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Abstract
We prove an improvement on Schmidt’s upper bound on the number of number fields of degree n and absolute
discriminant less than X for 6 ≤ 𝑛 ≤ 94. We carry this out by improving and applying a uniform bound on the
number of monic integer polynomials, having bounded height and discriminant divisible by a large square, that we
proved in a previous work [7].

1. Introduction

For 𝑛 ≥ 2, let 𝑁𝑛 (𝑋) denote the number of isomorphism classes of number fields of degree n having
absolute discriminant less than X. In 1995, Schmidt [14] proved the following upper bound on 𝑁𝑛 (𝑋):
Theorem 1.1 (Schmidt). We have

𝑁𝑛 (𝑋) �𝑛 𝑋
𝑛+2

4 . (1.1)

A folklore conjecture predicts that 𝑁𝑛 (𝑋) � 𝑋 . This conjecture is elementary for 𝑛 = 2; for 𝑛 = 3,
it was proven by Davenport and Heilbronn [11] and for 𝑛 = 4, 5, by the first-named author [2, 3]; these
works, in fact, determine asymptotics for 𝑁𝑛 (𝑋) as 𝑋 → ∞.

For large n, the exponent of X in (1.1) was substantially improved by Ellenberg–Venkatesh [12],
Couveignes [10] and Lemke Oliver–Thorne [13], to 𝑂 (exp(𝑐

√
log 𝑛)), 𝑂 (log3 𝑛) and 𝑂 (log2 𝑛), re-

spectively. In particular, in view of the implied O-constants, the latter work of Lemke Oliver and Thorne
improved Schmidt’s bound for all 𝑛 ≥ 95, while Schmidt’s bound has remained the best known for
6 ≤ 𝑛 ≤ 94.

The aim of this paper is to improve the Schmidt bound for 6 ≤ 𝑛 ≤ 94. More precisely, we prove the
following result.
Theorem 1.2. For 𝑛 ≥ 6, we have

𝑁𝑛 (𝑋) �𝜖 𝑋
𝑛+2

4 − 1
2𝑛−2+

1
22𝑔 (2𝑛−2)

+𝜖
,

where 𝑔 =
⌊
𝑛−1

2
⌋
.
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For example, the best known bound for the number of isomorphism classes of sextic fields of absolute
discriminant less than X was previously 𝑂 (𝑋2), while Theorem 1.2 yields the bound 𝑂 (𝑋61/32+𝜖 ).

Remark 1.3. (a) In an independent work, Anderson et al. [1] also obtain an improvement to Schmidt’s
bound, proving that 𝑁𝑛 (𝑋) �𝜖 𝑋 (𝑛+2)/4−1/(4𝑛−4)+𝜖 .

(b) Improvements to Schmidt’s bound in small degrees have played an important role in recent works,
such as in proving van der Waerden’s conjecture on Galois groups in small degrees [5]; indeed, the
improvements contained in Theorem 1.2 also immediately lead to corresponding improvements on the
bounds in [5].

(c) Schmidt’s original work obtains upper bounds for the number of degree n extensions (with
bounded absolute discriminant) of any fixed number field K. In forthcoming work [8], we generalise the
results of [7], obtaining upper bounds for the number of monic polynomials with coefficients in the ring
of integers of K, with bounded height and whose discriminants are divisible by the square of a large
prime ideal. In combination with the methods of this paper, this will yield improved upper bounds on
Schmidt’s result for K.

1.1. Methods

Our proof follows the strategy of [14]. For a monic real polynomial

𝑓 (𝑥) = 𝑥𝑛 + 𝑎1𝑥
𝑛−1 + 𝑎2𝑥

𝑛−2 + · · · + 𝑎𝑛, (1.2)

we define the height 𝐻 ( 𝑓 ) of f by

𝐻 ( 𝑓 ) := max(|𝑎𝑖 |1/𝑖).

Let K be a number field of degree n having absolute discriminant less than X. Then the lattice
OTr=0
𝐾 (viewed as a subset of R𝑛−1 via its archimedean embeddings) has covolume at most 𝑂 (

√
𝑋) in

R𝑛−1; hence, the length of its shortest nonzero vector 𝛼 is at most 𝑂 ((
√
𝑋)1/(𝑛−1) ) = 𝑂 (𝑋1/(2𝑛−2) ).

If K is primitive, in that, K has no nontrivial subfield, then 𝐾 = Q(𝛼) since 𝛼 ∉ Q. The minimal
polynomial 𝑓 (𝑥) of 𝛼 is an integer monic polynomial with height at most 𝑂 (𝑋1/(2𝑛−2) ) and vanishing
subleading coefficient. That is, if 𝑓 (𝑥) is expressed in the form (1.2), then 𝑎1 = 0 and |𝑎𝑖 | � 𝑋 𝑖/(2𝑛−2)

for 𝑖 = 2, . . . , 𝑛. Therefore, the total number of primitive number fields of degree n with absolute
discriminant less than X is bounded by the number of such monic degree n integer polynomials with
height at most 𝑂 (𝑋1/(2𝑛−2) ) and vanishing subleading coefficient. The number of such polynomials is

� 𝑋
2+3+···+𝑛

2𝑛−2 = 𝑋
𝑛+2

4 ,

yielding Schmidt’s bound for primitive number fields of degree n. Meanwhile, imprimitive fields of
degree n of absolute discriminant at most X can be counted using their proper primitive subextensions
(which would, thus, have degree at most 𝑛/2) to obtain the bound 𝑂 (𝑋 (𝑛/2+2)/4) = 𝑂 (𝑋 (𝑛+4)/8), which
is much smaller than Schmidt’s bound for primitive fields.

Our improvement on the above argument in the case of primitive fields is based on the following
observation: a monic integral polynomial 𝑓 (𝑥) of degree n with height � 𝑋1/(2𝑛−2) usually has discrim-
inant close to 𝑋𝑛/2; in this scenario, if the number field 𝐾 = Q[𝑥]/( 𝑓 (𝑥)) has absolute discriminant
less than X, then the discriminant of 𝑓 (𝑥) must be divisible by a large square! This is because the dis-
criminant of f is equal to the discriminant of K times the square of the index of Z[𝑥]/ 𝑓 (𝑥) in the ring
of integers of K. Thus, to bound the number of primitive number fields K of degree n having absolute
discriminant less than X, it suffices to bound the number of monic polynomials of height � 𝑋1/(2𝑛−2)

with vanishing subleading coefficient whose discriminant is divisible by a large square.
In previous work [7], in order to sieve to squarefree discriminants, we proved an upper bound on the

number of monic integral polynomials of degree n and bounded height having discriminant divisible
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by the square of a large squarefree number; this was accomplished via a lift to pairs of integral n-ary
quadratic forms (𝐴0, 𝐵) where 𝐴0 is split. Specifically, for a positive integer m, let W𝑚 denote the set
of integer monic polynomials of degree n having discriminant divisible by 𝑚2. Then, in [7, Theorem
4.4], we proved the following theorem:

Theorem 1.4. For a real number 𝐻 > 1, we have

#
⋃
𝑚>𝑀

𝑚 squarefree

{
𝑓 (𝑥) ∈ W𝑚 : 𝐻 ( 𝑓 ) < 𝐻

}
= 𝑂 𝜖

(
𝐻𝑛(𝑛+1)/2+𝜖

√
𝑀

)
+𝑂 𝜖

(
𝐻𝑛(𝑛+1)/2−1/5+𝜖 ) .

In this paper, we improve upon Theorem 1.4 in two ways. First, we generalise these results to bound
the number of monic integer polynomials of degree n having discriminant divisible by the square of a
large (not necessarily squarefree) integer. Second, we replace the use of the Selberg sieve in [7] by a
Hilbert irreducibility theorem (HIT) argument — using the quantitative version of HIT due to Castillo
and Dietmann [9] — to attain an improved error term. We thereby prove the following theorem:

Theorem 1.5. For a real number 𝐻 > 1, we have

#
⋃
𝑚>𝑀

#
{
𝑓 (𝑥) ∈ W𝑚 : 𝐻 ( 𝑓 ) < 𝐻

}
= 𝑂 𝜖

(
𝐻𝑛(𝑛+1)/2+𝜖

𝑀2/(𝑛+3)−𝜖

)
+𝑂

(
𝐻𝑛(𝑛+1)/2−1+1/22𝑔+𝜖 );

#
⋃
𝑚>𝑀

𝑚 squarefree

#
{
𝑓 (𝑥) ∈ W𝑚 : 𝐻 ( 𝑓 ) < 𝐻

}
= 𝑂 𝜖

(
𝐻𝑛(𝑛+1)/2+𝜖

√
𝑀

)
+𝑂

(
𝐻𝑛(𝑛+1)/2−1+1/22𝑔+𝜖 ) .

