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Understanding the behaviour of scalar isosurfaces in a turbulent flow is of particular
interest for many problems in turbulent mixing that contain sharp interfaces between
regions of the flow. Common examples include combustion, where the chemical reactions
occur in thin regions within the flow, and the turbulent/non-turbulent interface in shear
flows, where a thin region separates the rotational, turbulent motions from the irrotational,
non-turbulent background. Recent advances in computing technology allow for in-depth
analysis of these interface problems that are difficult to quantify in a laboratory setting. In
this paper, the results of a direct numerical simulation of a passive scalar @ evolving on
a turbulent, temporally developing mixing layer are described. A novel approach has been
taken to calculate the surface area of individual scalar isosurfaces, Ay, throughout the
simulation, as well as the mean isosurface area density, X, as a function of the cross-stream
direction and time. A notable finding is that the profiles of X develop in a self-similar
manner when scaled by the Taylor scale of the scalar field, A5. Remarkably, the scaling
appears to hold for a wide range of isovalues. A rough scaling argument based on the
formal definition of X' and properties of a temporal mixing layer is presented which also
exposes a dependence on 4. Based on these results, a possible scaling for the isosurface

area is presented as Ay /Ag ~ (Re Sc) 172 where Re and Sc are local Reynolds and Schmidt

numbers, respectively.
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1. Introduction

Many turbulent mixing problems can be characterized by a sharp interface separating two
regions of flow, e.g. the flame surface in both premixed and non-premixed flames, which

+ Email address for correspondence: bcb314@uw.edu

© The Author(s), 2022. Published by Cambridge University Press. This is an Open Access article,

distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/

licenses/by/4.0), which permits unrestricted re-use, distribution and reproduction, provided the original

article is properly cited. 951 A44-1

@ CrossMark


mailto:bcb314@uw.edu
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2022.819&domain=pdf
https://doi.org/10.1017/jfm.2022.819

https://doi.org/10.1017/jfm.2022.819 Published online by Cambridge University Press

B.C. Blakeley, B.J. Olson and J.J. Riley

separates fresh from burnt fuel (premixed) and fuel from oxidizer (non-premixed), or the
turbulent/non-turbulent (T/NT) interface which separates turbulent, rotational flow from
the irrotational, quiescent background in turbulent shear flows. An important similarity
between these seemingly disparate problems is that the interface can be described by
an isosurface of a scalar field. For example, the flame surface in premixed combustion
can be described by an isosurface of a progress variable (typically temperature or species
mass fraction) coinciding with the peak reaction rate (Candel & Poinsot 1990), while the
flame surface in non-premixed reactions is typically described by an isosurface of the
mixture fraction corresponding to the stoichiometric mixture of fuel and oxidizer (Peters
1988). Moreover, the T/NT interface can be typically demarcated by a ‘small’ value of the
vorticity magnitude (da Silva et al. 2014).

The kinematics of these interfaces is directly related to important quantities for
engineering design and optimization. For instance, knowledge of the flame surface
area allows the net fuel consumption to be computed (Marble & Broadwell 1977).
Similarly, the entrainment rate of ambient fluid into the turbulent core of a jet or wake
is proportional to the surface area of the T/NT interface (Wolf et al. 2012). Clearly,
a fundamental understanding of isosurfaces embedded in turbulent flows is needed to
properly characterize such systems with dynamic sources and sinks of isosurface area.
With proper characterization, it may be possible to improve predictive models of these
interfacial systems.

Unfortunately, experimental measurement of isosurfaces in turbulent flows is both
difficult and expensive. Advances in experimental technology have allowed for impressive
measurements of both the T/NT interface and flame surface, such as recent experiments
by Balamurugan et al. (2020) and Skiba et al. (2018). However, even state of the art
experiments typically measure only two-dimensional statistics, which cannot recover the
fully three-dimensional behaviour of isosurfaces embedded in a turbulent flow. Direct
numerical simulation, on the other hand, coupled with recent advances in computing
power and numerical algorithms, allows for in-depth investigation into high-resolution,
three-dimensional velocity and scalar fields. Despite being restricted to relatively simple
geometries, direct numerical simulation (DNS) is a valuable tool for studying fundamental
properties of turbulence such as interfacial dynamics.

