ‖ ≥ 1− ‖hahξ − ξ‖.

Applying the claim to h and ξ, we get ‖hξ − ξ‖ ≤ 4‖hahξ − ξ‖1/3. If hξ = 0, then
‖aξ − ξ‖ ≤ 12‖hahξ − ξ‖1/3 for trivial reasons. Otherwise, with η = 1

‖hξ‖hξ, we
have

‖aη‖ ≥
1

‖hξ‖
‖hahξ‖ ≥

1

‖hξ‖
(1− ‖hahξ − ξ‖) ≥ 1− ‖hahξ − ξ‖,

so

‖ahξ − hξ‖ = ‖hξ‖ ‖aη − η‖ ≤ ‖hξ‖ · 4‖hahξ − ξ‖1/3 ≤ 4‖hahξ − ξ‖1/3.

Therefore

‖aξ − ξ‖ ≤ ‖a‖ ‖ξ − hξ‖ + ‖ahξ − hξ‖ + ‖hξ − ξ‖ ≤ 12‖hahξ − ξ‖1/3.

Lemma 2.5 Let A be a purely infinite simple C∗-algebra, let p1, . . . , pn ∈ A be nonzero
projections, and let ε > 0. Then:

(1) There exist mutually orthogonal nonzero projections q1, . . . , qn ∈ A such that
‖pkqk − qk‖ < ε for 1 ≤ k ≤ n.

(2) There exist nonzero projections e1 ≤ p1, . . . , en ≤ pn such that ‖e jek‖ < ε for
j 	= k.

Proof We prove part (1). Choose an irreducible representation π of A on a Hilbert
space H. By induction, we construct a sequence ξ1, . . . , ξn of orthogonal unit vectors
in H with π(p j)ξ j = ξ j for 1 ≤ j ≤ n. Choose ξ1 to be any unit vector in π(p1)H.
Suppose we are given ξ1, . . . , ξ j . The subspace π(p j+1)H is infinite dimensional since
π(A) contains no compact operators. Therefore it must nontrivially intersect the
finite codimension subspace span(ξ1, . . . , ξ j)⊥, and we take ξ j+1 to be any unit vector
in the intersection.

Let e j ∈ L(H) be the projection onto Cξ j , and let e = e1 +· · ·+en be the projection
onto span(ξ1, . . . , ξn). Let

L = {a ∈ A : π(a)e = 0} and N = {a ∈ A : π(a)e = eπ(a)}.
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Then L is a left ideal of A, N is a C*-subalgebra of A, and L ∩ L∗ is an ideal in N .
Define a unital completely positive map T : A → L(eH) ∼= Mn by T(a) = eπ(a)e.
Then T|N is a homomorphism with kernel L∩L∗. The Kadison Transitivity Theorem
implies that it is surjective. Indeed, let u ∈ L(eH) be unitary. Since π is injective,
Theorem 5.4.5 of [15] provides a unitary v ∈ Ã such that eπ(v)e = u. Since π(v) and
eπ(v)e are both unitary, e must commute with π(v). So v ∈ Ñ. If we let T̃ : Ñ →
L(eH) be the unitization of T|N , then T̃(v) = u. This shows that the image of Ñ
contains all unitaries in L(eH), and so is all of L(eH). The image of N is an ideal of
codimension at most 1. We may clearly assume n ≥ 2; then L(eH) has no proper
ideals of codimension at most 1, so T|N must be surjective.

By Theorem 4.6 of [19] (essentially Proposition 2.6 of [1]), there are h1, . . . , hn ∈
N satisfying T(h j ) = e j , 0 ≤ h j ≤ 1, and h jhk = 0 for j 	= k. Then

‖h j p jh j‖ ≥ ‖eπ(h j)π(p j)π(h j)e‖ = ‖e jπ(p j)e j‖ = 〈π(p j)ξ j , ξ j〉 ≥ 1,

so ‖h j p jh j‖ = 1. The proof of Lemma 1.7 of [6] provides a projection q j ∈ h jAh j

such that ‖q jh j p jh j−q j‖ < (ε/12)3. Since h jhk = 0 for j 	= k, we also have q jqk = 0
for j 	= k. Moreover, ‖q j p j − q j‖ < ε by the previous lemma.

Part (2) is an easy consequence of part (1) (using a different value of ε).

We will combine the following statement (quoted here for easy reference) with an
orthogonality trick (made possible by the previous lemma) to produce elements in
a full hereditary subalgebra of C(X,A) whose spectrum at every point in X contains
[0, 1].

Lemma 2.6 ([2]) Let A be a simple C∗-algebra which is not isomorphic to K(H) for
any Hilbert space H. Then there is a ∈ Asa such that sp(a) = [0, 1].

Proof See p. 61 of [2].

Lemma 2.7 Let A be a purely infinite simple C∗-algebra, let X be a finite dimensional
compact metric space, and let D be a hereditary subalgebra of C(X,A) such that Dx 	= 0
for all x ∈ X. Then there exists c ∈ Dsa such that sp

(
c(x)

)
= [0, 1] for all x ∈ X.

Proof Let d = dim(X). Choose δ for this value of d and for ε = 1
4 in Lemma 2.3.

Also require δ < 1. Choose ρ > 0 so that if e1, e2, f ∈ A are projections satisfying
f ≤ e2 and ‖e1 − e2‖ < 2ρ, then ‖ f − χ( 1

2 ,∞)(e1 f e1)‖ < 1
3δ. For each x ∈ X choose

a nonzero projection px ∈ Dx, and use Lemma 2.2 to find an open set Ux containing
x and a continuous projection valued function qx : Ux → A with qx(x) = px and
qx(y) ∈ Dy for all y ∈ Ux. Since qx is continuous, we may assume, by reducing the
size of Ux, that ‖qx(y) − qx(x)‖ < ρ for all y ∈ Ux. Since dim(X) = d and X is
compact, there is a finite open cover V1, . . . ,Vn of X which refines the cover {Ux :
x ∈ X} and such that any d + 2 of the sets V j have empty intersection. Define e j to be
the restriction to V j of some qx for which V j ⊂ Ux. Note that ‖e j(x) − e j(y)‖ < 2ρ
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for all x, y ∈ V j . Choose x j ∈ V j , use Lemma 2.5 (2) to choose nonzero projections

f (0)
j ≤ e j(x j) such that ‖ f (0)

j f (0)
k ‖ <

1
3δ for j 	= k, and define f j : V j → A by

f j(x) = χ( 1
2 ,∞)

(
e j(x) f (0)

j e j(x)
)
.

Then ‖ f j(x) − f (0)
j ‖ <

1
3δ, so for j 	= k and x ∈ V j ∩ Vk we have ‖ f j(x) fk(x)‖ <

δ. Also f j(x) ∈ Dx for x ∈ V j , and f j(x) 	= 0. Use the previous lemma to find
open subsets W1, . . . ,Wn which cover X, and continuous projection valued functions
r j : W j → A such that r j(x)rk(x) = 0 for j 	= k and x ∈ W j ∩ Wk, such that
r j(x) ∈ Dx, and such that ‖r j(x)− f j(x)‖ < 1

4 .

Note that, using f j(x j) = f (0)
j , we have

‖r j(x)− r j(x j)‖ ≤ ‖r j(x)− f j(x)‖ + ‖ f j(x)− f j(x j)‖ + ‖ f j(x j)− r j(x j)‖

<
1

4
+

1

3
δ +

1

4
< 1.

Standard methods therefore give a continuous unitary function u j : W j → A such
that u j(x)r j (x)u j (x)∗ = r j(x j) for all x ∈ W j . Use Lemma 2.6 to choose a j ∈
[r j(x j )Ar j(x j)]sa with sp(a j) = [0, 1]. Choose continuous functions h j : X → [0, 1]
which vanish outside W j and such that for every x ∈ X there is at least one j with
h j(x) = 1. Now set c(x) =

∑n
j=1 h j(x)u j (x)∗a ju j(x). Note that for any x any two

nonzero summands are orthogonal. It is now easy to check that sp
(

c(x)
)
= [0, 1]

for all x. Also, c(x) ∈ Dx because Dx is hereditary, and it follows from Lemma 2.3 of
[18] that c ∈ D.

The following two lemmas deal with straightening out projection valued func-
tions.

Lemma 2.8 (Zhang) Let A be a separable purely infinite simple C∗-algebra, let D ⊂ A
be a nonzero hereditary subalgebra, and let X be a compact Hausdorff space. Let p, q ∈
C(X,D) be projections such that, for all x ∈ X, p(x) and q(x) are neither zero nor the
identity of D (if it has one). If p is homotopic to q in C(X,A), then p is homotopic to q
in C(X,D).

Proof Let
P = {p ∈ A : p is a projection and p 	= 0, 1A}

and
Q = {p ∈ D : p is a projection and p 	= 0, 1D}.

We denote by πn(Y, y0) the set (group if n ≥ 1) of homotopy classes of maps from
the sphere Sn to Y which are pointed in the sense that they send the north pole xn of
Sn to y0. Regardless of what A is, for any projection p0 ∈ P there is a canonical map
γn,A : πn(P, p0)→ Kn(A) (where n in Kn(A) is taken mod 2). It is defined by sending
a map p : Sn → P to the class [p]− [p0] ∈ K0

(
C(Sn,A)

)
(regarding p0 as a constant
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projection), observing that this class is in the image of K0

(
C0(Sn \ {xn},A)

)
→

K0

(
C(Sn,A)

)
, and applying Bott periodicity. According to Theorem B of [35], when

A is purely infinite and simple, γn,A is an isomorphism for all n and all p0 ∈ P.
Similarly, γn,D : πn(Q, q0) → Kn(D) is an isomorphism for all n and all q0 ∈ Q.
Since D is a full hereditary subalgebra of the separable C∗-algebra A, the inclusion
induces isomorphisms Kn(D) → Kn(A) for all n. Therefore the inclusion induces
isomorphisms πn(Q, q0)→ πn(P, q0) for all n and q0. That is, the inclusion of Q in P
is a weak homotopy equivalence.

We now observe that P is homotopy equivalent to an open subset of the Banach
space Asa. Let

U =

{
a ∈ Asa : dist(a, P) <

1

4

}
,

and define ft : U → U by ft (a) = ta+(1−t)χ( 1
2 ,∞)(a) for t ∈ [0, 1]. Then f0(U ) ⊂ P.

Letting i be the inclusion of P in U , we see that f0 ◦ i = idP and t �→ ft is a homotopy
from i ◦ f0 to idU . Thus P is homotopy equivalent to U . Similarly Q is homotopy
equivalent to an open subset of the Banach space Dsa.

Lemma IV.5.2 and Theorem IV.5.3 of [20] now imply that both P and Q are homo-
topy equivalent to CW-complexes. Theorem IV.3.3 of [20] therefore implies that the
inclusion of Q in P is a homotopy equivalence. The desired conclusion is immediate.

Lemma 2.9 Let A be a separable purely infinite simple C∗-algebra, and let X be a com-
pact Hausdorff space. Let D ⊂ C(X,A) be a hereditary subalgebra. Assume that D
contains an approximate identity of projections p1, p2, . . . such that pk+1(x) > pk(x)
for all x, and such that each pk is homotopic in C(X,A) to a constant projection. Then
D ∼= C(X,K⊗A), and the isomorphism can be chosen to have the form ϕ(a)(x) =
ϕx

(
a(x)

)
for isomorphisms ϕx : Dx → K⊗A, and to send each pk to a constant projec-

tion in C(X,A).

Proof Fix x0 ∈ X. Define

B =
∞⋃

n=1

pn(x0)Apn(x0).

Standard arguments show that B ∼= K⊗A, so we prove the lemma for B in place of
K⊗A.

We inductively construct unitaries un ∈ C(X,A), each homotopic to 1, such that

pn(x0) = un(x)
[

[un−1(x)un−2(x) · · · u1(x)]pn(x)[un−1(x)un−2(x) · · · u1(x)]∗
]

un(x)∗

and un(x)pn−1(x0) = pn−1(x0)un(x) = pn−1(x0). This will prove the result with

ϕx(c) = [un(x)un−1(x) · · · u1(x)]c[un(x)un−1(x) · · · u1(x)]∗

for c ∈ pn(x)Dx pn(x), extended to all of Dx by continuity.
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The construction of u1 is immediate from the fact that p1 is homotopic in C(X,A)
to the constant function with value p1(x0). Given u1, . . . , un, set

q = [un(x)un−1(x) · · · u1(x)]pn+1(x)[un(x)un−1(x) · · · u1(x)]∗.

Then q is homotopic to the constant function pn+1(x0), and both are nowhere zero
projections in C

(
X, [1 − pn(x0)]A[1 − pn(x0)]

)
. It suffices to show that there is

a homotopy in C
(

X, [1 − pn(x0)]A[1 − pn(x0)]
)

from q to the constant function
pn+1(x0). This follows from Lemma 2.8.

The next two lemmas are the heart of our argument, which is an induction using
the methods of Lemma 2.5 and Proposition 2.6 of [18] in the induction step.

Lemma 2.10 (Compare with Lemma 2.5 of [18]) Let B be a separable C∗-algebra, let
α, β ∈ R, and let D ⊂ C([α, β],B) be a hereditary subalgebra. For each t, assume that
Dt is full in B, and that Dt

∼= C(X,K⊗A) for some contractible compact Hausdorff space
X and some purely infinite simple C∗-algebra A. Let p ∈ D, eα ∈ Dα, and eβ ∈ Dβ

be projections such that, for i = α, β we have ei > p(i) and [ei − p(i)] = 0 in K0(B).
Then there exists a projection q ∈ D such that q ≥ p, q(α) = eα, and q(β) = eβ .