This improvement to Theorem 1.4 then allows us to deduce Theorem 1.2.
We note that Theorem 1.5 also implies corresponding improvements to the error terms in the main

results of [7]. Let𝑉𝑛 
 A𝑛 denote the space of monic polynomials of degree n. An element 𝑓 ∈ 𝑉𝑛 (Z) is
said to be maximal if it has nonzero discriminant and if Z[𝑥]/ 𝑓 (𝑥) is the ring of integers of Q[𝑥]/ 𝑓 (𝑥).
Then, for certain constants 𝜆𝑛 > 0 as defined in [7, Equation (1)], we prove:

Theorem 1.6. We have

#
{
𝑓 ∈ 𝑉𝑛 (Z) : 𝐻 ( 𝑓 ) < 𝐻 and Δ ( 𝑓 ) squarefree

}
= 𝜆𝑛2𝑛𝐻

𝑛(𝑛+1)
2 +𝑂 𝜖

(
𝐻

𝑛(𝑛+1)
2 −1+ 1

22𝑔 +𝜖
)
;

#
{
𝑓 ∈ 𝑉𝑛 (Z) : 𝐻 ( 𝑓 ) < 𝐻 and 𝑓 maximal

}
=

6
𝜋2 2𝑛𝐻

𝑛(𝑛+1)
2 +𝑂 𝜖

(
𝐻

𝑛(𝑛+1)
2 −1+ 1

22𝑔 +𝜖
)
.

This improves upon [7, Equation (4)], where the error terms were 𝑂
(
𝐻

𝑛(𝑛+1)
2 − 1

5+𝜖
)
. One direct conse-

quence of this improvement is improved level-of-distribution results when counting monic polynomials
𝑓 (𝑥), such that Δ ( 𝑓 ) is squarefree (respectively, 𝑓 (𝑥) is maximal) that satisfy splitting conditions mod-
ulo finitely many primes. A concrete application concerns the distribution of low-lying zeroes of the
Dedekind zeta functions of monogenised number fields of degree n (a pair (𝐾, 𝛼), where K is a number
field and 𝛼 is an element in the ring of integers of K, is said to be monogenised if Z[𝛼] is the ring of
integers of K). In [15, §5], it was shown that this family of zeta functions has symplectic symmetry
type, via a computation of the 1-level density with respect to test functions whose Fourier transforms
have bounded support in [−𝛼, 𝛼] for 𝛼 < 2/(5𝑛(𝑛 + 1) (2𝑛 + 1)). Theorem 1.5 implies that we can, in
fact, take 𝛼 < 2/((1 − 2−2𝑔)𝑛(𝑛 + 1) (2𝑛 + 1)). Improved level-of-distribution results in this setting also
have applications towards proving the existence of number fields of degree n whose discriminants have
a bounded number of prime factors (see [17], where such results are proved for cubic and quartic fields).
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1.2. Organisation

This paper is organised as follows. In §2, we bound the number of monic integer polynomials of degree n
and height less than H that have discriminant smaller than the expected size � 𝐻𝑛(𝑛−1) . In §3, we then
consider the set of monic integer polynomials of degree n with discriminant divisible by the square
of a large, not-necessarily squarefree integer. We partition this set into two subsets whose sizes we
effectively bound using a geometric sieve argument (as in [4]) and via a lift to pairs of quadratic forms
(𝐴0, 𝐵) (as in [7]), respectively. In §4, we describe how to replace the Selberg sieve argument of [7] by
a quantitative Hilbert irreducibility argument using the work of Castillo and Dietmann [9] to improve
error terms. Finally, in §5, we combine the results of §2–§4 to prove Theorems 1.2, 1.5 and 1.6.

2. The number of monic polynomials of bounded height and small discriminant

The following proposition shows that most monic integer polynomials of degree n with vanishing
subleading coefficient and height less than H have discriminant close to 𝐻𝑛(𝑛−1) .

Proposition 2.1. Let 0 < 𝜅 < 𝑛(𝑛 − 1). The number of monic integer polynomials having degree n,
vanishing subleading coefficient, height less than H and absolute discriminant less than 𝐻𝑛(𝑛−1)−𝜅 is at
most 𝑂 (𝐻 (𝑛−1) (𝑛+2)/2−𝜅/(𝑛−1) ), where the implied constant depends only on n.

Proof. Let 𝜂 = 𝜅/(𝑛 − 1). Let 𝑎2, . . . , 𝑎𝑛−1 be integers with |𝑎𝑖 | < 𝐻𝑖 for 𝑖 = 2, . . . , 𝑛 − 1. The
discriminant of 𝑥𝑛 + 𝑎2𝑥

𝑛−2 + · · · + 𝑎𝑛 is a polynomial 𝐹 (𝑎𝑛) in 𝑎𝑛 of degree 𝑛 − 1 with leading term
𝐶𝑛𝑎

𝑛−1
𝑛 , where 𝐶𝑛 is a nonzero constant. Let 𝑠1, . . . , 𝑠𝑛−1 ∈ C be the 𝑛 − 1 roots of 𝐹 (𝑥). Then

𝐹 (𝑎𝑛) = 𝐶𝑛 (𝑎𝑛 − 𝑠1) · · · (𝑎𝑛 − 𝑠𝑛−1).

Since |𝐹 (𝑎𝑛) | ≤ 𝐻𝑛(𝑛−1)−𝜅 , it follows that | (𝑎𝑛 − 𝑠1) · · · (𝑎𝑛 − 𝑠𝑛−1) | �𝑛 𝐻𝑛(𝑛−1)−𝜅 . Hence,

|𝑎𝑛 − 𝑠𝑖 | �𝑛 𝐻𝑛−𝜂 (2.1)

for some 𝑖 ∈ {1, . . . , 𝑛 − 1}. The number of integers 𝑎𝑛 satisfying (2.1) for some i is 𝑂 (𝐻𝑛−𝜂 + 1).
Multiplying this by the number of choices for 𝑎2, . . . , 𝑎𝑛−1 then gives the desired bound. �

3. The divisibility of discriminants of polynomials by large squares

In this section, we consider the set W𝑚 of monic integer polynomials of degree n having discriminant
divisible by 𝑚2. First, for a prime power 𝑚 = 𝑝𝑘 , we write the set W𝑝𝑘 of polynomials naturally as a
union of two sets. The first set consists of polynomials 𝑓 ∈ W𝑝𝑘 satisfying 𝑝𝑘 | gcd(Δ ( 𝑓 ),Δ ′( 𝑓 )) for
some specifically constructed polynomial Δ ′( 𝑓 ) in the coefficients of f. The first set is designed so that
a suitable extension of the techniques of [4] can be applied to bound the number of elements of bounded
height in this first set. The second set consists of polynomials 𝑓 ∈ W𝑝𝑘 for which there exists some
𝑟 ∈ Z, such that 𝑓 (𝑟) and 𝑓 ′(𝑟) are both divisible by a high power of p. The second set is designed so that
a suitable adaptation of the methods of [7] can be applied to bound the number of elements of bounded
height in this second set. Finally, by using the case of prime powers 𝑚 = 𝑝𝑘 , we show that W𝑚, for a
general positive integer m, can also be expressed as the union of two sets, on which suitable extensions
of the methods from [4] and [7], respectively, can be applied to bound the number of elements in W𝑚

of bounded height.
We begin by defining Δ ′. For any monic polynomial 𝑓 (𝑥) = 𝑥𝑛 + 𝑎1𝑥

𝑛−1 + · · · + 𝑎𝑛 of degree n,
its discriminant Δ ( 𝑓 ) = Δ (𝑎1, . . . , 𝑎𝑛) can be viewed as a polynomial in 𝑎1, . . . , 𝑎𝑛 with integer
coefficients. Let 𝑟1, . . . , 𝑟𝑛 denote the n roots of 𝑓 (𝑥). Define

Δ ′( 𝑓 ) =
∑
𝑖< 𝑗

Δ ( 𝑓 )
(𝑟𝑖 − 𝑟 𝑗 )2 .

https://doi.org/10.1017/fms.2022.71 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2022.71


Forum of Mathematics, Sigma 5

Note that we may representΔ ′( 𝑓 ) as a polynomialΔ ′(𝑎1, . . . , 𝑎𝑛) in 𝑎1, . . . , 𝑎𝑛 with integer coefficients,
since it is a symmetric polynomial in 𝑟1, . . . , 𝑟𝑛 with integer coefficients.

