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Abstract

In this paper, we construct the unique (up to isomorphism) extension algebra, denoted by E∞, of the
Cuntz algebra O∞ by the C∗-algebra of compact operators on a separable infinite-dimensional Hilbert
space. We prove that two unital monomorphisms from E∞ to a unital purely infinite simple C∗-algebra
are approximately unitarily equivalent if and only if they induce the same homomorphisms in K-theory.
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1. Introduction and preliminaries

The study of extension theory for C∗-algebras was initiated by Busby [5] and further
developed by Brown et al. [3, 4]. It provides an important way to construct new
C∗-algebras.

Let A be a separable C∗-algebra. An extension of A by K, the C∗-algebra of
compact operators on a separable infinite-dimensional Hilbert space H , is a short exact
sequence

0−→K i
−→ E

q
−→ A −→ 0

of C∗-algebras. The Busby invariant τ : A→Q(H)= B(H)/K of the above
extension is the unique homomorphism for which there is a commutative diagram

0 // K

id
��

i // E
q //

σ

��

A //

τ

��

0

0 // K i // B(H) π // Q(H) // 0

We also refer to τ as an extension of A by K and call E an extension algebra of A
(see [1, 9] for details). The invariant τ is said to be essential if τ is injective, and

This work was supported by the National Natural Science Foundation of China (grant no. 10771161) and
the Natural Science Foundation of Shandong Province (grant no. Y2006A03).
c© 2009 Australian Mathematical Society 0004-9727/2009 $16.00

83

https://doi.org/10.1017/S0004972709000227 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972709000227


84 S. Liu and X. Fang [2]

trivial if τ lifts to a homomorphism from A to B(H), which will be the case if and
only if the associated exact sequence splits.

If A is unital, an extension τ : A→Q(H) is called unital if τ is unital. A trivial
extension τ is called strongly unital if τ lifts to a unital homomorphism from A
to B(H).

Let τ1, τ2 : A→Q(H) be two extensions of A. Then τ1 and τ2 are said to be
strongly equivalent if there is a unitary u ∈ B(H) such that τ2(a)= π(u)τ1(a)π(u)∗

for all a ∈ A. Let Exts(A) be the set of strong equivalence classes of essential
extensions of A. If A is unital, we denote by Extu

s (A) the set of strong equivalence
classes of unital essential extensions of A. We define the sum of τ1 and τ2 by
τ1 ⊕ τ2 : A→Q(H)⊕Q(H)⊂ M2(Q(H))∼=Q(H). Then Exts(A) and Extu

s (A)
are semigroups. Let Ext(A) be the quotient of Exts(A) by the subsemigroup of
essential trivial extensions.

Extensions of Cuntz algebras were first studied by Cuntz [6, 7], and further
investigations were undertaken by Paschke and Salinas [15], Lin [8, 11], and the
authors [12]. In [12], we constructed and classified all extension algebras of the Cuntz
algebra On for n ≥ 2. In this paper, we consider the case of O∞, and show that there
is only one extension algebra (up to isomorphism) of O∞, which we denote by E∞.
We construct this extension algebra and describe its K-theory. We also prove that
two unital monomorphisms from E∞ to a unital purely infinite simple C∗-algebra are
approximately unitarily equivalent if and only if they induce the same homomorphisms
in K-theory.

Throughout this paper, Z will denote the group of integers and Z+ the semigroup
of nonnegative integers; we write Zn = Z/nZ and Zn

= Z⊕ · · · ⊕ Z (n copies of Z).

2. Extension algebras of O∞

Recall that the Cuntz algebra O∞ is the universal C∗-algebra generated by a
sequence of isometries {si } with mutually orthogonal range projections. It is well-
known that O∞ is a unital purely infinite simple C∗-algebra and that K0(O∞)= Z
and K1(O∞)= 0. Also, O∞ is unique in the sense that for any sequence of isometries
{s′i } with mutually orthogonal range projections, the C∗-algebra generated by {s′i } is
isomorphic to O∞.

A separable nuclear C∗-algebra A is said to satisfy the UCT [1, 9] if for any
separable C∗-algebra B there is the short exact sequence

0−→ Ext1Z(K∗(A), K∗(B))
δ
−→ K K ∗(A, B)

γ
−→ Hom(K∗(A), K∗(B))−→ 0.

Here the map γ has degree zero and δ has degree one. In particular, taking B =K,
since Ext(A, B)= K K (A, SB) we have the following short exact sequence:

0−→ Ext1Z(K0(A), Z)−→ Ext(A)−→ Hom(K1(A), Z)−→ 0.
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PROPOSITION 2.1. Extu
s (O∞)= 0.