Proof Without loss of generality, assume α = 0 and β = 1. Further, replace D by
(1 − p)D(1 − p). This allows us to assume that p = 0. Since X is contractible, p(t)
is unitarily equivalent in Dt

∼= C(X,K⊗A) to a constant projection. The new Dt is
therefore still isomorphic to C(X,K⊗A).

For each t ∈ (0, 1), choose a nonzero projection et ∈ Dt with [et ] = 0 in K0(Dt ).
Take e0 and e1 to be as already given. Use Lemma 2.2 to choose a continuous projec-
tion valued function ft : Ut → B, for some open interval Ut containing t , such that
ft (s) ∈ Ds and ft (t) = et . Now observe that K0(Ds) → K0(B) is an isomorphism
for all s. Since ft (s) is homotopic to et in B, and [et ] = 0 in K0(Dt ), it follows that
[ ft (s)] = 0 in K0(Ds) for all s.

By passing to a finite subcover of the collection {Ut : t ∈ [0, 1]}, we can find a
partition 0 = t0 < t1 < · · · < tn = 1 and continuous projection valued functions
qi : [ti−1, ti] → B such that qi(t) ∈ Dt and [qi(t)] = 0 in K0(Dt ) for all t . Note
that qi(ti−1) and qi−1(ti−1) are homotopic in Dti−1

∼= C(X,K⊗A). Indeed, X is
contractible, and qi(ti−1)(x0) and qi−1(ti−1)(x0) are nonzero projections in a purely
infinite simple C∗-algebra with the same K0-class. Similarly, q1(0) is homotopic to e0

and qn(1) is homotopic to e1.
Apply Lemma 2.4 of [18], with X = [0, t1], with the hereditary subalgebra there

being the image D|[0,t1] of D under the restriction map C([0, 1],B) → C([0, t1],B),
with Z = {t1}, x0 = 0, p = q1, and e = e0. This gives a projection f1 ∈ D|[0,t1]

such that f1(0) = e0 and f1(t1) = q1(t1). In the same manner, for 2 ≤ i ≤ n − 1
find projections fi ∈ D|[ti−1,ti ] (using notation analogous to the above) such that
fi(ti−1) = qi−1(ti−1) and fi(ti) = qi(ti). Set s = 1

2 (tn−1+1), and use the same method
to find projections fn ∈ D|[tn−1,s] such that fn(tn−1) = qn−1(tn−1) and fn(s) = qn(s),
and fn+1 ∈ D|[s,1] such that fn+1(s) = qn(s) and fn+1(1) = e1. (To get fn+1, we take
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Z = {s}, not {1}.) Then the definition

q(t) =


fi(t) t ∈ [ti−1, ti], 1 ≤ i ≤ n− 1

fn(t) t ∈ [tn−1, s]

fn+1(t) t ∈ [s, 1]

gives a continuous projection valued function on [0, 1] satisfying q0 = e0, q1 = e1,
and qt ∈ Dt for all t . We have q ∈ D by Lemma 2.3 of [18].

Lemma 2.11 Let X = [0, 1]n, and let A be a separable purely infinite simple C∗-
algebra. Then for every b ∈ C(X,A)sa such that sp

(
b(x)

)
= [0, 1] for all x ∈ X,

the hereditary subalgebra D = bC(X,A)b has an approximate identity of projections,
each of whose images in C(X,A) is homotopic to a constant projection with trivial K0-
class. Moreover, the approximate identity can be chosen to be of the form (pk)∞k=1 with
pk(x) < pk+1(x) for all k and all x ∈ X.

Proof The proof is a modification of part of the proof of Proposition 2.6 of [18].
There are enough differences and improvements that we give the full proof here.

The proof is by induction on n. So assume the result is known for a particular
value of n, and all b ∈ C([0, 1]n,A) satisfying the conditions of the lemma. We prove
it for n+1. We write [0, 1]n+1 = [0, 1]n×[0, 1], and we accordingly write b(x, t) with
x ∈ [0, 1]n and t ∈ [0, 1], etc. The notation b(−, t) refers to the function x �→ b(x, t),
which is an element of C([0, 1]n,A). If E ⊂ C([0, 1]n+1,A) is a hereditary subalgebra,
and t ∈ [0, 1], we take Et ⊂ C([0, 1]n,A) to be {a(−, t) : a ∈ E}. That is, we evaluate
in the last coordinate only.

The main part of the proof is to show that for any ε > 0, there is a projection
q ∈ D, homotopic in C([0, 1]n+1,A) to a constant projection with trivial K0-class,
such that ‖qb− b‖ < ε.

Standard functional calculus arguments show that there are functions β1, β2 from
[0,∞) to [0,∞] which are nondecreasing and satisfy limt→0 βi(t) = 0, such that if
p and q are projections in a C∗-algebra C such that ‖pq− q‖ < η, then:

(1) There exists a projection p ′ ∈ C such that p ′ ≥ q and ‖p ′ − p‖ < β1(η).
(2) There exists a projection q ′ ∈ C and a unitary path t �→ vt ∈ C+ such that

p ≥ q ′, ‖q ′ − q‖ < β2(η), v0 = 1, v1q ′v∗1 = q, and ‖vt − 1‖ < β2(η) for all t .

Moreover, the claimed elements in both parts depend continuously on p and q. (The
notation etc. follows Lemma 2.1 of [18].)

Choose δ > 0 such that

3β2

(
15δ + β1(δ)

)
+ 19δ < min

(
ε,

1

2

)
.

For 0 ≤ k ≤ 5, let gk : [0,∞) → [0, 1] be the continuous function which is equal
to 0 on [0, kδ], equal to 1 on

[
(k + 1)δ,∞

)
, and linear on [kδ, (k + 1)δ]. Note that

gk+1gk = gk+1. Define bk = gk(b) ∈ D, and note that sp
(

bk(x)
)
= [0, 1] for all x ∈ X
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(since δ < 1
38 ). Define D(k) = bkC([0, 1]n+1,A)bk. Then, in particular, the induction

hypothesis applies to the hereditary subalgebras

D(k)
t = bk(−, t)C([0, 1]n,A)bk(−, t).

It follows from Lemma 2.9 that D(k)
t
∼= C([0, 1]n,K⊗A). Since [0, 1]n is contractible

and nonzero projections in K⊗A with the same K0-class are homotopic, we see that
nonzero projections in D(k)

t with the same K0-class are homotopic.
Choose a partition

0 = t0 < t1 < · · · < tn = 1

of [0, 1] such that

‖b(−, t)− b(−, ti)‖ < δ and ‖b(−, t)− b(−, ti−1)‖ < δ

for all t ∈ [ti−1, ti] and

‖bk(−, t)− bk(−, ti)‖ < δ and ‖bk(−, t)− bk(−, ti−1)‖ < δ

for all t ∈ [ti−1, ti] and for 0 ≤ k ≤ 5. The induction assumption provides projec-
tions

e(0)
i ∈ D(4)

ti
and ẽ(1)

i ∈ D(1)
ti

such that

‖e(0)
i b5(−, ti)− b5(−, ti)‖ < δ and ‖ẽ(1)

i b2(−, ti)− b2(−, ti)‖ < δ,

and such that e(0)
i and ẽ(1)

i are both homotopic in C([0, 1]n,A) to constant pro-

jections with trivial K0-class. Since b2b3 = b3 and b3e(0)
i = e(0)

i , it follows that

‖ẽ(1)
i e(0)

i − e(0)
i ‖ < δ. Therefore there exists a projection e(1)

i ∈ D(1)
ti

such that

‖e(1)
i − ẽ(1)

i ‖ < β1(δ) and e(1)
i ≥ e(0)

i .

Also, since β1(δ) < 1
2 , it follows that e(1)

i is homotopic to ẽ(1)
i , and thus to a constant

projection in C([0, 1]n,A) with trivial K0-class.
Temporarily fix i, and work over the interval [ti−1, ti+1]. Note that

b3(−, t)e(0)
i b3(−, t) ∈ D(3)

t

and satisfies

‖b3(−, t)e(0)
i b3(−, t)− e(0)

i ‖ < 2δ <
1

4

(since δ < 1
38 ). Therefore functional calculus yields a projection f (0)

i (t) ∈ D(3)
t ,

depending continuously on t ∈ [ti−1, ti+1], such that

‖ f (0)
i (t)− e(0)

i ‖ < 4δ.
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Similarly, there is a projection f (1)
i (t) ∈ D(0)

t , depending continuously on t ∈
[ti−1, ti+1], such that

‖ f (1)
i (t)− e(1)

i ‖ < 4δ.

It follows that

‖ f (1)
i (t) f (0)

i (t)− f (0)
i (t)‖ ≤ 2‖ f (0)

i (t)− e(0)
i ‖ + ‖ f (1)

i (t)− e(1)
i ‖

< 3(4δ) < 15δ + β1(δ)

for t ∈ [ti−1, ti+1]. Next,

‖e(1)
i−1e(0)

i − e(0)
i ‖ = ‖e

(1)
i−1b2(−, ti)e(0)

i − b2(−, ti)e(0)
i ‖

≤ ‖e(1)
i−1b2(−, ti)− b2(−, ti)‖

≤ 2‖b2(−, ti)− b2(−, ti−1)‖ + ‖e(1)
i−1b2(−, ti−1)− b2(−, ti−1)‖

< 2δ +
(
δ + β1(δ)

)
.

An estimate similar to the one at the beginning of this paragraph therefore shows that

‖ f (1)
i−1(t) f (0)

i (t)− f (0)
i (t)‖ < 12δ +

(
3δ + β1(δ)

)
= 15δ + β1(δ)

for t ∈ [ti−1, ti].
Using the function β2 from the beginning of the proof, we obtain a projection

ri(t) ∈ Dt and a unitary path s �→ vs(t) ∈ D+
t for t ∈ [ti−1, ti] and s ∈ [0, 1], both

varying continuously with t , such that ri(t) ≤ f (1)
i (t), v0(t) = 1, v1(t)ri(t)v1(t)∗ =

f (0)
i (t), and

‖ri(t)− f (0)
i (t)‖ < β2

(
15δ + β1(δ)

)
and ‖vs(t)− 1‖ < β2

(
15δ + β1(δ)

)
.

We similarly obtain r ′i (t) and v ′s (t) satisfying all the same conditions, except with
f (1)
i (t) replaced by f (1)

i−1(t). We now define a continuous projection qi on [ti−1, ti] by
letting t ′i =

1
2 (ti−1 + ti) and setting

qi(t) = v ′1−α(t)∗ f (0)
i (t)v ′1−α(t)

for t = (1− α)ti−1 + αt ′i and α ∈ [0, 1], and

qi(t) = vα(t)∗ f (0)
i (t)vα(t)

for t = (1 − α)t ′i + αti and α ∈ [0, 1]. This gives qi(t ′i ) = f (0)
i (t ′i ) (with either

definition), and

qi(ti−1) = r ′i (ti−1) ≤ f (1)
i−1(ti−1) and qi(ti) = ri(ti) ≤ f (1)

i (ti).
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Let t ∈ [t ′i , ti]. Then for suitable α ∈ [0, 1], we have

‖qi(t)− e(0)
i ‖ ≤ ‖qi(t)− ri(t)‖ + ‖ri(t)− f (0)

i (t)‖ + ‖ f (0)
i (t)− e(0)

i ‖

< 2‖vα(t)− 1‖ + β2

(
15δ + β1(δ)

)
+ 4δ < 3β2

(
15δ + β1(δ)

)
+ 4δ.

A similar estimate holds for t ∈ [ti−1, t ′i ]. Since 3β2

(
15δ + β1(δ)

)
+ 4δ < 1

2 , it

follows that [qi(t)] = 0 in K0

(
C([0, 1]n,A)

)
for all t ∈ [ti−1, ti]. Since Dt is full in

C([0, 1]n,A), we conclude that [qi(t)] = 0 in K0(Dt ) as well.
Since Dt

∼= C([0, 1]n,K⊗A), and since [0, 1]n is contractible and A is purely in-
finite, there are projections gi ∈ Dti such that gi > f (1)

i (ti) and [gi] = 0 in K0(Dti ).
Lemma 2.10 provides a continuous projection q ′i : [ti−1, ti]→ C([0, 1]n,A) such that
q ′i (t) ∈ Dt , q ′i (ti−1) = gi−1, q ′i (ti) = gi , and q ′i (t) ≥ qi(t) for all t ∈ [ti−1, ti]. Now
define q : [0, 1] → C([0, 1]n,A) by q(t) = q ′i (t) for t ∈ [ti−1, ti]. Then q is well
defined and continuous, since at the overlap points ti both definitions yield gi . Fur-
thermore, q ∈ D by Lemma 2.3 of [18], and q(t) ≥ qi(t) whenever t ∈ [ti−1, ti].

We now estimate, for t ∈ [ti−1, ti]:

‖q(t)b(−, t) − b(−, t)‖

≤ ‖qi(t)b(−, t) − b(−, t)‖

≤
[

3β2

(
15δ + β1(δ)

)
+ 4δ

]
+ 2δ + ‖e(0)

i b(−, ti)− b(−, ti)‖.

Also, since ‖b5(−, ti)b(−, ti)− b(−, ti)‖ < 6δ, we get

‖e(0)
i b(−, ti)− b(−, ti)‖ ≤ 12δ +

∥∥( e(0)
i b5(−, ti)− b5(−, ti)

)
b(−, ti)

∥∥ ≤ 12δ + δ.

So
‖q(t)b(−, t)− b(−, t)‖ < 3β2

(
15δ + β1(δ)

)
+ 19δ < ε.