Recall that 𝑉𝑛 
 A𝑛 denotes the space of monic polynomials of degree n. For a positive integer m,
define the sets

W𝑚 = { 𝑓 ∈ 𝑉𝑛 (Z) : 𝑚2 | Δ ( 𝑓 ), Δ ( 𝑓 ) ≠ 0};

W (1)
𝑚 = { 𝑓 ∈ W𝑚 : 𝑚 | Δ ′( 𝑓 )};

W (2)
𝑚 = { 𝑓 ∈ W𝑚 : ∃𝑟 ∈ Z such that 𝑚 | 𝑓 ′(𝑟), 𝑚2 | 𝑓 (𝑟)}.

We begin with the following result on W𝑝𝑘 for a prime power 𝑝𝑘 .

Lemma 3.1. Let p be an odd prime and k be any positive integer. Then

W𝑝𝑘 ⊂ W (1)
𝑝𝑘 ∪W (2)

𝑝�𝑘/2� ;

W2𝑘 ⊂ W (1)
2𝑘 ∪W (2)

2�𝑘/2�−1 .

Proof. Let 𝑣𝑝 denote the p-adic valuation. Suppose 𝑓 (𝑥) ∈ W𝑝𝑘 , and let ℓ = 𝑣𝑝 (Δ ( 𝑓 )) ≥ 2𝑘 . Let
𝑟1, . . . , 𝑟𝑛 denote the n roots of 𝑓 (𝑥) in Q𝑝 . Suppose the p-adic valuation 𝜃 = 𝑣𝑝 (𝑟1 − 𝑟2) is the largest
among all differences of roots of 𝑓 (𝑥). Then 𝑝ℓ−2𝜃 | Δ ′( 𝑓 ). If 𝜃 ≤ (ℓ − 𝑘)/2, then 𝑓 ∈ W (1)

𝑝𝑘 .
Now suppose that 𝜃 > (ℓ − 𝑘)/2 ≥ 𝑘/2. Then 𝑣𝑝 (𝑟𝑖 − 𝑟 𝑗 ) < 𝜃 for all distinct pairs 𝑖, 𝑗 with

{𝑖, 𝑗} ≠ {1, 2}; indeed, if 𝑣𝑝 (𝑟𝑖 − 𝑟 𝑗 ) = 𝜃, then (𝑟1 − 𝑟2)2(𝑟𝑖 − 𝑟 𝑗 )2 | Δ ( 𝑓 ) implying ℓ ≥ 4𝜃 > 2ℓ− 2𝑘 , a
contradiction. Thus, either 𝑟1, 𝑟2 are defined over Q𝑝 or are conjugate over some quadratic extension of
Q𝑝 . That is, we have 𝑞(𝑥) = (𝑥 − 𝑟1) (𝑥 − 𝑟2) = 𝑥2 − 𝑏𝑥 + 𝑐 for some 𝑏, 𝑐 ∈ Z𝑝 . We claim that 𝑏/2 ∈ Z𝑝 .
This is clear for 𝑝 ≠ 2, while if 𝑝 = 2, then 𝑏2 − 4𝑐 = (𝑟1 − 𝑟2)2 is divisible by 22𝜃 and, hence, is
divisible by 22 since 𝜃 > 𝑘/2 ≥ 1/2.

Now 𝑞(𝑏/2) = − 1
4 (𝑟1 − 𝑟2)2 and 𝑞′(𝑏/2) = 0. Since 𝑓 (𝑥) = 𝑞(𝑥)ℎ(𝑥) for some ℎ(𝑥) ∈ Z𝑝 [𝑥], we

have that 1
4 (𝑟1 − 𝑟2)2 divides 𝑓 (𝑏/2) and 𝑓 ′(𝑏/2). Hence, 𝑓 ∈ W (2)

𝑝𝑒 , where 𝑒 = �𝜃� − 𝑣𝑝 (2). �

We now prove the main result of this section.

Proposition 3.2. Let M be any positive real number, and let 𝑞1 = �(𝑀/2)𝛼�, 𝑞2 = �(𝑀/2)𝛽�, where
𝛼, 𝛽 are positive real numbers, such that 𝛼 + 2𝛽 = 1. Then⋃

𝑚>𝑀
𝑚 squarefree

W𝑚 ⊂
⋃

𝑚>
√
𝑀

W (1)
𝑚 ∪

⋃
𝑚>

√
𝑀

W (2)
𝑚 ;

⋃
𝑚>𝑀

W𝑚 ⊂
⋃
𝑚>𝑞1

W (1)
𝑚 ∪

⋃
𝑚>𝑞2

W (2)
𝑚 .

Proof. The first containment is proved in the proof of [7, Theorem 4.4]. To obtain the second contain-
ment, fix 𝑓 ∈ W𝑚 for some 𝑚 > 𝑀 . Let

∏𝑛
𝑖=1 𝑝𝑘𝑖𝑖 be the prime factorisation of m, and let

𝑚1 =
∏

𝑝𝑖 : 𝑓 ∈W (1)

𝑝
𝑘𝑖
𝑖

𝑝𝑘𝑖𝑖 , 𝑚2 =
∏

𝑝𝑖 : 𝑓 ∈W (2)

𝑝
�𝑘𝑖/2�−𝑣𝑝𝑖 (2)
𝑖

𝑝
�𝑘𝑖/2�−𝑣𝑝𝑖 (2)
𝑖 .

Then 𝑓 ∈ W (1)
𝑚1 ∪W (2)

𝑚2 and 𝑚1𝑚
2
2 ≥ 𝑚/2 > 𝑀/2. Hence, either 𝑚1 > 𝑞1 or 𝑚2 > 𝑞2, and, therefore,

𝑓 ∈
⋃
𝑚>𝑞1 W

(1)
𝑚 ∪

⋃
𝑚>𝑞2 W

(2)
𝑚 , as desired. �
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4. A rational root criterion for being distinguished

Let 𝐴0 denote the 𝑛× 𝑛 symmetric matrix with 1’s on the antidiagonal and 0’s elsewhere. Let W denote
the space of 𝑛× 𝑛 symmetric matrices. We recall from [6, 16] the following definition of a distinguished
element 𝐵 ∈ 𝑊 (Q). If 𝑛 = 2𝑔 + 1 is odd, then an element 𝐵 ∈ 𝑊 (Q) with Δ (𝐵) ≠ 0 is distinguished if
there exists a g-plane Y defined over Q that is isotropic with respect to the quadratic forms defined by
𝐴0 and B. When 𝑛 = 2𝑔 + 2 is even, then B is distinguished if there exists a g-plane Y defined over Q,
such that Span(𝑌, 𝑇𝑌 ) is isotropic with respect to the quadratic form defined by 𝐴0, where 𝑇 = 𝐴−1

0 𝐵.
We use 𝑏11, 𝑏12, . . . , 𝑏𝑛𝑛 to denote the (indeterminate) entries of B. The goal of this section is to

construct a polynomial 𝐹 (𝐵, 𝑥) = 𝐹 (𝑏11, 𝑏12, . . . , 𝑏𝑛𝑛, 𝑥) that is irreducible generically but has a rational
root in x if B is distinguished. The construction of this polynomial will allow us to use a quantitative
Hilbert irreducibility argument [9] to bound the number of distinguished elements in bounded regions.

Theorem 4.1. Suppose 𝑛 = 2𝑔+1 is odd. There exists a polynomial 𝐹 (𝐵, 𝑥) ∈ Z[
√
−1] [𝑏11, . . . , 𝑏𝑛𝑛] [𝑥]

of degree 22𝑔 that is irreducible in Q[
√
−1] (𝑏11, . . . , 𝑏𝑛𝑛) [𝑥], such that for any 𝐵0 ∈ 𝑊 (Q), if 𝐵0 is

distinguished, then 𝐹 (𝐵0, 𝑥) ∈ Q[
√
−1] [𝑥] has a root in Q.