PROOF. Since O∞ is a unital separable nuclear C∗-algebra, Ext(O∞) is a group.
Since K0(O∞)= Z and K1(O∞)= 0, Ext(O∞)= 0 by the UCT. Because [1O∞]0
is a generator of K0(O∞)= Z,

{h([1O∞]0) | h ∈ Hom(K0(O∞), Z)} = Z.

Since O∞ ⊗ C(T) satisfies the UCT, it follows from [2, Proposition 1] that

Extu
s (O∞)= Z/{h([1O∞]0) | h ∈ Hom(K0(O∞), Z)} = 0. 2

The following lemma is well-known, but we give its proof for completeness.

LEMMA 2.2. Let A be a (unital) separable C∗-algebra, and let

0−→K i1
−→ E1

q1
−→ A −→ 0

and
0−→K i2

−→ E2
q2
−→ A −→ 0

be two (unital) essential extensions of A with Busby invariants τ1 and τ2, respectively.
Then τ1 and τ2 are strongly equivalent if and only if there is an isomorphism ϕ : E1→

E2 such that the following diagram is commutative:

0 // K
ϕ|K

��

i1 // E1
q1 //

ϕ

��

A //

id
��

0

0 // K
i2 // E2

q2 // A // 0

PROOF. If τ1 and τ2 are strongly equivalent, then there is a unitary u ∈ B(H) such that

τ2(x)= π(u)τ1(x)π(u)
∗
∀ x ∈ A.

Define ϕ : E1→ E2 by ϕ(x)= uxu∗. Now, for x ∈ E1,

π(ϕ(x)) = π(uxu∗)= π(u)π(x)π(u)∗

= π(u)τ1(q1(x))π(u)
∗
= τ2(q1(x)),

so ϕ(x) ∈ E2. Therefore ϕ is well-defined and it is obvious that ϕ is an isomorphism.
Since τ2(q2(ϕ(x)))= π(ϕ(x))= τ2(q1(x)) and τ2 is injective, we have q2(ϕ(x))=
q1(x). Thus, the above diagram is commutative.

Conversely, suppose that there is an isomorphism ϕ : E1→ E2 such that the
diagram is commutative. It is well-known that ϕ|K is an isomorphism from K onto K
and there is a unitary u ∈ B(H) such that ϕ(x)= uxu∗ for all x ∈K. For any x ∈K
and y ∈ E1,

ϕ(y)(uxu∗)= ϕ(yx)= uyxu∗ = (uyu∗)(uxu∗).
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Since the range of uKu∗ is dense in H , ϕ(y)= uyu∗. For x = q1(y) ∈ A with y ∈ E1,

π(u)τ1(x)π(u)
∗
= π(u)τ1(q1(y))π(u)

∗

= π(u)π(y)π(u)∗ = π(ϕ(y))

= τ2(q2(ϕ(y)))= τ2(q1(y))= τ2(x). 2

By Proposition 2.1 and Lemma 2.2, there exists a unique (up to isomorphism)
extension algebra of O∞. We now construct it concretely.

Let {ti | i = 1, 2, . . . } be a sequence of partial isometries with mutually orthogonal
range projections such that t∗1 t1 < 1, t∗i ti = 1 for i ≥ 2, and p +

∑n
i=1 ti t∗i < 1 for

any positive integer n, where p = 1− t∗1 t1 is a projection of rank one. Let E∞ be
the universal C∗-algebra generated by {ti | i = 1, 2, . . . }, and let I (E∞) be the (only
closed) ideal of E∞ generated by p.

THEOREM 2.3. I (E∞)∼=K and E∞/I (E∞)∼=O∞; that is, E∞ is an essential
unital extension of O∞ by K.

PROOF. Let l be a positive integer and Wl the set of all l-tuples (i1, . . . , il) with
i j ∈ N= {1, 2, . . . , }, j = 1, . . . , l. We assume that W0 = {0} and W =

⋃
l≥0 Wl .

Let T0 = 1 and, for α = (i1, . . . , il) ∈Wl , denote by Tα the partial isometry Tα =
ti1 · · · til . Note that pTα = 0 for any α ∈W .

Let F be the set of all linear combinations of elements of the form Tα pT ∗β for any
α, β ∈W . It is easy to see that the closure of F is an ideal of E∞, and that F is
contained in every ideal containing p. It follows that the closure of F is the ideal
of E∞ generated by p, that is, I (E∞).

Let X = (Tα pT ∗µ )(Tν pT ∗β ). It is easy to see that X 6= 0 if and only if µ= ν. One
can check that

(Tα pT ∗µ )(Tν pT ∗β )= δµνTα pT ∗β

and
(Tα pT ∗β )

∗
= Tβ pT ∗α .

Then the set {Tα pT ∗β | α, β ∈W } is a self-adjoint system of matrix units generating F .
It follows that I (E∞) is isometric to K.