Moreover, the choice of q ensures that [q(0)] = 0 in K0(D0), and so also in
K0

(
C([0, 1]n,A)

)
. Since [0, 1]n+1 is contractible, it is immediate that q is homotopic

in C([0, 1]n+1,A) to a constant projection with trivial K0-class.
We now know that, for any ε > 0, there is a suitable projection q ∈ D such that

‖qb − b‖ < ε. It is easy to get from this that for any polynomial c =
∑n

k=0 αkbk

in b and any ε > 0, there is a suitable projection q ∈ D such that ‖qc − c‖ < ε.
Standard arguments show that this is also true for any c in the closure of the set of
such polynomials. In particular, it is true for the elements b1/n for n ∈ N. Since these
form an approximate identity for D, one easily checks that for c1, . . . , cm ∈ D, there
is a projection q ∈ D such that ‖qck − ck‖ < ε for all k. (Without loss of generality
assume ‖ck‖ ≤ 1. Choose n such that ‖b1/nck − ck‖ <

ε
2 , and choose q such that

‖qb1/n− b1/n‖ < ε
2 .) That is, D has an approximate identity consisting of projections

which are homotopic in C([0, 1]n+1,A) to constant projections with trivial K0-class.
Standard arguments now show that D has a nondecreasing approximate identity

(pk)∞k=1 of projections which are homotopic in C([0, 1]n+1,A) to constant projections
with trivial K0-class. Since sp(b) = [0, 1], the hereditary subalgebra D is not unital.
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Passing to a subsequence, we may therefore assume that pk 	= pk+1 for all k. For
each k there is therefore some x0 ∈ [0, 1]n+1 such that pk(x0) < pk+1(x0). Since
pk(x) ≤ pk+1(x) for all x and [0, 1]n+1 is connected, we get pk(x) < pk+1(x) for all
x ∈ [0, 1]n+1. This completes the induction, and proves the lemma.

Theorem 2.12 Let A be a separable purely infinite simple C∗-algebra, let X be a closed
subset of [0, 1]n for some n, and let D ⊂ C(X,A) be a hereditary subalgebra such that
Dx is nonzero and nonunital for every x ∈ X. Then D has an approximate identity
consisting of projections whose images in C(X,A) are homotopic to constant projections
with trivial K0-classes.

Proof We first consider the special case X = [0, 1]n.
Clearly D is separable, so it has a strictly positive element b. Without loss of gen-

erality we may take ‖b‖ ≤ 1. Then {b1/n} is an approximate identity for D. As at the
end of the previous proof, it suffices to show that for all ε > 0 there is a projection q
of the desired form satisfying ‖qb− b‖ < ε.

Let f : [0,∞) → [0, 1] be the continuous function such that f is 0 on [0, ε9 ], f
is 1 on [ ε6 ,∞), and f is linear on [ ε9 ,

ε
6 ]. Let g : [0,∞) → [0, 1] be the continuous

function such that g is 0 on [ ε9 ,∞) and at 0, such that g( ε
18 ) = 1, and g is linear on

[0, ε
18 ] and on [ ε

18 ,
ε
9 ]. Then ‖ f (b)b − b‖ < ε

6 . Also, since Dx is nonunital for all x,

the point 0 is not isolated in sp
(

b(x)
)

. Therefore g(b)(x) 	= 0 for all x. So Lemma 2.7

provides c ∈
(

g(b)C(X,A)g(b)
)

sa
such that sp

(
c(x)

)
= [0, 1] for all x.

We estimate
∥∥( c + f (b)

)
b − b

∥∥ . First, {g(b)1/n} is an approximate identity for

g(b)C(X,A)g(b), so

‖cb‖ = lim
n→∞

‖cg(b)1/nb‖ ≤ lim sup
n→∞

‖g(b)1/nb‖ ≤
ε

9
<
ε

6
.

Therefore ∥∥( c + f (b)
)

b− b
∥∥ < 2

(ε
6

)
=
ε

3
.

Since c is orthogonal to f (b) and sp
(

f (b)(x)
)
⊂ [0, 1], we have sp

((
c+ f (b)

)
(x)

)
= [0, 1] for all x. By the previous lemma, there is thus a projection q of the desired
form such that

∥∥q
(

c + f (b)
)
−
(

c + f (b)
)∥∥ < ε

3 . Now

‖qb−b‖ ≤
∥∥q

(
c + f (b)

)
−
(

c + f (b)
)∥∥ ‖b‖+2

∥∥( c + f (b)
)

b−b
∥∥ <

ε

3
+2

(ε
3

)
= ε.

This completes the proof for X = [0, 1]n.
We now reduce the general case to the special case. Let X ⊂ [0, 1]n, and let

D ⊂ C(X,A) be a hereditary subalgebra such that Dx is nonzero and nonunital for
all x. Embed A in M2(A) as the upper left corner, and in this way consider D to be
a hereditary subalgebra of C

(
X,M2(A)

)
, with Dx as before, but now thought of as

a subalgebra of M2(A). Let B be a nonunital hereditary subalgebra of M2(A) which
contains A. Define a hereditary subalgebra E ⊂ C

(
[0, 1]n,M2(A)

)
to be the set of

continuous functions a : [0, 1]n → M2(A) such that a(x) ∈ B for all x and a(x) ∈ Dx
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for x ∈ X. Note that the restriction map a �→ a|X is a surjective map from E to D.
In particular, Ex = Dx for x ∈ X, and Ex = B otherwise. The special case proved
above applies to E, and provides an approximate identity for E consisting of pro-
jections whose images in C

(
[0, 1]n,M2(A)

)
are homotopic to constant projections.

Restricting to X, we obtain an approximate identity for D consisting of projections
whose images in C(X,A) are homotopic to constant projections. The homotopy can
be chosen in C(X,A) by Lemma 2.8.

Corollary 2.13 Let A be a separable purely infinite simple C∗-algebra, let X be a closed
subset of [0, 1]n for some n, and let D ⊂ C(X,A) be a hereditary subalgebra such that Dx

is nonzero and nonunital for every x ∈ X. Then D ∼= C(X,K⊗A), and the isomorphism
can be chosen to have the formϕ(a)(x) = ϕx

(
a(x)

)
for isomorphismsϕx : Dx → K⊗A.

Proof This is immediate from Theorem 2.12 and Lemma 2.9.

As a first illustration of the value of this result, we prove the following generaliza-
tion of a part of Lemma 2.5 to projection valued functions.

Lemma 2.14 Let A be a purely infinite simple C∗-algebra, let X be a closed subset
of [0, 1]n for some n, let p1, p2 ∈ C(X,A) be nowhere vanishing projections, and let
ε > 0. Then there exist orthogonal nowhere vanishing projections q1, q2 ∈ C(X,A),
each homotopic in C(X,A) to a constant projection with trivial K0-class, such that
‖pkqk − qk‖ < ε for k = 1, 2.

Proof Cover X by finitely many open sets U1, . . . ,UN such that

‖p1(x)− p1(y)‖ <
ε

2(n + 1)
and ‖p2(x)− p2(y)‖ <

ε

2(n + 1)

for all k and x, y ∈ Uk. Since X ⊂ [0, 1]n, we have dim(X) ≤ n. (See Proposi-
tion 3.1.5 of [25].) Refining our cover (and relabelling), we may therefore assume
that any distinct n + 2 of the Uk have empty intersection.

Choose xk ∈ Uk. Use Lemma 2.5 (1) to find 2N mutually orthogonal nonzero
projections e1, . . . , eN , f1, . . . , fN ∈ A such that

‖p1(xk)ek − ek‖ <
ε

2(n + 1)
and ‖p2(xk) fk − fk‖ <

ε

2(n + 1)

for 1 ≤ k ≤ N . It follows that

‖p1(x)ek − ek‖ <
ε

n + 1
and ‖p2(x) fk − fk‖ <

ε

n + 1

for all x ∈ Uk.
Choose ak ∈ (ekAek)sa and bk ∈ ( fkA fk)sa such that sp(ak) = sp(bk) = [0, 1] for

all k. (See Lemma 2.6.) Choose continuous functions hk : X → [0, 1] such that hk

vanishes outside Uk and for every x ∈ X there is some k with hk(x) = 1. Define

a(x) = h1(x)a1 + · · · + hn(x)an and b(x) = h1(x)b1 + · · · + hn(x)bn
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for x ∈ X. Since the ek and fk are mutually orthogonal, one readily checks that
sp
(

a(x)
)
= sp

(
b(x)

)
= [0, 1] for all x ∈ X. It follows from Theorem 2.12 that

the hereditary subalgebras aC(X,A)a and bC(X,A)b have approximate identities of
projections which are homotopic in C(X,A) to constant projections with trivial K0-
classes. In particular, there are projections q1 ∈ aC(X,A)a and q2 ∈ bC(X,A)b, each
homotopic in C(X,A) to a constant projection, such that q1(x) 	= 0 and q2(x) 	= 0
for all x ∈ X. Since ab = 0, we have q1q2 = 0.

We now estimate ‖pi(x)qi(x)− qi(x)‖. Fix x ∈ X. Let S = {k : x ∈ Uk}. Set

eS =
∑
k∈S

ek and fS =
∑
k∈S

fk.

Then eSa(x) = a(x), so eSq1(x) = q1(x). Furthermore,

‖p1(x)eS − eS‖ ≤
∑
k∈S

‖p1(x)ek − ek‖ < ε,

because the choice of the sets Uk ensures that S has at most n + 1 elements. So
‖p1(x)q1(x)− q1(x)‖ < ε. Similarly ‖p2(x)q2(x)− q2(x)‖ < ε.

3 Real Rank of C(X)⊗ A when A is Purely Infinite

In this section, we show that RR
(

C(X) ⊗ A
)
≤ 1 for any compact Hausdorff space

X and any purely infinite simple C∗-algebra A.
As in the previous section, we will essentially always regard elements of C(X)⊗ A

as A-valued functions on X, and write C(X,A) rather than C(X)⊗ A.
Besides the result of the previous section, the main technical device is the pertur-

bation of a selfadjoint element a ∈ C(X,A) in such a way that, for every x ∈ X,
the set sp

(
a(x)

)
contains a neighborhood of a certain size of each of its points. At

a single point, this can be accomplished by writing a(x) ≈ a0(x) +
∑N

j=1 λ j p j , an

orthogonal sum in which {λ1, . . . , λn} is ε-dense in sp
(

a(x)
)

, and using a scaled
version of Lemma 2.6 to replace λ j p j by an element whose spectrum is a small inter-
val containing λ j . The problem is to do this simultaneously for all x ∈ X.

We start by giving some useful notation.

Notation 3.1 Let B be a C∗-algebra, and let P = {p1, . . . , pn} ⊂ A be a set of
mutually orthogonal projections. For a ∈ B define the “cutdown by P” to be

CP(a) =
(

1−
n∑

k=1

pk

)
a
(

1−
n∑

k=1

pk

)
+

n∑
k=1

pkapk.

(Note that we implicitly include the orthogonal complement of the sum of the ele-
ments of P.) By an obvious abuse of notation, if p1, . . . , pn ∈ A are understood, and
S ⊂ {1, . . . , n}, we will refer to CS(a), and similar devices.
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Given α1, . . . , αn ∈ C, regarded as a function α on P, we define

CP,α(a) =
(

1−
n∑

k=1

pk

)
a
(

1−
n∑

k=1

pk

)
+

n∑
k=1

αk pk.

We will switch back and forth between CP(a) and CP,α(a), because CP,α(a) is more
useful but CP(a) is easier to work with.

The following lemma gives some useful properties of these expressions. One
might hope to have better estimates in some of the conclusions, but that seems to
be not always possible.

Lemma 3.2

(1) Let P be a finite set of orthogonal projections, and let p �→ αp be a function from P
to C. If ‖a−CP,α(a)‖ < ε, then ‖a−CP(a)‖ < 2ε.

(2) Let P and Q be finite sets of orthogonal projections, and assume that∑
p∈P

p =
∑
q∈Q

q = 1.

If each projection in Q is a sum of projections in P, and ‖a − CP(a)‖ < ε, then
‖a−CQ(a)‖ < 2ε.

(3) Let P and Q be finite sets of orthogonal projections. Let e =
∑

p∈P p and f =∑
q∈Q q. If e is orthogonal to f , and if

‖a−CP(a)‖ < ε and ‖a−CQ(a)‖ < η,

then
‖a−CP∪Q(a)‖ < ε + η + min(ε, η).

(4) Let P = {p1, . . . , pn} and Q = {q1, . . . , qn} be finite sets of orthogonal projec-
tions, and let α1, . . . , αn ∈ C. Assume qk ≤ pk for all k. If ‖a−CP,α(a)‖ < ε then
(regarding α as a function on Q in the obvious way) ‖a−CQ,α(a)‖ < 2ε.

Proof (1) For each p ∈ P, we have

‖pap − αp p‖ =
∥∥ p

(
a−CP,α(a)

)
p
∥∥ ≤ ‖a−CP,α(a)‖ < ε.

Using orthogonality of the projections in the second step, we then get∥∥(a−CP,α(a)
)
−
(

a−CP(a)
)∥∥ = ∥∥∥∑

p∈P

(pap − αp p)
∥∥∥ = max

p∈P
‖pap − αp p‖ < ε.

Therefore ‖a−CP(a)‖ < 2ε.
(2) Let c = a−CP(a) and d = a−CQ(a). A computation, involving partitioning P

into the disjoint subsets whose members add up to the various elements of Q, shows
that c − d =

∑
q∈Q qcq. Using orthogonality, we get

‖d‖ ≤ ‖c‖ +
∥∥∥∑

q∈Q

qcq
∥∥∥ = ‖c‖ + max

q∈Q
‖qcq‖ ≤ 2‖c‖.
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(3) A computation shows that

a−CP∪Q(a) =
(

a−CP(a)
)

+
(

a−CQ(a)
)
− (ea f + f ae).