Proof. Let 𝐵 ∈ 𝑊 be the generic element. Fix 𝑃 ∈ 𝑀𝑛 (Q[
√
−1]), such that

𝑃𝐴0𝑃
𝑡 is the identity matrix 𝐼𝑛. Let 𝐵′ = 𝑃𝐵𝑃𝑡 . Then the entries of 𝐵′ lie in

Z[
√
−1] [𝑏11, . . . , 𝑏𝑛𝑛]. Let 𝑐1, . . . , 𝑐𝑛 ∈ Q(𝑏11, . . . , 𝑏𝑛𝑛) be the eigenvalues of 𝐵′, and let

ℎ(𝑐1, . . . , 𝑐𝑛) ∈ O𝑛 (Q[
√
−1] (𝑏11, . . . , 𝑏𝑛𝑛, 𝑐1, . . . , 𝑐𝑛)) be a change-of-basis matrix, such that

ℎ(𝑐1, . . . , 𝑐𝑛)𝐵′ℎ(𝑐1, . . . , 𝑐𝑛)𝑡 = 𝐵′′ = diag(𝑐1, . . . , 𝑐𝑛). Note that we have fixed an order of the eigen-
values here. For any other order, we simply multiply ℎ(𝑐1, . . . , 𝑐𝑛) by the corresponding permutation
matrix.

Following [18, §2], we now have the following explicit construction of the 22𝑔 common isotropic
g-planes with respect to the quadratic forms defined by 𝐼𝑛 and 𝐵′′. Let 𝐷1, . . . , 𝐷𝑛 ∈ Q(𝑐1, . . . , 𝑐𝑛) be
a nonzero solution to the following system of linear equations:

𝐷1 + 𝐷2 + · · · + 𝐷𝑛 = 0
𝐷1𝑐1 + 𝐷2𝑐2 + · · · + 𝐷𝑛𝑐𝑛 = 0

...

𝐷1𝑐
2𝑔−1
1 + 𝐷2𝑐

2𝑔−1
2 + · · · + 𝐷𝑛𝑐

2𝑔−1
𝑛 = 0.

Note that we may take

𝐷𝑖 = ±
∏
𝑗≠𝑖

(𝑐 𝑗 − 𝑐𝑖)−1. (4.1)

This is obtained by noting that the kernel of an incomplete Vandermonde matrix is spanned by the last
row of the inverse of the completed Vandermonde matrix. None of the 𝐷𝑖 is equal to 0, and so for each
choice of 𝑑𝑖 ∈ Q(

√
𝐷𝑖) with 𝑑2

𝑖 = 𝐷𝑖 , we have a g-plane

𝑌 = Span{(𝑑1, . . . , 𝑑𝑛), (𝑑1𝑐1, . . . , 𝑑𝑛𝑐𝑛), . . . , (𝑑1𝑐
𝑔−1
1 , . . . , 𝑑𝑛𝑐

𝑔−1
𝑛 )}, (4.2)

which is isotropic with respect to the quadratic forms defined by 𝐼𝑛 and 𝐵′′. Negating all of the 𝑑𝑖’s
gives the same Y, and so we have 22𝑔 distinct g-planes. Now

𝑃𝑡ℎ(𝑐1, . . . , 𝑐𝑛)𝑡𝑌 = Span{(ℓ11, . . . , ℓ1𝑛), . . . , (ℓ𝑔1, . . . , ℓ𝑔𝑛)}

gives a g-plane that is isotropic with respect to the quadratic forms defined 𝐴0 and B, where each ℓ𝑖 𝑗 is
a linear form in 𝑑1, . . . , 𝑑𝑛 with coefficients in Q[

√
−1] (𝑏11, . . . , 𝑏𝑛𝑛, 𝑐1, . . . , 𝑐𝑛).
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Next we apply the Plücker embedding to send each 𝑃𝑡ℎ(𝑐1, . . . , 𝑐𝑛)𝑡𝑌 to a point

[𝐺0 (𝑑1, . . . , 𝑑𝑛) : · · · : 𝐺𝑁 (𝑑1, . . . , 𝑑𝑛)]

in projective space, where each 𝐺𝑖 is a homogeneous polynomial of degree g with coefficients in
Q[

√
−1] (𝑏11, . . . , 𝑏𝑛𝑛, 𝑐1, . . . , 𝑐𝑛). As 𝑑1, . . . , 𝑑𝑛 vary, we get 22𝑔 points 𝑃1, . . . , 𝑃22𝑔 this way. Now

let 𝐿1 (𝑥0, . . . , 𝑥𝑁 ) = 𝛼0𝑥0 + · · · + 𝛼𝑁 𝑥𝑁 and 𝐿2 (𝑥0, . . . , 𝑥𝑁 ) = 𝛽0𝑥0 + · · · + 𝛽𝑁 𝑥𝑁 be two linear forms
with integer coefficients 𝛼𝑖 , 𝛽𝑖 to be chosen later. For 𝑖 = 1, . . . , 22𝑔, let

𝑄𝑖 = [𝐿1 (𝑃𝑖) : 𝐿2 (𝑃𝑖)] ∈ P1 (Q[
√
−1] (𝑏11, . . . , 𝑏𝑛𝑛, 𝑐1, . . . , 𝑐𝑛) (𝑑1, . . . , 𝑑𝑛)).

For now, we only require that none of the 𝑄𝑖 equals [1 : 0]. We then see that there is a binary 22𝑔-
ic form 𝐽 (𝑐1, . . . , 𝑐𝑛) (𝑥, 𝑦) defined over Q[

√
−1] (𝑏11, . . . , 𝑏𝑛𝑛, 𝑐1, . . . , 𝑐𝑛) vanishing on 𝑄1, . . . , 𝑄22𝑔 .

By scaling, we may assume that

𝐽 (𝑐1, . . . , 𝑐𝑛) (𝑥, 𝑦) ∈ Z[
√
−1] [𝑏11, . . . , 𝑏𝑛𝑛, 𝑐1, . . . , 𝑐𝑛] [𝑥, 𝑦] .

Let 𝐽1 (𝑐1, . . . , 𝑐𝑛) (𝑥) = 𝐽 (𝑐1, . . . , 𝑐𝑛) (𝑥, 1). Note that if 𝐵0 ∈ 𝑊 (Q) is distinguished, then one of the
𝑃𝑖 is defined over Q, in which case, 𝐽1 (𝑐1, . . . , 𝑐𝑛) (𝑥) has a root over Q.

Finally, we note that the homogeneous polynomials𝐺0, . . . , 𝐺𝑁 are independent of the ordering of the
eigenvalues 𝑐1, . . . , 𝑐𝑛, since permuting the 𝑐𝑖’s permutes the coordinates of Y, which is then cancelled
by the extra permutation matrix in ℎ(𝑐1, . . . , 𝑐𝑛). Therefore, the coefficients of 𝐽1 (𝑐1, . . . , 𝑐𝑛) (𝑥) are
symmetric in 𝑐1, . . . , 𝑐𝑛 and so are polynomials in the coefficients of the characteristic polynomial of B.
We let 𝐹 (𝐵, 𝑥) denote this polynomial.

It remains to prove that for some choice of coefficients𝛼𝑖 , 𝛽𝑖 for the linear forms 𝐿1, 𝐿2, the polynomial
𝐹 (𝐵, 𝑥) ∈ Z[

√
−1] [𝑏11, . . . , 𝑏𝑛𝑛] [𝑥] is irreducible. It suffices to exhibit some 𝐵0 ∈ 𝑊 (Q[

√
−1]), such

that 𝐺
Q[

√
−1] , the absolute Galois group ofQ[

√
−1], acts transitively on the 22𝑔 distinct roots of 𝐹 (𝐵0, 𝑥).