Let π : E∞→ E∞/I (E∞) be the quotient map. It is easy to see that {π(ti )} is a
sequence of isometries in E∞/I (E∞) with orthogonal ranges. Since E∞/I (E∞) is a
unital C∗-algebra generated by {π(ti )}, E∞/I (E∞)∼=O∞ by the uniqueness of O∞.
Therefore E∞ is an essential unital extension of O∞ by K, since O∞ is a unital simple
C∗-algebra. 2

REMARK 2.4. Let H be a separable infinite-dimensional Hilbert space. It is easy to
see that there exist partial isometries t1, t2, . . . in B(H) satisfying the conditions in
the definition of E∞.

COROLLARY 2.5 (Uniqueness of E∞). Let {t ′i | i = 1, 2, . . . } be a sequence of
partial isometries with mutually orthogonal range projections such that t ′∗1t ′1 < 1,
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t ′∗i t ′i = 1 for i ≥ 2, and p′ +
∑n

i=1 t ′i t
′∗

i < 1 for any positive integer n, where p′ =
1− t ′∗1t ′1 is a projection of rank one. Then the C∗-algebra E generated by {t ′i | i =
1, 2, . . . } is isomorphic to E∞. In other words, E∞ is independent of the choice of
the generators.

PROOF. As in Theorem 2.3, we may prove that the ideal I of E generated by the
projection p′ is isomorphic to K and that E/I ∼=O∞. Since there is only one extension
algebra of O∞, we have E ∼= E∞. 2

THEOREM 2.6. K0(E∞)= Z⊕ Z and K1(E∞)= 0.

PROOF. By Theorem 2.3, we have the short exact sequence

0−→K −→ E∞ −→O∞ −→ 0.

By the six-term exact sequence of K-theory, we have the following commutative
diagram:

K0(K) // K0(E∞) // K0(O∞)

��
K1(O∞) //

OO

K1(E∞) // K1(K)

Since K0(O∞)= Z and K1(O∞)= 0, K1(E∞)= 0 and the sequence

0−→ Z−→ K0(E∞)−→ Z−→ 0

is exact. Therefore K0(E∞)∼= Z⊕ Z. 2

Let A be a unital C∗-algebra. Two projections p and q in A are said to be
(Murray–von Neumann) equivalent, denoted by p ∼ q , if there is a partial isometry
v ∈ A such that v∗v = p and vv∗ = q; we let [p] denote the equivalence class of
projections in A containing p. The projections p and q are called unitarily equivalent,
denoted by p ∼u q , if there is a unitary u in A such that u∗ pu = q; [p]u denotes
the unitary equivalence class of projections in A containing p. Moreover, p and q
are called homotopically equivalent, denoted by p ∼h q , if p and q are in the same
path component of projections in A; [p]h denotes the homotopic equivalence class of
projections in A containing p.

The following proposition can be obtained immediately from results in [13]
and [14].

PROPOSITION 2.7.
(1) K0(E∞) = {[p] | p ∈ E∞\K is a projection}

= {[p] | p ∈ E∞\K is a projection and 1− p ∈ E∞\K}
= {[p]h | p ∈ E∞\K is a projection and 1− p ∈ E∞\K}
= {[p]u | p ∈ E∞\K is a projection and 1− p ∈ E∞\K}.

(2) Let p and q be projections in E∞\K such that 1− p and 1− q ∈ E∞\K. Then
p ∼ q, p ∼u q and p ∼h q are equivalent.
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Recall that En is the universal C∗-algebra generated by isometries t1, t2, . . . , tn
with

∑n
i=1 ti t∗i < 1. It is well-known that En is a unital essential extension of On by K

and that O∞ = lim
→

En .

Let Fn (n ≥ 2) be the C∗-subalgebra of E∞ generated by t1, t2, . . . , tn , and let
I (Fn) be the ideal of Fn generated by p = 1− t∗1 t1. We can prove the following results
as above, so the details are omitted.

PROPOSITION 2.8.

(1) Extu
s (En)= 0.

(2) I (Fn)∼=K and Fn/I (Fn)∼= En; moreover, Fn is the only unital essential
extension algebra of En by K.

(3) K0(Fn)= Z⊕ Z and K1(Fn)= 0.
(4) E∞ = lim

−→
Fn , where the map Fn→ Fn+1 of the system sends ti to ti for i =

1, 2, . . . , n.

COROLLARY 2.9. Let H be a separable infinite-dimensional Hilbert space. Suppose
that ϕ, ψ : A→ Q(H) are two unital injective homomorphisms, where A =O∞
or En . Then there is a unitary u ∈ B(H) such that ϕ(x)= π(u)∗ψ(x)π(u) for all
x ∈ A.