Now it is easy to check, using orthogonality of e and f , that ‖ea f + f ae‖ =
max(‖ea f ‖, ‖ f ae‖). Moreover, e commutes with CP(a), so eCP(a) f = 0. It follows
that ‖ea f ‖ =

∥∥ e
(

a−CP(a)
)

f
∥∥ < ε. Similarly ‖ f ae‖ =

∥∥ f
(

a−CP(a)
)

e
∥∥ < ε. So

‖a−CP∪Q(a)‖ < 2ε + η. The same reasoning shows that ‖a−CP∪Q(a)‖ < ε + 2η.
(4) A computation shows that(

a−CP,α(a)
)
−
(

a−CQ,α(a)
)
= (1− q)

(
a−CP,α(a)

)
(1− q).

Therefore

‖a−CQ,α(a)‖ ≤ ‖a−CP,α(a)‖ +
∥∥ (1− q)

(
a−CP,α(a)

)
(1− q)

∥∥
≤ 2‖a−CP,α(a)‖.

We denote by dist(x, S) the distance between a point x and a subset S in a metric
space.

Lemma 3.3 Let X be a compact Hausdorff space with finite covering dimension. Let A
be a unital purely infinite simple C∗-algebra, and let a ∈ C(X,A)sa. Then there exist
N, nonzero mutually orthogonal projections p1, . . . , pN ∈ A, numbers α1, . . . , αN ∈
R, and open sets U1, . . . ,UN ,V1, . . . ,VN ⊂ X (not necessarily distinct) satisfying the
following properties:

(1) V l ⊂ Ul for all l.
(2) For every x ∈ X and λ ∈ sp

(
a(x)

)
, we have

dist(λ, {αl : l satisfies x ∈ Vl}) < ε,

and, for every x ∈ Ul, we have dist
(
αl, sp

(
a(x)

))
< ε.

(3) For every x ∈ X, with P(x) = {pl : l satisfies x ∈ Vl}, and α|P(x) interpreted as a
function on P(x) in the obvious way, we have∥∥a(x)−CP(x),α|P(x)

(
a(x)

)∥∥ < ε.

Proof Let d = dim(X). Choose δ > 0 such that (20d + 35)δ ≤ ε.
For each x ∈ X, choose a finite set Sx = {β(1)

x , . . . , β(m(x))
x } ⊂ sp

(
a(x)

)
such

that dist(λ, Sx) < ε
2 for λ ∈ sp

(
a(x)

)
. Since RR(A) = 0, we can approximate

a(x) arbitrarily closely by a selfadjoint element with finite spectrum, and then find
nonzero mutually orthogonal projections q(1)

x , . . . , q(m(x))
x ∈ A such that, with ex =∑m(x)

j=1 q( j)
x , we have

∥∥∥a(x)−
[

(1− ex)a(x)(1− ex) +
m(x)∑
j=1

β( j)
x q( j)

x

]∥∥∥ < δ.

https://doi.org/10.4153/CJM-2001-039-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2001-039-8


1008 Masaru Nagisa, Hiroyuki Osaka and N. Christopher Phillips

Then there exist x1, . . . , xn ∈ X and open sets W1, . . . ,Wn ⊂ X, with xk ∈Wk, such
that the Wk cover X and for x ∈Wk we have

∥∥∥a(x)−
[

(1− exk )a(x)(1 − exk ) +
m(xk)∑

j=1

β( j)
xk

q( j)
xk

]∥∥∥ < 2δ,

and also dist(λ, Sxk ) < ε for λ ∈ sp
(

a(x)
)

and dist
(
β

( j)
xk , sp

(
a(x)

))
< ε for

1 ≤ j ≤ m(x). Since dim(X) = d, we can refine the open cover {W1, . . . ,Wn}
to obtain a new finite open cover such that any distinct d + 2 of of its elements
have empty intersection. Renaming things, we may assume that we have open sets
Y1, . . . ,Yn ⊂ X, for each k a set of nonzero mutually orthogonal projections Qk =
{q(1)

k , . . . , q(m(k))
k } ⊂ A, and numbers β(1)

k , . . . , β(m(k))
k ∈ R such that, regarding

j �→ β
( j)
k as a function βk on Qk, we have

dist(λ, {β(1)
k , . . . , β(m(k))

k }) < ε

for all x ∈ Yk and λ ∈ sp
(

a(x)
)

,

dist
(
β

( j)
k , sp

(
a(x)

))
< ε

for all x ∈ Yk and for 1 ≤ j ≤ m(k), and∥∥a(x)−CQk,βk

(
a(x)

)∥∥ < 2δ

for all x ∈ Yk. Then also

‖q( j)
k a(x)q( j)

k − β
( j)
k q( j)

k ‖ < 2δ.

Let ρ > 0 be a suitable small number (chosen below). Use Lemma 2.5 (1) to
choose a single large family {r( j)

k : 1 ≤ k ≤ n, 1 ≤ j ≤ m(k)} of nonzero mutually
orthogonal projections such that

‖q( j)
k r( j)

k − r( j)
k ‖ < ρ

for all k and j. There will then be projections r̃( j)
k ≤ q( j)

k with ‖r̃( j)
k − r( j)

k ‖ < ρ̃, where
ρ̃ depends only on ρ, and is small if ρ is small. We require that ρ be small enough that

ρ̃ < min

(
δ

4(‖a‖ + 1) maxk m(k)
,

δ

2‖a‖ + max j,k |β
( j)
k | + 1

)
.

Let
Rk = {r

(1)
k , . . . , r(m(k))

k } and R̃k = {r̃
(1)
k , . . . , r̃(m(k))

k }.
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From part (4) of the previous lemma, we get (with an obvious abuse of notation)∥∥a(x)−CR̃k,βk

(
a(x)

)∥∥ < 4δ whenever x ∈ Yk. From the estimates above, and using

‖r( j)
k a(x)r( j)

k − r̃( j)
k a(x)r̃( j)

k ‖ < 2ρ̃‖a(x)‖

and ∥∥∥(1−
m(k)∑
j=1

r( j)
k

)
−
(

1−
m(k)∑
j=1

r̃( j)
k

)∥∥∥ < m(k)ρ̃,

it now follows that∥∥a(x)−CRk,βk

(
a(x)

)∥∥ <
∥∥a(x)−CR̃k,βk

(
a(x)

)∥∥ + 4m(k)‖a‖ρ̃ < 5δ.

So part (1) of the previous lemma gives∥∥a(x)−CRk

(
a(x)

)∥∥ < 10δ.

Also,
‖r( j)

k a(x)r( j)
k − β

( j)
k r( j)

k ‖ ≤
∥∥a(x)−CRk,βk

(
a(x)

)∥∥ < 5δ.

Now choose open sets Z1, . . . ,Zn which still cover X and which satisfy Zk ⊂ Yk

for all k. Let

(U1, . . . ,UN) = (Y1, . . . ,Y1,Y2, . . . ,Y2, . . . ,Yn, . . . ,Yn),

with the set Yk being repeated m(k) times. Similarly, let

(V1, . . . ,VN) = (Z1, . . . ,Z1,Z2, . . . ,Z2, . . . ,Zn, . . . ,Zn),

(α1, . . . , αN ) = (β(1)
1 , . . . , β(m(1))

1 , β(1)
2 , . . . , β(m(2))

2 , . . . , β(1)
n , . . . , β(m(n))

n ),

and

(p1, . . . , pN ) = (r(1)
1 , . . . , r(m(1))

1 , r(1)
2 , . . . , r(m(2))

2 , . . . , r(1)
n , . . . , r(m(n))

n ).

With these choices, conditions (1) and (2) of the lemma are clearly satisfied. We
verify (3). Let x ∈ X. Let P = {pl : x ∈ Ul}. Let

S = {k : x ∈ Yk} = {k(1), . . . , k(ν)}.

Thus P is the disjoint union of the sets Rk for k ∈ S. Part (3) of the previous lemma
and the relation

∥∥a(x)−CRk

(
a(x)

)∥∥ < 10δ imply inductively∥∥a(x)−CRk(1)∪···∪Rk(µ)

(
a(x)

)∥∥ < (2µ + 1) · 10δ

for all µ. The choice of the Yk implies that ν ≤ d + 1, and P = Rk(1) ∪ · · · ∪ Rk(ν), so
we get ∥∥a(x)−CP

(
a(x)

)∥∥ < (2d + 3) · 10δ = (20d + 30)δ.
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Also ‖pla(x)pl − αl pl‖ < 5δ whenever x ∈ Ul (since pl = r( j)
k for some suitable k

and j, and αl = β
( j)
k ). It follows (using orthogonality) that∥∥a(x)−CP,α

(
a(x)

)∥∥ < (20d + 35)δ ≤ ε.

Lemma 3.4 Let X be a compact Hausdorff space with finite covering dimension. Let A
be a unital purely infinite simple C∗-algebra, and let a ∈ C(X,A)sa. Then there exist N,
nonzero mutually orthogonal projections p1, . . . , pN ∈ A, numbers α1, . . . , αN ∈ R,
an element b ∈ C(X,A)sa, and open sets U1, . . . ,UN ,V1, . . . ,VN ⊂ X (not necessarily
distinct) satisfying the following properties:

(1) V l ⊂ Ul for all l.
(2) For every x ∈ X and λ ∈ sp

(
a(x)

)
, we have

dist(λ, {αl : l satisfies x ∈ Vl}) < ε,

and, for every x ∈ Ul, we have dist
(
αl, sp

(
a(x)

))
< ε.

(3) plb(x) = αl pl whenever x ∈ Ul.
(4) ‖a− b‖ < ε.

Proof Apply the previous lemma to a, except using ε
5 in place of ε, and calling the

resulting sets Vl ⊂ V l ⊂Wl. Choose open sets Ul, Yl with

Vl ⊂ V l ⊂ Ul ⊂ U l ⊂ Yl ⊂ Y l ⊂Wl.

These choices certainly satisfy conditions (1) and (2). Choose continuous functions
fl : X → [0, 1] which are equal to 1 on Y l and equal to 0 outside Wl.

For x ∈ X define

S(x) =
{

l ∈ {1, . . . ,N} : x ∈Wl

}
.

Inductively define b0 = a and, given bl, define

bl+1(x) =
(

1− fl+1(x)
)

bl(x) + fl+1(x)[(1 − pl+1)bl(x)(1 − pl+1) + pl+1bl(x)pl+1]

=
(

1− fl+1(x)
)

bl(x) + fl+1(x)C{pl+1}

(
bl(x)

)
.

We now claim that bl(x) is always in the convex hull of the elements CT

(
a(x)

)
for

T ⊂ S(x). (CT is to be understood via the obvious abuse of notation for any T ⊂
{1, . . . ,N}.) This is certainly true for l = 0, because a(x) = C∅

(
a(x)

)
. Assume

it is known for l. If x /∈ Wl+1, then bl+1(x) = bl(x), so it is true for l + 1. If
x ∈ Wl+1, then l ∈ S(x), and it is enough to show that C{pl+1}

(
bl(x)

)
is in this

convex hull. Since CS is always a linear map, and bl(x) is assumed to be a convex
combination of CT

(
a(x)

)
for various T ⊂ S(x), this follows from the observation

that C{pl+1}

(
CT(d)

)
= C{l+1}∪T(d) for any d. This completes the induction.
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We furthermore note that if x ∈ Yl, then fl(x) = 1, so the orthogonality of the
projections pk implies, for k ≥ l, that

bk(x) = (1− pl)bk(x)(1 − pl) + plbk(x)pl = (1− pl)bk(x)(1− pl) + pla(x)pl.

In particular, bN (x) = (1− pl)bN (x)(1− pl) + pla(x)pl.
Next, recall that by construction we have∥∥a(x)−CS(x),α|S(x)

(
a(x)

)∥∥ <
ε

5

for all x. Lemma 3.2 (1) shows that
∥∥a(x) − CS(x)

(
a(x)

)∥∥ < 2ε
5 for all x. For T ⊂

S(x), Lemma 3.2 (2), applied to

{pl : l ∈ T} ∪
{

1−
∑
l∈T

pl

}
and {pl : l ∈ S(x)} ∪

{
1−

∑
l∈S(x)

pl

}
,

shows that
∥∥a(x)−CT

(
a(x)

)∥∥ < 4ε
5 . The convex combination result above therefore

implies that ‖a(x)− bN (x)‖ < 4ε
5 for all x.

Choose continuous functions gl : X → [0, 1] which are equal to 1 on U l and equal
to 0 outside Yl. Define

b(x) = bN (x) +
N∑

l=1

gl(x)
(
αl pl − pla(x)pl

)
.

For x ∈ U l, this gives b(x) = (1 − pl)b(x)(1 − pl) + αl pl. This is condition (3). For
condition (4), we note that ‖pla(x)pl−αl pl‖ <

ε
5 for x ∈Wl, so ‖b(x)−bN (x)‖ < ε

5 ,
and ‖b(x)− a(x)‖ < ε.

Now we are ready to thicken the spectrum.

Lemma 3.5 Let X be a compact Hausdorff space with finite covering dimension. Let A
be a unital purely infinite simple C∗-algebra, and let a ∈ C(X,A)sa. Then there exists
c ∈ C(X,A)sa such that, for all x ∈ X,

(1) sp
(

c(x)
)

contains the ε
3 -neighborhood of sp

(
a(x)

)
and is contained in the ε-

neighborhood of sp
(

a(x)
)

.