For any 𝑐1, . . . , 𝑐𝑛, let 𝐸𝑖 = (𝑐1 − 𝑐𝑖) · · · (𝑐𝑖−1 − 𝑐𝑖) (𝑐𝑖+1 − 𝑐𝑖) · · · (𝑐𝑛 − 𝑐𝑖) = ±𝐷−1
𝑖 . Let M be a large

integer so that there are at least 𝑛 − 1 distinct primes 𝑞1, . . . , 𝑞𝑛−1 lying inside (𝑀 −
√
𝑀, 𝑀). Let

𝑐𝑛 = 𝑀 , and let 𝑐𝑖 = 𝑀 − 𝑞𝑖 for 𝑖 = 1, . . . , 𝑛 − 1. Then for any 𝑖, 𝑗 = 1, . . . , 𝑛 − 1 with 𝑗 ≠ 𝑖, we have
𝑞𝑖 | 𝐸𝑖 and 𝑞𝑖 � 𝐸 𝑗 . Note also that 𝐸𝑛 = (−1)𝑛−1𝑞1 · · · 𝑞𝑛−1. For each 𝑖 = 1, . . . , 𝑛 − 1, let 𝜎𝑖 denote an
element in the absolute Galois group 𝐺

Q[
√
−1] that negates √𝑞 𝑗 for all 𝑗 = 1, . . . , 𝑛 − 1 for which 𝑗 ≠ 𝑖

and fixes all other square roots that appear (including √
𝑞𝑖). Since n is odd, we see that 𝜎𝑖 (𝑑 𝑗 ) = −𝑑 𝑗

for all 𝑗 ≠ 𝑖 and 𝜎𝑖 (𝑑𝑖) = 𝑑𝑖 . Hence,

𝜎𝑖 ([𝑑1 : · · · : 𝑑𝑛]) = [𝑑1 : · · · : 𝑑𝑖−1 : − 𝑑𝑖 : 𝑑𝑖+1 : · · · : 𝑑𝑛] .

That is, the absolute Galois group 𝐺
Q[

√
−1] acts transitively on the set {[𝑑1 : · · · : 𝑑𝑛] | 𝑑2

𝑖 = 𝐷𝑖}.
Hence, it also acts transitively on the 22𝑔𝑌 ’s defined in (4.2) as the 𝑑𝑖’s vary and so also acts transitively
on 𝑃1, . . . , 𝑃22𝑔 . We may simply choose the integers 𝛼𝑖 , 𝛽𝑖 so that 𝑄1, . . . , 𝑄22𝑔 are distinct. Let
𝐵′ = diag(𝑐1, . . . , 𝑐𝑛), and let 𝐵0 = 𝑃−1𝐵′(𝑃−1)𝑡 ∈ 𝑊 (Q[

√
−1]). Then 𝐺

Q[
√
−1] acts transitively on the

22𝑔 distinct roots of 𝐹 (𝐵0, 𝑥). �

Theorem 4.2. Suppose 𝑛 = 2𝑔 + 2 is even. Let 𝑅 = Z[
√
−1] [𝑏11, . . . , 𝑏𝑛𝑛] [𝑐]/(det(𝑐𝐴0 − 𝐵)), and let

K be its fraction field. Then there exists a polynomial 𝐹 (𝐵, 𝑐, 𝑥) ∈ 𝑅[𝑥] of degree 22𝑔 that is irreducible
in 𝐾 [𝑥], such that for any 𝐵0 ∈ 𝑊 (Q), if 𝐵0 is distinguished and 𝑐0 ∈ Q̄ is any eigenvalue of 𝐵0, then
𝐹 (𝐵0, 𝑐0, 𝑥) ∈ Q[

√
−1] [𝑐0] [𝑥] has a root in Q.

Proof. Given (𝐵, 𝑐), we proceed as before to orthogonally diagonalise 𝐵′ = 𝑃𝐵𝑃𝑡 into 𝐵′′ =
diag(𝑐1, . . . , 𝑐𝑛−1, 𝑐). Then we take 𝐵′′′ = 𝐵′′ − 𝑐𝐼𝑛 = diag(𝑐1 − 𝑐, . . . , 𝑐𝑛−1 − 𝑐, 0) and use the con-
struction above in the odd degree case with 𝑐1, . . . , 𝑐𝑛 replaced by 𝑐1 − 𝑐, . . . , 𝑐𝑛−1 − 𝑐 to obtain a
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polynomial whose coefficients are polynomials that are symmetric in 𝑐1 − 𝑐, . . . , 𝑐𝑛−1 − 𝑐. Note that
(𝑥− 𝑐1) · · · (𝑥− 𝑐𝑛−1) = det(𝑥𝐴0 −𝐵)/(𝑥− 𝑐) ∈ 𝑅[𝑥]. Hence, (𝑥− (𝑐1 − 𝑐)) · · · (𝑥− (𝑐𝑛−1 − 𝑐)) ∈ 𝑅[𝑥],
and so any polynomial that is symmetric in 𝑐1 − 𝑐, . . . , 𝑐𝑛−1 − 𝑐 belongs to R. �

As an immediate consequence of Theorems 4.1 and 4.2, we may apply the quantitative Hilbert
irreducibility theorem of Castillo and Dietmann [9] to bound the number of distinguished elements in
homogeneously expanding sets. Let 𝑊 (Z)dist denote the set of distinguished elements in 𝑊 (Z). Then
we have the following result.

Corollary 4.3. Let B ⊂ 𝑊 (R) be a bounded open set. Let 𝑌 = (𝑌𝑖 𝑗 ) be an 𝑛 × 𝑛 matrix of positive real
numbers. Let 𝑌 · B be the set obtained by scaling the (𝑖, 𝑗)-entries of elements in B by 𝑌𝑖 𝑗 . Then we
have

#
{
𝑌 · B ∩𝑊 (Z)dist} = 𝑂 𝜖

���
∏

𝑌1+𝜖
𝑖 𝑗

min
{
𝑌1−1/22𝑔

𝑖 𝑗

} ���. (4.3)

Proof. Define 𝐹1 (𝐵, 𝑥) to be 𝑁
Q[

√
−1]/Q𝐹 (𝐵, 𝑥) in the odd case and to be 𝑁𝐾/Q(𝑏11 ,...,𝑏𝑛𝑛)𝐹 (𝐵, 𝑐, 𝑥) in

the even case. Theorems 4.1 and 4.2 imply that if 𝐵0 ∈ 𝑊 (Q) is distinguished, then the Galois group
of 𝐹1 (𝐵0, 𝑥) has index at least 22𝑔 in the generic Galois group of 𝐹1 (𝐵, 𝑥). More precisely, they imply
that every irreducible factor of 𝐹1 (𝐵, 𝑥) has degree at least 22𝑔, and that if 𝐵0 is distinguished, then
𝐹1 (𝐵0, 𝑥) has a rational root.

We wish to upper bound the number of 𝐵0 ∈ 𝑊 (Z), with 𝑏𝑖 𝑗 < 𝑌𝑖 𝑗 , such that 𝑓 (𝐵0, 𝑥) has a rational
root in x for some irreducible factor 𝑓 (𝐵, 𝑥) of 𝐹1 (𝐵, 𝑥). When all the 𝑌𝑖 𝑗 ’s are the same, say Y, the
required bound follows immediately from [9, Theorem 1]. Indeed, when applied to 𝑓 (𝐵, 𝑥) with generic
Galois group 𝐺 𝑓 , [9, Theorem 1] states that the number of 𝐵0 ∈ 𝑊 (Z) with each |𝑏𝑖 𝑗 | < 𝑌 , such that
the Galois group of 𝑓 (𝐵0, 𝑥) is 𝐾 ⊂ 𝐺 𝑓 , is 𝑂 (𝑌dim(𝑊 )−1+|𝐺 𝑓 /𝐾 |−1+𝜖 ). Since 𝐵0 being distinguished
implies that 𝑓 (𝐵0, 𝑥) has a rational root for some irreducible factor 𝑓 (𝐵, 𝑥) of 𝐹 (𝐵, 𝑥), and the degree
of 𝑓 (𝐵, 𝑥) is at least 22𝑔, we have |𝐺 𝑓 /𝐾 | ≥ 22𝑔 and the result follows.