PROOF. Now, ϕ and ψ are two unital essential extensions of A by K, so the result
follows immediately from the fact that Extu

s (A)= 0. 2

COROLLARY 2.10. Let H be a separable infinite-dimensional Hilbert space.

(1) Let v1, v2, . . . , vn (n ≥ 2) be isometries in the Calkin algebra Q(H) with
mutually orthogonal range projections such that

∑n
i=1 ti t∗i < 1. Then there are

isometries V1, V2, . . . , Vn in B(H) with mutually orthogonal range projections
such that π(Vi )= vi for i = 1, 2, . . . , n.

(2) Let {vi } be a sequence of isometries in Q(H) with mutually orthogonal range
projections. Then there is a sequence of isometries {Vi } in B(H) with mutually
orthogonal range projections such that π(Vi )= vi for i = 1, 2, . . . .

PROOF. For part (1), the map τ : En→ Q(H) defined by τ(ti )= vi is a unital
essential extension of En by K. It is trivial since Extu

s (En)= 0; thus τ lifts to a unital
injective homomorphism σ : En→ B(H). Now put Vi = σ(ti ). The proof of (2) is
similar, since Extu

s (O∞)= 0. 2

3. Homomorphisms from E∞

DEFINITION 3.1. Let A and B be C∗-algebras, let F be a finite subset of A, and let ϕ
and ψ be two homomorphisms from A into B. Let ε > 0. We say that ϕ and ψ are
approximately unitarily equivalent within ε, with respect to F , if there is a unitary
u ∈ B̃ such that

‖ϕ(x)− uψ(x)u∗‖< ε
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for all x ∈ F , where B̃ is the unitization of B. We abbreviate this as ϕ ∼ε ψ with
respect to F . When the set F is understood, we shall omit mention of it.

We further say that ϕ andψ are approximately unitarily equivalent if for every finite
F ⊂ A and ε > 0, we have ϕ ∼ε ψ with respect to F .

THEOREM 3.2. Let A be a unital purely infinite simple C∗-algebra, and let ϕ, ψ :
E∞→ A be two unital monomorphisms. Then the following statements are
equivalent:

(i) ϕ and ψ are approximately unitarily equivalent;
(ii) [ϕ] = [ψ] in K K (E∞, A);
(iii) ϕ∗ = ψ∗ : K0(E∞)→ K0(A);
(iv) ϕ(p)∼ ψ(p) in A, where p = 1− t∗1 t1;
(v) ϕ(t∗1 t1)∼ ψ(t∗1 t1) in A.

PROOF. (i)⇔ (ii). Since K∗(E∞) is finitely generated, K K (E∞, A)= K L(E∞, A).
The result then follows immediately from [10, Theorem 2.9], since every unital
purely infinite simple C∗-algebra has properties (P1), (P2) and (P3) and every
monomorphism into a simple C∗-algebra is full in the sense of [10].

(ii) ⇔ (iii). Since K0(E∞)= Z⊕ Z is a free abelian group and K1(E∞)= 0,
by the UCT we have K K (E∞, A)∼= Hom(K0(E∞), K0(A)). Note that γ (ϕ)= ϕ∗.
Therefore, [ϕ] = [ψ] in K K (E∞, A) if and only if ϕ∗ = ψ∗ : K0(E∞)→ K0(A).

(iii)⇔ (iv). Since K0(E∞)= Z⊕ Z is an abelian group generated by [1]0 and [p]0,
ϕ∗ = ψ∗ : K0(E∞)→ K0(A) if and only if [ϕ(1)]0 = [ψ(1)]0 and [ϕ(p)]0 = [ψ(p)]0
in K0(A); this occurs if and only if [ϕ(p)]0 = [ψ(p)]0, since ϕ andψ are unital. But A
is a purely infinite simple C∗-algebra, so [ϕ(p)]0 = [ψ(p)]0 in K0(A) if and only if
ϕ(p)∼ ψ(p) in A.

(iv)⇔ (v). This is obvious since ϕ(p), ψ(p), ϕ(t∗1 t1)= 1− ϕ(p) and ψ(t∗1 t1)=
1− ψ(p) are nonzero projections in a purely infinite simple C∗-algebra. 2

Similar results hold for Fn , with the same proof.

PROPOSITION 3.3. Let A be a unital purely infinite simple C∗-algebra, and let
ϕ, ψ : Fn→ A be two unital monomorphisms. Then the following statements are
equivalent:

(i) ϕ and ψ are approximately unitarily equivalent;
(ii) [ϕ] = [ψ] in K K (Fn, A);
(iii) ϕ∗ = ψ∗ : K0(Fn)→ K0(A);
(iv) ϕ(p)∼ ψ(p) in A, where p = 1− t∗1 t1;
(v) ϕ(t∗1 t1)∼ ψ(t∗1 t1) in A.
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