(2) For every λ ∈ sp
(

c(x)
)

there is an interval I of length ε with λ ∈ I ⊂ sp
(

c(x)
)

.
(3) ‖c(x)− a(x)‖ < ε.

Proof Apply the previous lemma with ε
3 in place of ε, but otherwise following the

notation there. Using Lemma 2.6, choose elements dl ∈ (plApl)sa with sp(dl) =
[0, 1]. Choose continuous functions hl : X → [0, 1] which are equal to 1 on V l and
equal to 0 outside Ul. Define

cl(x) = αl pl +
2ε

3

(
2hl(x)− 1

)
dl,
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so that

sp
(

cl(x)
)
=

[
αl −

2ε

3
hl(x), αl +

2ε

3
hl(x)

]
.

Define

c(x) = b(x) +
N∑

l=1

(
cl(x)− αl pl

)
.

We always have ‖cl(x)−αl pl‖ ≤
2ε
3 , so clearly ‖c(x)−a(x)‖ < ε. This is condition (3),

and implies that sp
(

c(x)
)

is contained in the ε-neighborhood of sp
(

a(x)
)

, which is
half of (1).

Fix x ∈ X. Then c(x) is the orthogonal sum of selfadjoint elements with spec-
trum [αl −

2ε
3 , αl + 2ε

3 ] (for those l with x ∈ V l), selfadjoint elements with spectrum
[αl − βl(x), αl + βl(x)] with 0 ≤ βl(x) ≤ 2ε

3 (for those l with x ∈ Ul \V l), and a self-

adjoint element with spectrum contained in sp
(

b(x)
)

. Its spectrum is the union of

these sets. By construction, the ε
3 -neighborhood of {αl : x ∈ Vl} contains sp

(
a(x)

)
.

Since sp
(

c(x)
)

contains the 2ε
3 -neighborhood of {αl : x ∈ Vl}, it contains the

ε
3 -neighborhood of sp

(
a(x)

)
. This is the other half of (1).

For (2), the existence of an interval I of length ε is clear for λ ∈ [αl −
2ε
3 , αl + 2ε

3 ]

with x ∈ V l. If λ ∈ sp
(

b(x)
)

, then λ is in the ε
3 -neighborhood of sp

(
a(x)

)
. As

we have seen, such a λ must also be in one of the intervals [αl −
2ε
3 , αl + 2ε

3 ]. It
remains to consider λ ∈ [αl − βl(x), αl + βl(x)] with x ∈ Ul \V l. By construction,

dist
(
αl, sp

(
a(x)

))
< ε

3 . Therefore |αl − αk| <
2ε
3 for some k with x ∈ Vk. So

αl ∈ [αk −
2ε
3 , αk + 2ε

3 ]. Therefore

λ ∈ [αl − βl(x), αl + βl(x)] ∪

[
αk −

2ε

3
, αk +

2ε

3

]
,

which is an interval of length greater than ε and contained in sp
(

c(x)
)

.

Three miscellaneous lemmas are still required before we prove the main result.

Lemma 3.6 Let A be a unital purely infinite simple C∗-algebra, and let X be a compact
Hausdorff space. Let p, q1, q2 ∈ C(X,A) be projections such that q1(x), q2(x) < p(x)
for all x, and such that each is homotopic to a nonzero constant projection with trivial
K0-class. Let Y,Z ⊂ X be disjoint closed sets. Then there exists a unitary u ∈ pC(X,A)p
which is homotopic to p and such that u(x) = p for x ∈ Y and u(x)q1(x)u(x)∗ = q2(x)
for x ∈ Z.

Proof Conjugating by a suitable unitary, we may assume that p is a constant pro-
jection x �→ p0 for some p0 ∈ A. By Lemma 2.8, q1 and q2 are still homotopic in
C(X, p0Ap0) to constant projections with trivial K0-classes. Therefore we may replace
A by p0Ap0, and so assume that p = 1.

The projections q1 and q2 are homotopic, so there is a unitary path (t, x) �→ vt (x),
defined for t ∈ [0, 1] and x ∈ X, such that v0 = 1 and v1(x)q1(x)v1(x)∗ = q2(x) for
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all x ∈ X. Choose a continuous function f : X → [0, 1] which is equal to 1 on Z and
equal to 0 on Y . Then set u(x) = v f (x)(x) for x ∈ X.

Lemma 3.7 Let A be a unital C∗-algebra, and let a ∈ Asa. Let δ > 0, let f : R → R be
a continuous function with supp( f ) ⊂ [−δ, δ], let p ∈ f (a)A f (a) be a projection, and
let u ∈ A be a unitary such that u(1−p) = (1−p)u = (1−p). Then ‖a−uau∗‖ ≤ 6δ.

Proof We first estimate ‖ap‖. Let ρ > 0. Let g : R → [0, 1] be a continuous function
supported in [−(δ + ρ), δ + ρ] and with g = 1 on [−δ, δ]. Then g(a) f (a) = f (a), so
g(a)p = p. Therefore ‖ap‖ = ‖ag(a)p‖ ≤ ‖ag(a)‖ ≤ δ+ρ. Since ρ > 0 is arbitrary,
we get ‖ap‖ ≤ δ. Similarly ‖pa‖ ≤ δ, so also ‖pap‖ ≤ δ.

Now use u = (1− p) + pup and 1 = (1− p) + p to write

‖a− uau∗‖

≤ ‖(1− p)a(1− p)− (1− p)a(1− p)‖ + ‖(1− p)ap − (1− p)apu∗p‖

+ ‖pa(1− p)− pupa(1− p)‖ + ‖pap − pupapu∗p‖

≤ 0 + 2‖ap‖ + 2‖pa‖ + 2‖pap‖ ≤ 6δ.

Lemma 3.8 Let A be a unital C∗-algebra, and let a ∈ Asa. Let p ∈ A be a projection,
and suppose (1− p)a(1− p) has an inverse r in (1− p)A(1− p). Let

ε =
1

2(2‖a‖ + 1 + ‖r‖−1)‖r‖
.

If b ∈ Asa and a projection q ∈ A satisfy ‖a − b‖ ≤ ε and ‖p − q‖ ≤ ε, then
(1− q)b(1− q) has an inverse s in (1− q)A(1− q), and ‖s‖ ≤ 2‖r‖.

Proof Let α = ‖r‖. We calculate

‖[(1− q)b(1− q) + α−1q]− [(1− p)a(1− p) + α−1 p]‖

≤ ‖a− b‖ + ‖[(1− q)a(1− q) + α−1q]− [(1− p)a(1− p) + α−1 p]‖

≤ ‖a− b‖ + (2‖a‖ + α−1)‖p − q‖ ≤ (2‖a‖ + 1 + α−1)ε

=
1

2‖r‖
=

1

2‖(r + αp)‖
.

Since
[(1− p)a(1− p) + α−1 p]−1 = r + αp,

it follows that (1− q)b(1− q) + α−1q is invertible with

‖[(1− q)b(1− q) + α−1q]−1‖ ≤ 2‖(r + αp)‖ = 2‖r‖.

Clearly
[(1− q)b(1− q) + α−1q]−1 = s + αq
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with s an inverse for (1− q)b(1− q) in (1− q)A(1− q).

Lemma 3.9 Let A be a unital C∗-algebra, and let a, b ∈ Asa. Let p, q ∈ A be orthogonal
projections, and suppose (1− p)a(1 − p) and (1− q)b(1 − q) have inverses r and s in
(1− p)A(1− p) and (1− q)A(1− q) respectively. Let

ε =
1

4 max(‖a‖, ‖b‖) max(‖r‖, ‖s‖)2
.

If

‖a− [(1− p)a(1− p) + pap]‖ < ε and ‖b− [(1− q)b(1− q) + qbq]‖ < ε,

then a2 + b2 is invertible.

Proof Let

a0 = (1− p)a(1− p) + pap and b0 = (1− q)b(1− q) + qbq.

With s−2 being interpreted in (1− q)A(1− q), we have

[(1− q)b(1− q)]2 = s−2 ≥ ‖s‖−2(1− q) ≥ ‖s‖−2 p.

So

a2
0 + b2

0 = [(1− p)a(1− p)]2 + [pap]2 + [(1− q)b(1− q)]2 + [qbq]2

≥ [(1− p)a(1− p)]2 + [(1− q)b(1− q)]2 ≥ ‖r‖−2(1− p) + ‖s‖−2 p.

Therefore
‖(a2

0 + b2
0)−1‖ ≤ max(‖r‖2, ‖s‖2).

Using ‖a0‖ ≤ ‖a‖, we get

‖a2 − a2
0‖ ≤ ‖a‖ ‖a− a0‖ + ‖a0‖ ‖a− a0‖ ≤ 2‖a‖ ‖a− a0‖ <

1

2 max(‖r‖2, ‖s‖2)
.

Similarly,

‖b2 − b2
0‖ <

1

2 max(‖r‖2, ‖s‖2)
.

So
‖(a2 + b2)− (a2

0 + b2
0)‖ < ‖(a2

0 + b2
0)−1‖−1.

It follows that a2 + b2 is invertible.

Theorem 3.10 Let A be a purely infinite simple C∗-algebra, and let X be a compact
Hausdorff space. Then RR

(
C(X)⊗ A

)
≤ 1.
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Proof We first consider the case X ⊂ [0, 1]n for some n and A separable. By Theo-
rem 1.2 of [34], A is either unital or stable. If A is stable, then so is C(X)⊗A, whence
RR

(
C(X) ⊗ A

)
≤ 1 by Proposition 3.3 of [4]. Therefore, without loss of generality,

A is unital.
We have to show that if a1, a2 ∈ C(X,A)sa, then the ai can be arbitrarily closely

approximated by bi ∈ C(X,A)sa such that b2
1 + b2

2 is invertible. By Lemma 3.5 we may
assume without loss of generality that, for some δ > 0, for every λ ∈ sp

(
ai(x)

)
there

is an interval I of length δ with λ ∈ I ⊂ sp
(

ai(x)
)

.

Let ε > 0. Let M = max(‖a1‖, ‖a2‖). Choose α > 0 with α < max( δ8 ,
ε

48 ). Let
f : R → [0, 1] be the continuous function which is equal to 1 on [−2α, 2α], equal
to 0 outside [−4α, 4α], and linear on [−4α,−2α] and on [2α, 4α]. Choose ρ1 > 0
such that ρ1 <

ε
4M , and such that if projections p and q in some C∗-algebra satisfy

‖qp − p‖ < 2ρ1, then there is a projection e ≤ q such that

‖e− p‖ < min

(
α

2M + 1 + 2α
,
α2

32M2

)
.

Choose ρ2 > 0 such that

ρ2 < min

(
α2

24M
,

α

2M + 1 + 2α

)
,

and such that if selfadjoint elements c1 and c2 in some C∗-algebra satisfy ‖ci‖ ≤ M
and ‖c1 − c2‖ < ρ2, then ‖ f (c1) − f (c2)‖ < ρ1. (Approximate f to within ρ1

3 on
[−M,M] by a polynomial g, and choose ρ2 small enough that ‖g(c1)− g(c2)‖ < ρ1

3 .)
Choose ρ3 > 0 such that if projections p and q in some unital C∗-algebra satisfy
‖qp − p‖ < ρ3, then there is a projection e ≤ q such that ‖e− p‖ < ρ1, and there is
a unitary u such that ueu∗ = p and ‖u− 1‖ < ρ1.

Define

Yi =
{

x ∈ X : sp
(

ai(x)
)

contains at least one of 3α and−3α
}

and
Zi =

{
x ∈ X : sp

(
ai(x)

)
contains at least one of α and−α

}
.

Recall that every point of sp
(

ai(x)
)

is contained in an interval in sp
(

ai(x)
)

of length
at least 8α. It follows, first, that if x /∈ Zi then ai(x) is invertible. So if Z1 ∩ Z2 = ∅

then a2
1 + a2

2 is already invertible. Thus without loss of generality Z1 ∩Z2 	= ∅. It also
follows that Yi contains a neighborhood of Zi .

For each x ∈ Zi , choose c(i)
x ∈ Asa such that sp(c(i)

x ) is finite, ‖c(i)
x − ai(x)‖ < ρ2,

and ‖c(i)
x ‖ < ‖ai(x)‖. (This is possible because purely infinite simple C∗-algebras

have real rank zero [33].) Let e(i)
x ∈ A be the spectral projection for c(i)

x corre-
sponding to the interval [−2α, 2α]. Note that (1 − e(i)

x )c(i)
x (1 − e(i)

x ) is invertible in
(1− e(i)

x )A(1− e(i)
x ), and its inverse d(i)

x in that algebra satisfies ‖d(i)
x ‖ ≤

1
2α . It follows

from the choice of ρ2 that
∥∥ f

(
ai(x)

)
− f (c(i)

x )
∥∥ < ρ1. Using f (c(i)

x )e(i)
x = e(i)

x , we get∥∥ f
(

ai(x)
)

e(i)
x − e(i)

x

∥∥ < ρ1.
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For x ∈ Yi , we have 3α ∈ sp
(

ai(x)
)

or −3α ∈ sp
(

ai(x)
)

. Since there is an in-

terval in sp
(

ai(x)
)

of length more than 8α which contains one of these numbers,

at least one of the intervals [−4α,−3α] and [3α, 4α] is contained in sp
(

ai(x)
)

.
Since f (−4α) = f (4α) = 0 and f (−3α), f (3α) 	= 0, the hereditary subalgebra

f
(

ai(x)
)

A f
(

ai(x)
)

is nonzero and nonunital. By Lemma 2.11, the hereditary sub-
algebra

f (ai|Y1∩Y2 )C(Y1 ∩ Y2,A) f (ai |Y1∩Y2 )

has an approximate identity of projections each of which is homotopic to a constant
projection with trivial K0-class. In particular, there exist projections

pi , qi ∈ f (ai |Y1∩Y2 )C(Y1 ∩ Y2,A) f (ai |Y1∩Y2 ),

each homotopic to a constant projection with trivial K0-class, such that

pi(x) > qi(x) and
∥∥qi(x) f

(
ai(x)

)
− f

(
ai(x)

)∥∥ < ρ1

for all x. It follows that ‖qi(x)e(i)
x − e(i)

x ‖ < 2ρ1 for x ∈ Zi ∩Y1 ∩Y2. By the choice of
ρ1, there are projections ẽ(i)

x ≤ qi(x) such that

‖ẽ(i)
x − e(i)

x ‖ < min

(
α

2M + 1 + 2α
,
α2

32M2

)
.