The proof of [9, Theorem 1] in the case where we require 𝑓 (𝐵0, 𝑥) to have a rational root (as opposed
to a general Galois subgroup 𝐾 ⊂ 𝐺 𝑓 ) is much simpler than the general case (as the construction of a
polynomial, associated to 𝑓 (𝐵0, 𝑥), having a rational root may be skipped in this case). We now describe
how this proof also carries through without any change for general 𝑌𝑖 𝑗 . First, 𝑓 (𝐵, 𝑥) can be assumed to
be monic in x by replacing 𝑓 (𝐵, 𝑥) = 𝑔0 (𝐵)𝑥𝑚 + 𝑔1(𝐵)𝑥𝑚−1 + · · · + 𝑔𝑚(𝑥) by 𝑔0 (𝐵)𝑚−1 𝑓 (𝐵, 𝑥/𝑔0 (𝐵)).
In order to make this reduction, it is necessary to provide an upper bound for the number of 𝐵0 ∈ 𝑊 (Z)
with |𝑏𝑖 𝑗 | < 𝑌𝑖 𝑗 , such that 𝑔0 (𝐵0) = 0. This number is clearly bounded by the right-hand side of (4.3),
as a fibring argument readily shows. Specifically, we fibre over all but one of the coefficients, denoted
by b. Fixing values for each 𝑏𝑖 𝑗 ≠ 𝑏 yields a polynomial 𝑔(𝑏) = 𝑔0 (𝐵) in one variable. If 𝑔(𝑏) is not
identically zero, then 𝑔(𝑏) = 0 has 𝑂 (1) different solutions, yielding a sufficient saving. Meanwhile,
the condition of 𝑔(𝑏) being identically zero imposes one or more polynomial vanishing conditions on
the coefficients 𝑏𝑖 𝑗 ≠ 𝑏, and the number of such values of 𝑏𝑖 𝑗 also satisfies the required bound by
induction.

The result for monic polynomials is proved in [9, Lemma 7] by fibring over all but one of the
coefficients and then using induction. This proof (for the case when all the 𝑌𝑖 𝑗 ’s are the same) carries
over without change for general 𝑌𝑖 𝑗 , when the fibring is done over the variables 𝑏𝑖 𝑗 for which the 𝑌𝑖 𝑗 are
the smallest. �

5. Proof of the main result

In this section, we prove Theorem 1.5 and its analogue for monic integer polynomials having vanishing
subleading coefficient. We then prove Theorems 1.6 and 1.2.
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We begin by bounding the number of monic integer polynomials with bounded height belonging to
W (1)

𝑚 (respectively, W (2)
𝑚 ) for some large m. To bound the number of elements in ∪𝑚>𝑀W (1)

𝑚 , we have
the following result:

Proposition 5.1. We have

#
⋃
𝑚>𝑀

{ 𝑓 ∈ W (1)
𝑚 : 𝐻 ( 𝑓 ) < 𝐻} = 𝑂 𝜖

(
𝐻𝑛(𝑛+1)/2+𝜖

𝑀2/(𝑛−1)−𝜖

)
+𝑂 (𝐻𝑛(𝑛+1)/2−1). (5.1)

Proof. We begin by noting that the proofs of [4, Theorem 3.5 and Lemma 3.6] imply the bound

#
⋃
𝑚>𝑀

|𝜇(𝑚) |{ 𝑓 ∈ W (1)
𝑚 : 𝐻 ( 𝑓 ) < 𝐻} = 𝑂 𝜖

(
𝐻𝑛(𝑛+1)/2+𝜖

𝑀1−𝜖

)
+𝑂 (𝐻𝑛(𝑛+1)/2−1). (5.2)

Briefly, the proof is as follows: first, there exists a polynomial 𝑃 ∈ Z[𝑉𝑛], belonging to the algebra
generated by Δ and Δ ′, which does not involve the constant coefficient 𝑎𝑛. Hence, we may consider
P as a polynomial in 𝑎1, . . . , 𝑎𝑛−1. Second, a bound of size 𝑂 (𝐻𝑛(𝑛+1)/2−𝑛−1) is easily obtained on
the number of possible values of 𝑎 = (𝑎1, . . . , 𝑎𝑛−1), of bounded height, for which 𝑃(𝑎) = 0. Third,
we fibre over the 𝑂 (𝐻𝑛(𝑛+1)/2−𝑛) values of such a for which 𝑃(𝑎) ≠ 0. For each such a, it is clear
that 𝑃(𝑎) has at most 𝑂 (𝐻 𝜖 ) different divisors. Since 𝑃( 𝑓 ) = 𝑃(𝑎1, . . . , 𝑎𝑛−1) ≡ 0(mod 𝑚) for
𝑓 (𝑥) = 𝑥𝑛 +

∑𝑛
𝑖=1 𝑎𝑖𝑋

𝑛−𝑖 ∈ W𝑚, fixing a constrains the value of 𝑚 > 𝑀 to be one of these 𝑂 (𝐻 𝜖 )
divisors of 𝑃(𝑎). Fourth, and finally, we consider Δ to be a polynomial Δ𝑎 (𝑎𝑛) in 𝑎𝑛. We then note that
the condition 𝑚 | Δ ( 𝑓 ) = Δ𝑎 (𝑎𝑛) implies that there are at most𝑂 ((𝐻𝑛/𝑚1−𝜖 )+1) = 𝑂 ((𝐻𝑛/𝑀1−𝜖 )+1)
choices for 𝑎𝑛, concluding the proof of (5.2).

It is precisely this last step which breaks down when m is not required to be squarefree. We note
that Δ𝑎 (𝑎𝑛) is a polynomial of degree 𝑛 − 1 in 𝑎𝑛, whose leading coefficient (−1)𝑛(𝑛−1)/2𝑛𝑛−1 does
not depend on a. Suppose 𝑝𝑘 ‖ 𝑚 for some prime p and some fixed 𝑚 | 𝑃(𝑎). Let ℓ �𝑛 1 be a
nonnegative integer, such that 𝑔(𝑎𝑛) = Δ𝑎 (𝑎𝑛)/𝑝ℓ ∈ Z[𝑥] and at least one of its coefficients is not
divisible by p. The condition 𝑚2 | Δ ( 𝑓 ) now becomes 𝑝2𝑘−ℓ | 𝑔(𝑎𝑛) for every prime divisor p of m.
Let 𝛿 = � 2𝑘−ℓ

𝑛−1 �, and let 𝑔(𝑥) = 𝑓1(𝑥) · · · 𝑓 𝑗 (𝑥) be a factorisation in (Z/𝑝 𝛿Z) [𝑥], where j is maximal.
Since the reduction �̄�(𝑥) ∈ F𝑝 [𝑥] of 𝑔(𝑥) modulo p is a nonzero polynomial of degree at most 𝑛 − 1,
we have �̄� = 𝑓1 · · · 𝑓 𝑗 , and so 𝑗 ≤ 𝑛 − 1. In order for 𝑝2𝑘−ℓ | 𝑔(𝑎𝑛), we then must have 𝑝 𝛿 | 𝑓𝑖 (𝑎𝑛) for
some 𝑖 = 1, . . . , 𝑗 . This implies that (𝑥 − 𝑎𝑛) | 𝑓𝑖 (𝑥) in (Z/𝑝 𝛿Z) [𝑥], and so by maximality of j, we see
that 𝑓𝑖 (𝑥) is linear. Hence, the density of integers 𝑎𝑛, such that 𝑝2𝑘−ℓ | 𝑔(𝑎𝑛) is at most (𝑛 − 1)/𝑝 𝛿 .
Multiplying over all prime divisors p of m gives that the density of integers 𝑎𝑛, such that 𝑚2 | Δ𝑎 (𝑎𝑛)
is 𝑂 (1/𝑚2/(𝑛−1)−𝜖 ). Combining with the proof of [4, Theorem 3.5 and Lemma 3.6] recalled above
gives (5.1). �

We are ready to prove Theorem 1.5.

Proof of Theorem 1.5. To bound the number of elements in ∪𝑚>𝑀W (2)
𝑚 , we recall the setup of [7]. The

proofs of [7, Theorems 2.3 and 3.2] imply that we have a map 𝜎𝑚 : W (2)
𝑚 → 1

4𝑊 (Z), injecting into the
set of distinguished elements, such that the resolvent of 𝜎𝑚( 𝑓 ) is f and 𝑄(𝜎𝑚( 𝑓 )) = 𝑚. Here, Q is an
invariant defined on the set of distinguished elements of 𝑊 (Z), given explicitly in [7, §§2.1 and 3.1].
To bound the number of elements in ∪𝑚>𝑀W (2)

𝑚 having height less than H, it thus suffices to bound the
number of 𝐺 (Z)-orbits on distinguished elements of 𝑊 (Z) having height less than H and Q-invariant
larger than M. This is precisely what is carried out via geometry-of-numbers arguments in [7, §2 and 3].
Moreover, using Corollary 4.3 instead of the Selberg sieve in the proofs of [7, Propositions 2.6 and 3.5]
improves the error terms there to 𝑂 𝜖 (𝐻dim(𝑊 )−1+1/22𝑔+𝜖 ). We thus obtain the following bound:

#
⋃
𝑚>𝑀

{ 𝑓 ∈ W (2)
𝑚 : 𝐻 ( 𝑓 ) < 𝐻} = 𝑂 𝜖 (𝐻𝑛(𝑛+1)/2+𝜖 /𝑀) +𝑂 𝜖 (𝐻𝑛(𝑛+1)/2−1+1/22𝑔+𝜖 ). (5.3)
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We note that (5.3) is a strengthening of [7, Theorem 1.5(b)]. Optimising by taking 𝛼 = (𝑛 − 1)/(𝑛 + 3)
and 𝛽 = 2/(𝑛 + 3) in Proposition 3.2 gives Theorem 1.5. �

We now deduce Theorem 1.6 from 1.5.