Use Lemma 2.14 to find nowhere zero orthogonal projections r1, r2 ∈
C(Y1 ∩ Y2,A), each homotopic to a constant projection with trivial K0-class, such
that ‖qiri− ri‖ < ρ3. By the choice of ρ3, there exist projections r̃i ≤ qi and unitaries
u(0)

i ∈ C(Y1 ∩ Y2,A) such that

‖r̃i − ri‖ < ρ1, u(0)
i r̃i(u(0)

i )∗ = ri, and ‖u(0)
i − 1‖ < ρ1.

Applying the Tietze extension theorem to log(u(0)
i ) and exponentiating, we obtain

unitaries ui ∈ C(X,A) such that

ui|Y1∩Y2 = u(0)
i and ‖ui − 1‖ < ρ1.

Use Lemma 3.6 to find unitaries vi ∈ C(Y1 ∩ Y2,A) such that vi(1 − pi) =
(1− pi)vi = (1− pi), vi is equal to 1 on ∂(Y1 ∩Y2), and vi(x)qi(x)vi(x)∗ = r̃i(x) for
x ∈ Z1 ∩ Z2. (The boundary is taken in X. Since Zi is contained in the interior of
Yi , the sets ∂(Y1 ∩Y2) and Z1 ∩ Z2 are disjoint.) Extend vi to a unitary in C(X,A) by
taking vi(x) = 1 for x /∈ Y1 ∩ Y2.

Now define bi = uiviaiv∗i u∗i . We show that ‖bi − ai‖ < ε and b2
1 + b2

2 is invertible.
We have

‖bi − ai‖ ≤ 2‖1− ui‖ ‖ai‖ + ‖viaiv
∗
i − ai‖.

The first term is at most 2ρ1M < ε
2 . By Lemma 3.7, the second term is at most

6(4α) < ε
2 . So ‖bi − ai‖ < ε, as desired.
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As we saw above, if x /∈ Zi then ai(x) is invertible. So also bi(x) is invertible. Thus
b1(x)2 + b2(x)2 is invertible for x /∈ Z1 ∩ Z2. So let x ∈ Z1 ∩ Z2. We have

‖[(1− e(i)
x )c(i)

x (1− e(i)
x )]−1‖ = ‖d(i)

x ‖ ≤
1

2α

(the inverse being taken in (1− e(i)
x )A(1− e(i)

x )),

‖ẽ(i)
x − e(i)

x ‖ < min

(
α

2M + 1 + 2α
,
α2

32M2

)
,

and

‖c(i)
x − ai(x)‖ < ρ2 < min

(
α

2M + 1 + 2α
,
α2

24M

)
.

Applying Lemma 3.8, we find that (1 − ẽ(i)
x )ai(x)(1 − ẽ(i)

x ) is invertible in
(1− ẽ(i)

x )A(1− ẽ(i)
x ), and

‖[(1− ẽ(i)
x )ai(x)(1− ẽ(i)

x )]−1‖ ≤
1

α
.

Moreover,

‖ai(x)− [(1− ẽ(i)
x )ai(x)(1 − ẽ(i)

x ) + ẽ(i)
x ai(x)ẽ(i)

x ]‖

≤ ‖[(1− ẽ(i)
x )ai(x)(1 − ẽ(i)

x ) + ẽ(i)
x ai(x)ẽ(i)

x ]

− [(1− e(i)
x )ai(x)(1− e(i)

x ) + e(i)
x ai(x)e(i)

x ]‖

+ 3‖ai(x)− c(i)
x ‖ + ‖c(i)

x − [(1− e(i)
x )c(i)

x (1− e(i)
x ) + e(i)

x c(i)
x e(i)

x ]‖

< 4‖ẽ(i)
x − e(i)

x ‖M + 3ρ2 + 0

< 4M

(
α2

32M2

)
+ 3

(
α2

24M

)
=

α2

4M
.

We conjugate the elements considered above by uivi ; this does not change the norm
estimates. Now

u1(x)v1(x)ẽ(1)
x v1(x)∗u1(x)∗ ≤ r1(x) and u2(x)v2(x)ẽ(2)

x v2(x)∗u2(x)∗ ≤ r2(x)

are orthogonal projections, so Lemma 3.9 implies that(
u1(x)v1(x)a1(x)v1(x)∗u1(x)∗

) 2
+
(

u2(x)v2(x)a2(x)v2(x)∗u2(x)∗
) 2
= b1(x)2 +b2(x)2

is invertible.
This proves the special case X ⊂ [0, 1]n and A separable. This case covers all finite

complexes X. By Theorem 10.1 in Chapter 10 of [9], a general compact Hausdorff
space is an inverse limit of finite complexes. Therefore the result holds for arbitrary
compact Hausdorff X by taking direct limits. Finally, if A is not separable, we write it
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as a direct limit of separable purely infinite simple C∗-algebras. (The proof of Theo-
rem 4.3.11 of [27] shows that if A is a purely infinite simple C∗-algebra and S ⊂ A is
a separable subset, then there is a separable purely infinite simple C∗-algebra B with
S ⊂ B ⊂ A. It follows that A is the direct limit of its separable purely infinite sim-
ple subalgebras.) The corresponding direct limit expression for algebras of functions
proves the theorem in full generality.

Corollary 3.11 Let A be a purely infinite simple C∗-algebra, and let X be a locally
compact Hausdorff space. Then RR

(
C0(X)⊗ A

)
≤ 1.

Proof Let X+ be the one point compactification of X. Apply Theorem 1.4 of [11]
(passage to ideals does not increase real rank) to C0(X)⊗A as an ideal in C(X+)⊗A.

4 Stable Rank of C([0, 1])⊗ A

This section is devoted to the proof that if RR(A) = 0, sr(A) = 1, and K1(A) = 0 (a
kind of “strong zero dimensionality” condition—note that if X is zero dimensional
then K1(X) = 0), then sr

(
C([0, 1]) ⊗ A

)
= 1. The hypotheses are satisfied by AF

algebras, but are also satisfied by some nonnuclear C∗-algebras, and some nuclear
C∗-algebras whose K0-groups contain torsion; these cannot be AF. See Examples 4.4
and 4.5 at the end of this section.

Lemma 4.1 For every ε > 0 there is δ > 0 such that whenever A is a unital C∗-algebra,
u, v ∈ A are unitaries, and p ∈ A is a projection, with ‖up − vp‖ < δ, then there is
a path t �→ zt of unitaries in A with z0 = 1, z1up = vp, and ‖zt − 1‖ < ε for all
t ∈ [0, 1].

Proof Let ε > 0. Choose δ0 > 0 small enough that whenever z is a unitary in
a unital C∗-algebra B with ‖z − 1‖ < δ0, then there is a continuous unitary path
t �→ zt ∈ U (B) such that

z0 = 1, z1 = z, and sup
t∈[0,1]

‖zt − 1‖ < ε.

Choose δ > 0 small enough that whenever e and f are projections in a unital C∗-
algebra B with ‖e − f ‖ < 2δ, then there is y ∈ U (B) such that yey∗ = f and
‖y − 1‖ < δ0

2 . We further require δ < δ0
2 .

Let u, v, and p be as in the hypotheses, and assume that ‖up − vp‖ < δ. Then
‖upu∗ − vpv∗‖ < 2δ. Choose a unitary y ∈ A as in the previous paragraph, for
e = upu∗ and f = vpv∗, and satisfying ‖y − 1‖ < δ0

2 . Set w = yu(1 − p)u∗, which
is a partial isometry in A such that w∗w = u(1− p)u∗ and ww∗ = v(1− p)v∗. Then
w̃ = vpu∗ + w is a unitary such that w̃up = vp. Moreover,

‖w̃ − 1‖ ≤ ‖vpu∗ − upu∗‖ + ‖w− u(1− p)u∗‖ ≤ ‖up − vp‖ + ‖y − 1‖ < δ0.
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Hence there is a path t �→ zt in U (A) such that z0 = 1, z1 = w̃, and ‖zt − 1‖ < ε.
This is the required path.

Lemma 4.2 Let A be a unital C∗-algebra with K1(A) = 0, sr(A) = 1, and RR(A) = 0.
Then for every ε > 0 there is δ > 0 such that whenever a, b ∈ inv(A) satisfy ‖a‖, ‖b‖ ≤
1 and ‖a− b‖ < δ, then there is a continuous path t �→ ct in inv(A) such that

c0 = a, c1 = b, and ‖ct − a‖ < ε.

Proof Let ε > 0. Set ρ = ε
4 . Choose δ0 > 0 with δ0 <

ε
4 , and also so small that,

following Lemma 4.1, if ‖up − vp‖ < 4δ0/ρ, then the unitary path t �→ zt there
satisfies ‖zt − 1‖ < ε

2 . Now choose δ > 0 with δ ≤ δ0 ≤
ε
4 , and also so small that

if a, b ∈ A satisfy ‖a‖, ‖b‖ ≤ 1 and ‖a− b‖ < δ, then ‖|a| − |b|‖ < δ0. (Recall that
|a| = (a∗a)1/2.)

Let a, b ∈ inv(A) satisfy ‖a‖, ‖b‖ ≤ 1 and ‖a− b‖ < δ. We are going to construct
an invertible path from a to b, within the ε-ball Bε(a) = {c ∈ A : ‖c − a‖ < ε}, in
five stages: from a = r0 to r1 to r2 to r3 to r4 and finally to r5 = b.

Define u = a(a∗a)−1/2 and v = b(b∗b)−1/2, so that a = u|a| and b = v|b| are the
polar decompositions of a and b respectively.

Define a continuous invertible path from r0 = a = u|a| to r1 = u|b| by t �→
u
(

t|b| + (1− t)|a|
)

. Clearly this path is invertible and has the correct values at t = 0
and t = 1. Moreover, from the choices above, we have ‖|a| − |b|‖ < δ0. Therefore∥∥u

(
t|b| + (1− t)|a|

)
− a

∥∥ = t‖|a| − |b|‖ < δ0 < ε.

Also note that ‖r1 − a‖ < δ0.
Since RR(A) = 0, there is a positive invertible element b0 ∈ Asa such that sp(b0)

is finite and ‖b0 − |b|‖ < δ. Define a continuous invertible path from r1 = u|b|
to r2 = ub0 by t �→ u

(
tb0 + (1 − t)|b|

)
. Following the reasoning of the previous

paragraph, this path is invertible and satisfies∥∥u
(

tb0 + (1− t)|b|
)
−a

∥∥ ≤ ∥∥u
(

tb0 + (1− t)|b|
)
−u|b|

∥∥ +‖u|b|−a‖ < δ+ δ0 < ε.

Also note that ‖r2 − a‖ < δ + δ0. Similarly define a continuous invertible path from
r4 = vb0 to r5 = b = v|b| by t �→ v

(
(1− t)b0 + t|b|

)
. This path satisfies∥∥v

(
(1− t)b0 + t|b|

)
− a

∥∥ ≤ ∥∥v
(

(1− t)b0 + t|b|
)
− b

∥∥ + ‖b− a‖ < 2δ < ε,

and in particular ‖r4 − a‖ < 2δ.
Let χ[ρ,∞) be the characteristic function of the interval [ρ,∞). Define p =

χ[ρ,∞)(b0), which is well defined because b0 has finite spectrum. Let f : [0, 1] →
[0, ρ−1] be a continuous function such that f (t) = t−1 for t ≥ ρ. Then b0 f (b0)p =
p and ‖ f (b0)‖ ≤ ρ−1. Therefore

‖up − vp‖ = ‖ub0 f (b0)p − vb0 f (b0)p‖ ≤ ρ−1‖ub0 − vb0‖

= ρ−1‖r2 − r4‖ ≤ ρ
−1(‖r2 − a‖ + ‖r4 − a‖) < ρ−1(δ0 + 3δ) ≤ 4δ0ρ

−1.
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By the choice of δ0 above, and following Lemma 4.1, there is a unitary path t �→ zt

such that z0 = 1, z1up = vp, and ‖zt − 1‖ < ε
2 . Now define a continuous invertible

path from r2 = ub0 to r3 = z1ub0 by t �→ zt ub0. We have

‖zt ub0 − a‖ ≤ ‖zt ub0 − ub0‖ + ‖ub0 − a‖ <
ε

2
+ δ + δ0 ≤

ε

2
+
ε

4
+
ε

4
= ε.

We have the polar decompositions r3 = (z1u)b0 and r4 = vb0, in which the pro-
jection p commutes with b0 and satisfies v∗z1up = pv∗z1u = p. Therefore, if we
construct a continuous invertible path t �→ ct in (1− p)A(1− p) from

c0 = v∗r3(1− p) = (1− p)v∗z1u(1− p) · (1− p)b0(1− p)

to
c1 = v∗r4(1− p) = (1− p)b0(1− p),

the assignment t �→ v(ct + b0 p) will define a continuous invertible path from r3 to
r4. Now RR(A) = 0 and K1(A) = 0, so Lemma 2.4 of [17] implies K1

(
(1− p)A(1−

p)
)
= 0. Moreover, sr

(
(1 − p)A(1 − p)

)
= 1 (see the proof of Lemma 3.4 of

[31]), so that Theorem 2.10 of [32] implies that U
(

(1 − p)A(1 − p)
)

is connected.
Therefore there is a continuous unitary path t �→ wt in (1 − p)A(1 − p) with w0 =
(1− p)v∗z1u(1− p) and w1 = 1− p. The path ct = wt (1− p)b0(1− p) satisfies the
conditions above.

It remains to estimate the distance from a. Since vb0 = r4, we have

‖v(ct + b0 p)− a‖ ≤ ‖v(ct + b0 p)− vb0‖ + ‖r4 − a‖ = ‖ct − (1− p)b0‖ + ‖r4 − a‖

≤ ‖ct‖ + ‖(1− p)b0‖ + ‖r4 − a‖ = 2‖(1− p)b0‖ + ‖r4 − a‖

< 2ρ + 2δ ≤ ε.

We have now connected r0 = a to r5 = b by a continuous invertible path which
lies in the ε-ball Bε(a).

Theorem 4.3 Let A be a unital C∗-algebra with K1(A) = 0, sr(A) = 1, and RR(A) =
0. Then sr

(
C([0, 1])⊗ A

)
= 1.

Proof Let a ∈ C([0, 1]) ⊗ A, and let ε > 0. We have to approximate a within ε by
an invertible element of C([0, 1])⊗ A. Scaling both a and ε, we may assume without
loss of generality that ‖a‖ ≤ 1.

Choose δ > 0 as in the previous lemma for ε
3 in place of ε. Choose 0 = t0 < t1 <

· · · < tn = 1 such that

‖a(t j)− a(t j−1)‖ <
δ

3
and ‖a(t)− a(t j−1)‖ <

ε

3

for 1 ≤ j ≤ n and t ∈ [t j−1, t j]. Using the fact that sr(A) = 1, choose c0, c1, . . . , cn ∈
inv(A) such that

‖c j − a(t j)‖ < min

(
ε

3
,
δ

3

)
.
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Then ‖c j − c j−1‖ < δ. For each j, use the previous lemma to choose a continuous
path t �→ b(t) ∈ inv(A), defined for t ∈ [t j−1, t j], such that

b(t j−1) = c j−1, b(t j ) = c j , and ‖b(t)− c j−1‖ <
ε

3
.

The two definitions at t j (one from the j-th interval, one from the ( j + 1)-st interval)
agree, so t �→ b(t) is a continuous invertible path defined for t ∈ [0, 1]. Moreover,
for t ∈ [t j−1, t j] we have

‖b(t)− a(t)‖ ≤ ‖b(t)− c j−1‖ + ‖c j−1 − a(t j−1)‖ + ‖a(t j−1)− a(t)‖

<
ε

3
+
ε

3
+
ε

3
= ε.

We now give several examples of simple separable unital C∗-algebras which satisfy
the hypotheses of this theorem but are not AF. In particular, sr

(
C([0, 1]) ⊗ A

)
= 1

does not imply that A is AF, even if A is nuclear. We will see in the next section that
sr
(

C([0, 1])⊗ A
)
= 1 does not even imply that RR(A) = 0.

Example 4.4 Example 4.11 of [22] gives a simple separable unital nuclear C∗-algebra
A satisfying K1(A) = 0 and RR(A) = 0. It also has sr(A) = 1 (by Theorem 2.4 (3) of
[22] or by [8]). It thus satisfies the hypotheses of Theorem 4.3. It is not AF because
K0(A) contains torsion.

Example 4.5 Apply Proposition 9 or Theorem 11 of [7], starting with a UHF algebra.
The result is a simple separable unital C∗-algebra A satisfying K1(A) = 0, RR(A) = 0,
and sr(A) = 1. The group K0(A) is even torsion-free, and A is even asymptotically
homotopy equivalent to the original UHF algebra. However, A is not AF because A is
not nuclear.

More examples of this type are contained in [29].

5 Lower Bounds on Rank

In this section, we determine to what extent the converse of Theorem 4.3, the main
result of the previous section, is true. We see that if sr

(
C([0, 1]) ⊗ A

)
= 1, then

indeed necessarily sr(A) = 1 and K1(A) = 0, but we show by example that it need
not follow that RR(A) = 0, even for simple A. We also prove two related results:
for any nonzero C∗-algebra A, we have RR

(
C([0, 1]) ⊗ A

)
≥ 1, and for any unital

C∗-algebra A, we have sr
(

C([0, 1]2)⊗ A
)
≥ 2.

Proposition 5.1 Let A be a nonzero C∗-algebra. Then RR
(

C([0, 1])⊗ A
)
≥ 1.

Proof Suppose that RR
(

C([0, 1]) ⊗ A
)
= 0. We first reduce to the unital case.

Since A is a quotient of C([0, 1]) ⊗ A, it follows that A is a nonzero C∗-algebra with
RR(A) = 0. Therefore A contains a nonzero projection p. The algebra C([0, 1]) ⊗
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pAp is a corner of C([0, 1]) ⊗ A, so also has real rank zero. Replacing A by pAp, we
may therefore assume A is unital.

Define f ∈ C([0, 1],A)sa by f (t) = (2t − 1) · 1A for 0 ≤ t ≤ 1. By assumption,
there is an invertible selfadjoint element g ∈ C([0, 1],A) such that ‖ f − g‖ < 1

2 .

Define h : [0, 1]→ [0,∞) by h(t) = sup sp
(

g(t)
)

. Let M = ‖g‖. Since the element
g + M · 1C([0,1])⊗A ∈ C([0, 1])⊗ A is positive, we can write

h(t) = sup sp
(

g(t) + M · 1A

)
−M = ‖g(t) + M · 1A‖ −M,

so that h is continuous. Clearly h(0) < 0 and h(1) > 0. Therefore there exists
t0 ∈ (0, 1) such that h(t0) = 0. So sp

(
g(t0)

)
contains 0, that is, g(t0) is not invertible.

This contradicts our assumption.

Proposition 5.2 Let A be any C∗-algebra. Suppose that sr
(

C([0, 1])⊗ A
)
= 1. Then

sr(A) = 1 and K1(A) = 0.

Proof We have sr(A) = 1 because A is a quotient of C([0, 1])⊗ A.
We prove that K1(A) = 0 in the nonunital case. (The proof in the unital case

is similar but easier.) First, note that Mn(A) also satisfies the hypothesis, by Theo-
rem 6.1 of [31]. Therefore it suffices to show that U (A+) is connected. We recall that
U0(B) and inv0(B) denote the identity components of U (B) and inv(B) respectively.

So let u ∈ A+ be unitary. Let λ ∈ C be its image under the standard map π : A+ →
C. To show that u ∈ U0(A+), it suffices to show that λ−1u ∈ U0(A+). Accordingly, we

assume that π(u) = 1. Define f ∈
[

C([0, 1])⊗ A
]+

by f (t) = t · 1 + (1− t)u ∈ A+

for t ∈ [0, 1]. Note that f really is in
[

C([0, 1]) ⊗ A
]+

, because π(u) = 1. Use

sr
(

C([0, 1]) ⊗ A
)
= 1 to choose an invertible element g ∈

[
C([0, 1]) ⊗ A

]+
such

that ‖g − f ‖ < 1
2 . Because ‖u − g(0)‖ = ‖ f (0) − g(0)‖ < 1, there is a continuous

path in inv(A+) from u to g(0). Similarly, there is a continuous path in inv(A+) from
1 to g(1). Combining these paths with the continuous path g in inv(A+) from g(0) to
g(1), we see that u ∈ inv0(A+). As is well known, this implies u ∈ U0(A+).

Proposition 5.3 Let A be a unital C∗-algebra. Then sr
(

C([0, 1]2)⊗ A
)
≥ 2.

Proof Suppose that sr
(

C([0, 1]2) ⊗ A
)
= 1. Then sr

(
C(S1) ⊗C([0, 1]) ⊗ A

)
= 1

by Lemma 1.14. So sr
(

C(S1)⊗ A
)
= 1 and K1

(
C(S1)⊗ A

)
= 0 by Proposition 5.2.

Therefore 0 = K1

(
C(S1) ⊗ A

)
∼= K1(A) ⊕ K0(A), whence K0(A) = 0. Since A is

stably finite (because sr(A) ≤ sr
(

C(S1)⊗A
)
≤ 1) and unital, this is a contradiction.

The same proof works as soon as K ⊗ A has a nontrivial projection, using the fact
(Theorem 3.6 of [31]) that sr(K ⊗ B) = 1 if and only if sr(B) = 1. We do not know
what happens if A is stably projectionless.

We now prove some lemmas in preparation for our example of a C∗-algebra A
such that sr

(
C([0, 1])⊗ A

)
= 1 but RR(A) 	= 0. The algebra A will be a direct limit

of the form considered in [13], with the space involved being [0, 1].
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Lemma 5.4 Let X be a compact Hausdorff space, let a ∈ C(X,Mn), and let x0 ∈ X.
Then there are a neighborhood U of x0, an integer k with 0 ≤ k ≤ n, elements r, s ∈
inv

(
C(U ,Mn)

)
, and b ∈ C(U ,Mk), such that

r(a|U )s = b⊕ 1n−k and b(0) = 0.

Proof Let k = n − rank
(

a(x0)
)

. Let p = diag(0, . . . , 0, 1, . . . , 1) ∈ Mn, with 0
appearing k times on the diagonal and 1 appearing n− k times. By standard row and
column reduction, there exist invertible r0, s0 ∈ Mn such that r0a(x0)s0 = p. Write
the matrix r0a(x)s0 in block form as

r0a(x)s0 =

(
a11(x) a12(x)
a21(x) a22(x)

)
,

where
a11(x) = (1− p)r0a(x)s0(1− p) ∈ (1− p)Mn(1− p) ∼= Mk

and
a22(x) = pr0a(x)s0 p ∈ pMn p ∼= Mn−k.

Then a22(x0) = p. Therefore there is a neighborhood U of x0 such that c(x) =
a22(x)−1 exists in pMn p for every x ∈ U . For such x, define

r(x) =

(
1 0
0 c(x)

)(
1 −a12(x)c(x)
0 1

)
r0 and s(x) = s0

(
1 0

−c(x)a21(x) 1

)
.

A computation shows that these choices give r(a|U )s = b ⊕ p with b(x) = a11(x) −
a12(x)c(x)a21(x). Since a11(x0) = a12(x0) = a21(x0) = 0, we get b(x0) = 0.

We denote byω( f ) the winding number about 0 of a continuous function f : S1 →
C\{0}. We use the same notation when f is defined on the boundary of a disk in R2,
or on the boundary of a rectangle in R2. (We take such boundaries with the positive
orientation.)

Lemma 5.5 Let a ∈ C([0, 1]2,Mn), let x0 ∈ [0, 1]2, and suppose that there is a closed
disk D ⊂ [0, 1]2 with x0 ∈ int(D) (with respect to R2) such that a(x) is invertible for
x ∈ D \ {x0} and ω

(
det(a)|∂D

)
= 0. Then for all ε > 0 there is b ∈ C([0, 1]2,Mn)

such that

b|[0,1]2\D = a|[0,1]2\D, b|D ∈ inv
(

C(D,Mn)
)
, and ‖b− a‖ < ε.

Proof We first consider the case a(x0) = 0. Choose a smaller closed disk D0 such
that

x0 ∈ int(D0) ⊂ D0 ⊂ D and ‖a|D0‖ <
ε

2
.

Then
ω
(

det(a)|∂D0

)
= ω

(
det(a)|∂D

)
= 0
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by homotopy invariance of the winding number. Moreover, as is well known, the
map c �→ ω

(
det(c)

)
defines an isomorphism π1

(
inv(Mn)

)
→ Z. Using a homotopy

from a|∂D0 to a constant in inv(Mn), it is easy to find b0 ∈ inv
(

C(D0,Mn)
)

such that
b0|∂D0 = a|∂D0 .

We will paste together a and b0, but we need to control the size of b0. Choose a
continuous function g : D0 → R such that g(x) = ‖a(x)‖ for x ∈ ∂D0 and

inf
y∈∂D0

‖a(y)‖ ≤ g(x) ≤ sup
y∈∂D0

‖a(y)‖

for all x ∈ D0. Then define

b(x) =

{
g(x)‖b0(x)‖−1b0(x) x ∈ D0

a(x) x /∈ D0.

Note that for x ∈ ∂D0 we have ‖b0(x)‖−1 = ‖a(x)‖−1 = g(x)−1, so that b is in fact
continuous. Moreover, b is invertible and

‖a− b‖ = sup
x∈D0

‖a(x)− b(x)‖ ≤ ‖a|D0‖ + ‖b|D0‖ <
ε

2
+
ε

2
= ε,

as desired.
Now consider the general case. By the previous lemma, there are a neighborhood

U of x0, an integer k, invertible elements r, s ∈ C(U ,Mn), and b0 ∈ C(U ,Mk) such
that

r(a|U )s = b0 ⊕ 1n−k and b0(0) = 0.

If k = 0, then a|D is already invertible and there is nothing to prove. Otherwise, let
D0 ⊂ D ∩U be a closed disk with x0 ∈ int(D0). We have

ω
(

det(b0)|∂D0

)
= ω

(
det(a)|∂D0

)
= 0.

By the case of the proof already done (but applied to a disk rather than the unit
square), there is an invertible element b1 : D0 → Mk such that

b1|∂D0 = b0|∂D0 and ‖b1 − b0‖ <
ε

‖r−1‖ ‖s−1‖
.