Proof of Theorem 1.6. Applying an inclusion-exclusion sieve, we obtain

#
{
𝑓 ∈ 𝑉𝑛 (Z) : 𝐻 ( 𝑓 ) < 𝐻 and Δ ( 𝑓 ) squarefree

}
=
∑
𝑚≥1

𝜇(𝑚)#{ 𝑓 ∈ W𝑚 : 𝐻 ( 𝑓 ) < 𝐻}. (5.4)

We break up the sum over m into three ranges, namely, the large range consisting of 𝑚 ≥ 𝐻𝑛/2, the
middle range consisting of 𝐻 ≤ 𝑚 < 𝐻𝑛/2 and the small range consisting of 𝑚 < 𝐻. We will obtain
precise estimates for the sum of m over the small range and prove that the sum over m in the middle and
large ranges are negligible, where we say that a number is negligible if it is 𝑂 𝜖 (𝐻𝑛(𝑛+1)/2−1+1/22𝑔+𝜖 ).

First, note that Theorem 1.5 implies the bound∑
𝑚≥𝐻𝑛/2

|𝜇(𝑚) |#{ 𝑓 ∈ W𝑚 : 𝐻 ( 𝑓 ) < 𝐻} = 𝑂 𝜖 (𝐻𝑛(𝑛+1)/2−1+1/22𝑔+𝜖 ). (5.5)

Therefore, the sum over the large range is negligible.
Next we consider the middle range. That is, we sum the right-hand side of (5.4) over m in the range 𝐻 <

𝑚 ≤ 𝐻𝑛/2 and prove that the sum is 𝑂 𝜖 (𝐻𝑛(𝑛+1)/2−1+𝜖 ). We fibre over integer tuples 𝑎 = (𝑎1, . . . , 𝑎𝑛−1).
For any integer tuple a, let Δ𝑎 (𝑎𝑛) denote as above the discriminant of 𝑥𝑛 + 𝑎1𝑥

𝑛−1 + · · · + 𝑎𝑛 and let
𝜃𝑎 (𝑚) denote the density of integers 𝑎𝑛, such that 𝑚2 | Δ𝑎 (𝑎𝑛). Let B denote the set of integer tuples
𝑎 = (𝑎1, . . . , 𝑎𝑛−1), such that |𝑎𝑖 | < 𝐻𝑖 for 𝑖 = 1, . . . , 𝑛 − 1. Then we have∑

𝐻<𝑚≤𝐻𝑛/2

|𝜇(𝑚) |#{ 𝑓 ∈ W𝑚 : 𝐻 ( 𝑓 ) < 𝐻} =
∑
𝑎∈𝐵

∑
𝐻<𝑚≤𝐻𝑛/2

|𝜇(𝑚) |(𝜃𝑎 (𝑚) · 2𝐻𝑛 +𝑂 (1)). (5.6)

Since #𝐵 = 𝑂 (𝐻𝑛(𝑛+1)/2−𝑛), we see that the sum of the 𝑂 (1) term is negligible.
Now the discriminant Δ (Δ𝑎) of Δ𝑎 (𝑎𝑛) is a polynomial in 𝑎1, . . . , 𝑎𝑛−1. We claim that Δ (Δ𝑎) has

a term involving only 𝑎𝑛−1. Indeed, when 𝑎1 = · · · = 𝑎𝑛−2 = 0, we have

Δ𝑎 (𝑎𝑛) = Δ (𝑥𝑛 + 𝑎𝑛−1𝑥 + 𝑎𝑛) = (−1)𝑛(𝑛−1)/2𝑛𝑛𝑎𝑛−1
𝑛 − (−1)𝑛(𝑛+1)/2(𝑛 − 1)𝑛−1𝑎𝑛𝑛−1,

and so

Δ (Δ𝑎) = 𝐶𝑛𝑎
𝑛(𝑛−2)
𝑛−1 ,

for some nonzero constant𝐶𝑛 depending only on n. As a consequence, given any values for 𝑎1, . . . , 𝑎𝑛−2,
Δ (Δ𝑎) will be a nonzero polynomial in 𝑎𝑛−1. Hence, we have

#{𝑎 ∈ 𝐵 | Δ (Δ𝑎) = 0} = 𝑂 (𝐻𝑛(𝑛+1)/2−𝑛−(𝑛−1) ).

Hence, the contribution to the right-hand side of (5.6) over 𝑎 ∈ 𝐵 with Δ (Δ𝑎) = 0 is negligible.
Suppose now 𝑎 ∈ 𝐵 with Δ (Δ𝑎) ≠ 0. Take any squarefree m with 𝐻 < 𝑚 ≤ 𝐻𝑛/2. Let 𝑑 =

gcd(Δ (Δ𝑎), 𝑚), and let 𝑚1 = 𝑚/𝑑. For any prime 𝑝 | 𝑑 and 𝑝 � 𝑛, the polynomial Δ𝑎 (𝑎𝑛) mod p is
a nonzero polynomial (since its leading coefficient is nonzero) with a repeated factor, in which case,
𝜃𝑎 (𝑝) = 𝑂 (1/𝑝). For any prime 𝑝 | 𝑚1 and 𝑝 � 𝑛, the polynomialΔ𝑎 (𝑎𝑛) mod p is a nonzero polynomial
without a repeated factor, in which case, 𝜃𝑎 (𝑝) = 𝑂 (1/𝑝2). Hence, we have 𝜃𝑎 (𝑚) = 𝑂 (1/(𝑑𝑚2−𝜖

1 )),
where we absorb any common divisors of d and n, or of 𝑚1 and n, into the implied constant. Denoting
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by
∑′

a sum over squarefree numbers, we have

∑
𝑎∈𝐵

Δ (Δ𝑎)≠0

∑′

𝐻<𝑚≤𝐻𝑛/2

𝜃𝑎 (𝑚) �𝜖

∑
𝑎∈𝐵

Δ (Δ𝑎)≠0

( ∑′

1≤𝑑≤𝐻
𝑑 |Δ (Δ𝑎)

∑′

𝐻
𝑑 <𝑚1≤ 𝐻𝑛/2

𝑑

1
𝑑𝑚2−𝜖

1
+

∑′

𝐻<𝑑≤𝐻𝑛/2

𝑑 |Δ (Δ𝑎)

∑′

1<𝑚1≤ 𝐻𝑛/2
𝑑

1
𝑑𝑚2−𝜖

1

)

�𝜖

∑
𝑎∈𝐵

Δ (Δ𝑎)≠0

∑′

1≤𝑑≤𝐻𝑛/2

𝑑 |Δ (Δ𝑎)

1
𝐻1−𝜖

�𝜖 𝐻𝑛(𝑛+1)/2−𝑛−1+𝜖 ,

where the last bound follows because the number of divisors of the nonzero integer Δ (Δ𝑎) with each 𝑎𝑖
bounded by some fixed power of H is 𝑂 𝜖 (𝐻 𝜖 ). Therefore, we have proved that∑

𝐻<𝑚≤𝐻𝑛/2

|𝜇(𝑚) |#{ 𝑓 ∈ W𝑚 : 𝐻 ( 𝑓 ) < 𝐻} = 𝑂 𝜖 (𝐻𝑛(𝑛+1)/2−1+𝜖 ). (5.7)

It remains to consider the small range 1 ≤ 𝑚 ≤ 𝐻. For this range, note that 𝑚2 ≤ 𝐻2 is less than the
range of 𝑎2, and so we fibre over 𝑎1 only. Denote the density of W𝑚 in 𝑉𝑛 (Z) by 𝜃 (𝑚). When 𝑚 = 𝑝 is
a prime, we have 𝜃 (𝑝) = 𝑂 (1/𝑝2). When m is squarefree in general, we have 𝜃 (𝑚) = 𝑂 𝜖 (1/𝑚2−𝜖 ). For
any integer 𝑎1, let 𝑉𝑛 (𝑎1,Z) denote the set of monic polynomials of degree n whose 𝑥𝑛−1-coefficient is
𝑎1 and let 𝜃 (𝑎1, 𝑚) denote the density of W𝑚 ∩ 𝑉𝑛 (𝑎1,Z) in 𝑉𝑛 (𝑎1,Z). When m is coprime to n, we
simply have 𝜃 (𝑎1, 𝑚) = 𝜃 (𝑚).

We fibre over 𝑎1 and break the regions for 𝑎2, . . . , 𝑎𝑛 into intervals of length 𝑚2 to obtain∑
1≤𝑚≤𝐻

𝜇(𝑚)#{ 𝑓 ∈ W𝑚 : 𝐻 ( 𝑓 ) < 𝐻}

=
∑

1≤𝑚≤𝐻
𝜇(𝑚)

∑
|𝑎1 |<𝐻

(𝜃 (𝑎1, 𝑚)2𝑛−1𝐻𝑛(𝑛+1)/2−1 +𝑂 (𝐻𝑛(𝑛+1)/2−3))

= 2𝑛−1𝐻𝑛(𝑛+1)/2−1
∑
𝑑 |𝑛

∑
1≤𝑚1≤𝐻/𝑑
gcd(𝑚1 ,𝑛)=1

𝜇(𝑑)𝜇(𝑚1)
∑

|𝑎1 |<𝐻
𝜃 (𝑎1, 𝑑)𝜃 (𝑎1, 𝑚1) +𝑂 (𝐻𝑛(𝑛+1)/2−1)

= 2𝑛−1𝐻𝑛(𝑛+1)/2−1
∑

1≤𝑚1≤𝐻/𝑑
gcd(𝑚1 ,𝑛)=1

𝜇(𝑚1)𝜃 (𝑚1)
∑
𝑑 |𝑛

𝜇(𝑑)
∑

|𝑎1 |<𝐻
𝜃 (𝑎1, 𝑑) +𝑂 (𝐻𝑛(𝑛+1)/2−1).

For any squarefree 𝑑 | 𝑛, we also have∑
|𝑎1 |<𝐻

(𝜃 (𝑎1, 𝑑)2𝑛−1𝐻𝑛(𝑛+1)/2−1 +𝑂 (𝐻𝑛(𝑛+1)/2−3)) = 𝜃 (𝑑)2𝑛𝐻𝑛(𝑛+1)/2 +𝑂 (𝐻𝑛(𝑛+1)/2−1),

as both sides count monic polynomials of degree n with height bounded by H having discriminant
divisible by 𝑑2. Hence, ∑

|𝑎1 |<𝐻
𝜃 (𝑎1, 𝑑) = 𝜃 (𝑑) · 2𝐻 +𝑂 (1),

and, thus, ∑
𝑑 |𝑛

𝜇(𝑑)
∑

|𝑎1 |<𝐻
𝜃 (𝑎1, 𝑑) = 2𝐻

∑
𝑑 |𝑛

𝜇(𝑑)𝜃 (𝑑) +𝑂 (1),
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since the sum of 𝑂 (1) over 𝑑 | 𝑛 is independent of H. Finally, combined with∑
1≤𝑚1<𝐻/𝑑
gcd(𝑚1 ,𝑛)=1

𝜇(𝑚1)𝜃 (𝑚1) �𝜖

∑
𝑚1≥1

1
𝑚2−𝜖

1
= 𝑂 (1)

and∑
1≤𝑚≤𝐻

𝜇(𝑚)𝜃 (𝑚) =
∑
𝑚≥1

𝜇(𝑚)𝜃 (𝑚) −
∑
𝑚>𝐻

𝜇(𝑚)𝜃 (𝑚) = 𝜆𝑛 −𝑂 𝜖 (
∑
𝑚>𝐻

1
𝑚2−𝜖 ) = 𝜆𝑛 −𝑂 𝜖 (

1
𝐻1−𝜖 ),

we have ∑
1≤𝑚≤𝐻

𝜇(𝑚)#{ 𝑓 ∈ W𝑚 : 𝐻 ( 𝑓 ) < 𝐻} = 𝜆𝑛2𝑛𝐻𝑛(𝑛+1)/2 +𝑂 𝜖 (𝐻𝑛(𝑛+1)/2−1+𝜖 ). (5.8)

The first estimate of Theorem 1.6 now follows from (5.4), (5.5), (5.7) and (5.8). The second estimate
follows similarly. �

Next we deduce the analogue of Theorem 1.5 for polynomials with vanishing subleading coefficient.

Theorem 5.2. Let W◦
𝑚 denote the set of elements in W𝑚 that have vanishing subleading coefficient.

Then

#
⋃
𝑚>𝑀

{ 𝑓 ∈ W◦
𝑚 : 𝐻 ( 𝑓 ) < 𝐻} �𝑛,𝜖

𝐻 (𝑛−1) (𝑛+2)/2+𝜖

𝑀2/(𝑛+3)−𝜖 + 𝐻 (𝑛−1) (𝑛+2)/2−1+1/22𝑔+𝜖 . (5.9)

Proof. For an integer k, the transformation 𝑓 (𝑥) ↦→ 𝑓 (𝑥 + 𝑘) does not change membership in W𝑚 and
changes the height of f by at most 𝑂 (|𝑘 |). Hence, the set of elements in W𝑚 having vanishing subleading
coefficient and height < 𝐻 are each equivalent (under some transformation 𝑓 (𝑥) ↦→ 𝑓 (𝑥 + 𝑘)) to � 𝐻
elements in W𝑚 having height � 𝐻. Therefore,

#
⋃
𝑚>𝑀

{ 𝑓 ∈ W◦
𝑚 : 𝐻 ( 𝑓 ) < 𝐻} �𝑛

1
𝐻

#
⋃
𝑚>𝑀

{ 𝑓 ∈ W𝑚 : 𝐻 ( 𝑓 ) < 𝐻}.

The result now follows from Theorem 1.5. �

We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2. Let 𝑁prim
𝑛 (𝑋) denote the number of primitive number fields of degree n having

absolute discriminant less than X. As explained in the Introduction, the set of primitive number fields
with absolute discriminant less than X injects into the set of integer monic polynomials of degree n with
vanishing subleading coefficient and height � 𝑋1/(2𝑛−2) . Let 𝑆𝑋 denote the image of this injection.
Choose 𝜅 = 𝑛 − 1. By Proposition 2.1, it follows that away from a set 𝑆′𝑋 of size 𝑂 (𝑋 𝑛+2

4 − 1
2𝑛−2 ),

every element in S has absolute discriminant � 𝑋
𝑛−1

2 . Since the absolute discriminant of the field
corresponding to an element in 𝑆𝑋 is less than X by definition, the absolute discriminant of any element
in 𝑆𝑋\𝑆′𝑋 is divisible by 𝑚2 for some 𝑚 � 𝑋

𝑛−3
4 . By Theorem 5.2, we thus deduce that

𝑁
prim
𝑛 (𝑋) ≤ #𝑆𝑋 = #𝑆′𝑋 + #(𝑆𝑋\𝑆′𝑋 )

�𝜖 𝑋
𝑛+2

4 − 1
2𝑛−2 + 𝑋

𝑛+2
4 +𝜖

𝑋
𝑛−3

2(𝑛+3)
+ 𝑋

𝑛+2
4 − 1

2𝑛−2+
1

22𝑔 (2𝑛−2)
+𝜖

.
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Since 𝑛−3
2(𝑛+3) ≥ 1

2𝑛−2 for 𝑛 ≥ 6, we have proved the version of Theorem 1.2 where 𝑁𝑛 (𝑋) is replaced by
𝑁

prim
𝑛 (𝑋).
Finally, we note that the bound [14, Equation (1.2)] with 𝐿 = Q implies that the number of imprimitive

number fields of degree n with absolute discriminant less than X is at most 𝑂 (𝑋 𝑛
8 +

1
2 ). This completes

the proof of Theorem 1.2. �
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