Define

b(x) =

{
r(x)−1

(
b1(x)⊕ 1n−k

)
s(x)−1 x ∈ D0

a(x) x /∈ D0.

Note that
‖a− b‖ ≤ ‖r−1‖ ‖b1 − b0‖ ‖s

−1‖ < ε.

Lemma 5.6 Let f : [α, β] → C be continuous, let γ ∈ (α, β) be a number such that
f (γ) = 0 and f (x) 	= 0 for x ∈ [α, β] \ {γ}. Let n ∈ Z, let ε > 0, and let y0 ∈ (0, 1).
Then there is a continuous function g : [α, β]× [0, 1]→ C such that:
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(1) |g(x, y)− f (x)| < ε for all x and y.
(2) g(γ, y0) = 0 and g does not vanish at any other point of [α, β]× [0, 1].
(3) g(α, y) = f (α) and g(β, y) = f (β) for all y ∈ [0, 1].
(4) For any closed disk D ⊂ [α, β] × [0, 1] containing (γ, y0) in its interior, we have

ω(g|∂D) = n.

Proof Define h : [−1, 1]2 → C by

h(x, y) =
1

2
(1 + y)−

1

2
(1− y)eπix.

Then |h(x, y)| ≤ 1 for all x and y, for x = ±1 we have h(x, y) = 1, the function h
vanishes at (0, 0) and nowhere else in [−1, 1]2, and ω(h|∂([−1,1]2)) = 1.

Let f0 : [α, β]→ C \ {0} be a continuous function such that

f0(α) = f (α), f0(β) = f (β), and ‖ f0 − f ‖ <
ε

5
.

Choose δ > 0 such that [γ−δ, γ+δ] ⊂ [α, β] and | f0(x)| < 2ε
5 for x ∈ [γ−δ, γ+δ].

Define

g(x, y) =

{
f0(x) x /∈ [γ − δ, γ + δ]

f0(x)
[

h
(
δ−1(x − γ), y − y0

)] n
x ∈ [γ − δ, γ + δ].

Then parts (2) and (3) of the conclusion are immediate. We check part (1). For
x /∈ [γ − δ, γ + δ], we have

|g(x, y)− f (x)| = | f0(x)− f (x)| <
ε

5
,

and for x ∈ [γ − δ, γ + δ] we have

|g(x, y)− f (x)| ≤ | f0(x)− f (x)| + | f0(x)| + ‖h‖n | f0(x)| <
ε

5
+

2ε

5
+

2ε

5
= ε.

It is immediate that ω(hn|∂([−1,1]2)) = n, and part (4) of the conclusion of the lemma
follows.

Theorem 5.7 Let A = lim
−→

An be a direct limit of interval algebras of the following form.

Let (y0, y1, . . . ) be a dense sequence in [0, 1], let 1 = k(0) < k(1) < · · · be integers
such that k(n) | k(n + 1) for all n, let An = C([0, 1],Mk(n)), and let ϕn,n+1 : An → An+1

be the unital maps given by

ϕn,n+1(a) = diag
(

a, a, . . . , a, a(yn)
)
,

where a(yn) stands for the constant function on [0, 1] with that value. Then we have
sr
(

C([0, 1])⊗ A
)
= 1.
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Proof Let
ϕm,n = ϕn−1,n ◦ ϕn−2,n−1 ◦ · · · ◦ ϕm,m+1 : Am → An.

By abuse of notation, we also write ϕm,n for idC([0,1])⊗ϕm,n. It suffices to show that
for any m, any a ∈ C([0, 1]) ⊗ Am, and any ε > 0, there is n ≥ m and b ∈
inv

(
C([0, 1])⊗ An

)
such that ‖b− ϕm,n(a)‖ < ε.

We first prove this under the following assumptions: there is a unique point
(γ1, γ2) ∈ [0, 1]2 such that a(γ1, γ2) is not invertible, this point is in (0, 1)2, and
ker

(
a(γ1, γ2)

)
is one dimensional. Each tail (ym, ym+1, . . . ) of the sequence of the

hypotheses is dense, and in particular

γ2 ∈ {ym, ym+1, . . . }.

By an arbitrarily small perturbation of a we can therefore also assume γ2 = yn for
some n, and yk 	= γ2 for m ≤ k < n.

Let a(−, γ) denote the function (x, y) �→ a(x, γ). We can write

ϕm,n+1(a) = v diag
(

a, . . . , a, d1, d2, . . . , dl, a(−, γ2)
)

v∗,

for some permutation matrix v and where the d j all have the form a(−, γ) with γ ∈
{ym, ym+1, . . . , yn−1}. The number of occurrences of a is

L =

(
k(m + 1)

k(m)
− 1

)(
k(m + 2)

k(m + 1)
− 1

)
· · ·

(
k(n + 1)

k(n)
− 1

)
.

Since γ2 /∈ {ym, ym+1, . . . , yn−1}, the elements d j are all invertible, and so it suffices
to approximate

diag
(

a, . . . , a, a(−, γ2)
)

by an invertible element.
By Lemma 5.4, there are a neighborhood U of (γ1, γ2), an integer l, invertible

elements r, s ∈ C
(

U ,Mk(m)

)
, and f ∈ C(U ,Ml) such that

r(a|U )s = f ⊕ 1k(m)−l and f (γ1, γ2) = 0.

We must have l = dim
(

ker
(

a(γ1, γ2)
))
= 1, so f is just a function. Choose α

and β with γ1 ∈ (α, β) ⊂ [0, 1] and [α, β] × {γ2} ⊂ U . By Lemma 5.6 there is
g : [α, β]× [0, 1] such that g(x, y) = 0 if and only if (x, y) = (γ1, γ2), such that

g(α, y) = f (α, γ2) and g(β, y) = f (β, γ2)

for all y ∈ [0, 1], and such that

|g(x, y)− f (x, γ2)| <
ε

2‖r−1‖ ‖s−1‖
and ω(g|∂D) = −Lω

(
det(a)|∂D

)
for (x, y) ∈ [α, β]×[0, 1] and any closed disk D ⊂ [α, β]×[0, 1] containing (γ1, γ2)
in its interior.
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Define

a0(x, y) =

{
a(x, γ2) x /∈ [α, β]

r(x, γ2)−1
(

g(x, y)⊕ 1
)

s(x, γ2)−1 x ∈ [α, β].

This defines a continuous function because g(α, y) = f (α, γ2), g(β, y) = f (β, γ2),
and r(x, γ2)a(x, γ2)s(x, γ2) = f (x, γ2)⊕1 for x ∈ [α, β]. We have ‖a0−a(−, γ2)‖ <
ε
2 by the estimate on |g(x, y)− f (x, γ2)| above. Therefore∥∥diag

(
a, . . . , a, a(−, γ2)

)
− diag(a, . . . , a, a0)

∥∥ <
ε

2
.

The element b0 = diag(a, . . . , a, a0) fails to be invertible only at (γ1, γ2). More-
over, if D is a closed disk with

(γ1, γ2) ∈ int(D) ⊂ D ⊂ [α, β]× [0, 1],

then

ω
(

det(b0)|∂D

)
= Lω

(
det(a)|∂D

)
+ω

(
det(a0)|∂D

)
= Lω

(
det(a)|∂D

)
+ω(g|∂D) = 0.

By Lemma 5.5, there is an invertible element b with ‖b− b0‖ <
ε
2 . Then∥∥b− diag

(
a, . . . , a, a(−, γ2)

)∥∥ < ε,

which shows thatϕm,n+1(a) can be approximated to within ε by an invertible element.
We now consider the general case. Let a ∈ C([0, 1]) ⊗ An = C([0, 1]2,Mk(n)).

Choose a smooth (C∞) function a1 ∈ C([0, 1]) ⊗ An such that ‖a1 − a‖ < ε
6 . We

now follow the argument in the proof of Lemma 7.2 of [26]. As there, the subset
W ⊂ Mk(n) consisting of those matrices which have an eigenvalue of multiplicity
greater than 1 is a finite union of submanifolds W1, . . . ,Wk of codimension at least 2.
Moreover, if we assume they have been numbered so that dim(W1) ≤ dim(W2) ≤
· · · ≤ dim(Wk), then each union W1 ∪ · · · ∪Wl, for l ≤ k, is closed. Therefore an
arbitrarily small perturbation of a1, say a2 with ‖a2−a1‖ <

ε
6 , gives a function which

is transverse to all the submanifolds Wl.
The argument just cited depends only on the fact that W is the zero set of an

algebraic function (the discriminant) of the entries of a matrix, the function not
being identically zero. Using the determinant in place of the discriminant, we can also
express the set Mk(n)\inv(Mk(n)) as a finite union of submanifolds of the same type. So
there is a3 with ‖a3−a2‖ <

ε
6 which is transverse to all of these submanifolds. We also

choose ‖a3 − a2‖ so small that a3 is still transverse to the submanifolds W1, . . . ,Wk.
Since the Wl all have codimension at least 2, this means there is a finite subset G ⊂
[0, 1]2 such that a3(x, y) has no repeated eigenvalues for (x, y) /∈ G.

Choose a number

ρ ∈
(
−
ε

6
,
ε

6

) ∖ ⋃
(x,y)∈G

sp
(

a3(x, y)
)

https://doi.org/10.4153/CJM-2001-039-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2001-039-8


1028 Masaru Nagisa, Hiroyuki Osaka and N. Christopher Phillips

which is so small that a4 = a3 − ρ · 1 is still transverse to the finitely many submani-
folds making up the set Mk(n) \ inv(Mk(n)). (The disallowed set

⋃
(x,y)∈G sp

(
a3(x, y)

)
is finite.) Then zero is never a multiple eigenvalue of a4(x, y). Moreover, there is (by
transversality and because the relevant submanifolds have codimension at least 2) a
finite set F ⊂ [0, 1]2 such that a4(x, y) is invertible for (x, y) /∈ F.

Define hδ : [0, 1]2 → [0, 1]2 by

hδ(x, y) =

(
(1− δ)

(
x −

1

2

)
+

1

2
, (1− δ)

(
y −

1

2

)
+

1

2

)
.

This function contracts [0, 1]2 about its center ( 1
2 ,

1
2 ) by a factor of 1 − δ. Choose

δ ≥ 0 so that the finite set F is disjoint from hδ
(
∂([0, 1]2)

)
, and also so small that

a5 = a4 ◦ hδ satisfies ‖a5 − a4‖ <
ε
6 .

If F ∩ hδ([0, 1]2) = ∅, then a5 is invertible and satisfies ‖a5 − a‖ < 5ε
6 < ε, so we

are done. Otherwise, write h−1
δ (F) = {z1, . . . , zN}. Note that no z j is in ∂([0, 1]2).

Choose disjoint closed disks D1, . . . ,DN contained in [0, 1]2 with centers z1, . . . , zN .
We now construct by induction elements

b0, . . . , bN , c1, . . . , cN ∈ C([0, 1]2,Mn(k))

satisfying the following properties:

(1) b0 = a5 and ckbk = bk−1.

(2) ck(z) is invertible for z 	= zk and dim
(

ker
(

ck(zk)
))
= 1.

(3) bk(z) is invertible for z /∈ {zk+1, . . . , zN}, and dim
(

ker
(

bk(zl)
))
= 1 for k+1 ≤

l ≤ N .

Start by taking b0 = a5. Given bk−1, define ck(z) = bk−1(z) for z ∈ Dk. For z /∈ Dk,
let z̃ be the unique point in the intersection of ∂Dk and the line segment from z to zk.
Then set ck(z) = bk−1(z̃). Define

bk(z) =

{
1 z ∈ Dk

ck(z)−1bk−1(z) z /∈ Dk.

It is easy to see that these satisfy the required conditions.
Set c = bN . Then c is invertible, and a5 = c1c2 · · · cNc. Set

M = (‖c‖ + 1)
N∏

k=1

(‖ck‖ + 1).

It follows from the special case done at the beginning of the proof that there are
n ≥ m and d1, . . . , dN ∈ inv(An) such that

‖dk − ϕm,n(ck)‖ < min
(

1,
ε

6M

)
.
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Then b = d1d2 · · · dNϕm,n(c) ∈ An is invertible and satisfies ‖ϕm,n(a5) − b‖ < ε
6 .

Therefore ‖ϕm,n(a)− b‖ < ε.

Example 5.8 By Theorem 9 of [13], there is a simple C∗-algebra A of the form con-
sidered in Theorem 5.7 such that RR(A) = 1. (See Example 7.3 of [26] for an explicit
example.) The theorem gives sr

(
C([0, 1])⊗ A

)
= 1.

Question 5.9 Let A be a simple direct limit of direct sums of homogeneous C∗-
algebras, satisfying the conditions of the real rank one classification theorem of [12].
Suppose K1(A) = 0. Does it follow that sr

(
C([0, 1])⊗ A

)
= 1? If not, does it suffice

to assume in addition that K0(A) is torsion free?

We ask this question because it follows from [12] that if a C∗-algebra B of the sort
considered there has the same Elliott invariant (the scaled ordered group K0(B), the
group K1(B), the set T(B) of normalized traces on B, and the pairing between K0(B)
and T(B)) as a C∗-algebra A as in Theorem 5.7, then B ∼= A. Theorem 5.7 as stated
applies to direct limits patterned after UHF Bratteli diagrams, but can certainly be
generalized to suitable direct limits patterned after the Bratteli diagrams of simple AF
algebras. We do not know whether such direct limits exhaust the Elliott invariants of
direct limits with the appropriate dimension growth conditions, with real rank one,
and with the K-theory of a simple AF algebra.
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