Much of the literature surrounding the T/NT interface is focused on characterizing the
topology and internal structure of the interface, with significant advances occurring in
the last two decades. A comprehensive review is given by da Silva et al. (2014), where
many important characteristics of the interface are discussed, such as the scaling of the
viscous and turbulent sublayers, the relative importance of engulfment and nibbling on
entrainment, and the effect of large-scale motions on the interface. Since then, others
have examined how the interface thickness scales with Reynolds number (Silva, Zecchetto
& da Silva 2018), investigated the role of coherent structures on interface properties
(Neamtu-Halic er al. 2020) and expanded the T/NT interface analysis to stratified
(Watanabe et al. 2016) and compressible (Jahanbakhshi & Madnia 2018; Zhang, Watanabe
& Nagata 2018) flows.

Similarly, a number of studies have examined the structure (e.g. Sankaran et al. 2015;
Wang et al. 2017) and topology (e.g. Wacks et al. 2016; Dopazo et al. 2018) of the
flame surface in premixed combustion. Significant focus has also been placed on the
flame surface area per unit volume, X', which, in combination with the premixed flame
speed, is directly proportional to the rate of fuel consumption (Poinsot & Veynante 2005).
Studies have examined the effects of turbulence intensity (Kim & Pitsch 2007), differential
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diffusion (Chakraborty, Klein & Swaminathan 2009) and detailed chemistry (Klein et al.
2020) on the flame surface area density, among others.

While obviously beneficial for a global understanding of both the T/NT interface
and flame surface, the studies listed above tend to focus on instantaneous snapshots of
temporally or spatially developing flows (in the case of T/NT interface), or on integrated
surface quantities in statistically stationary flows (flame surface). There has only been a
single study, to the authors’ knowledge, that has presented both the spatial and temporal
variation of the flame surface density (Kulkarni ef al. 2021). In this study of spherically
expanding premixed flames, the flame surface area density is plotted as a function of
the radial direction and at several instances in time (see Kulkarni et al. 2021, figure 9),
demonstrating that the flame surface area is distributed over a finite region of physical
space, and that this distribution is expected to vary in time and/or space, depending on the
flow conditions.

From the above discussion, it can be seen that an investigation of the spatial and
temporal development of an isosurface embedded in a turbulent flow field is an
important step towards understanding the behaviour of a broad class of turbulent mixing
problems. In this paper, results are presented from a DNS of a passive scalar field
evolving in a temporally developing mixing layer. Though phenomenological differences
exist between the isosurface of a passive scalar field and the T/NT interface or the
premixed flame surface discussed above, a passive scalar such as dye is commonly used
to demarcate the T/NT interface (Westerweel et al. 2005), and there is evidence to
suggest that premixed flames subjected to intense turbulence behave similarly to passive
scalars (Savard & Blanquart 2015). A computationally efficient, grid-based approach
(Yurtoglu, Carton & Storti 2018) for calculating surface integrals is utilized that allows
for the isosurface properties, namely the isosurface area and isosurface area density,
to be tracked throughout the temporal development of the mixing layer. The paper is
organized as follows. Section 2 describes the computational methodology of the DNS,
§ 3 presents the basic mathematical background of isosurface area; § 4 provides typical
velocity and scalar statistics to validate the simulation accuracy; § 5 details the primary
results from the study, including the self-similar analysis of the isosurface area and
isosurface area density; § 6 summarizes the conclusions and discusses potential future
research.

2. Computational set-up

For the DNS presented below, a custom version of the code base MIRANDA is used.
The software was developed at Lawrence Livermore National Laboratory (LLNL) and can
perform both DNS and large-eddy simulation (LES) in high energy density applications.
MIRANDA has been validated extensively and used for several other novel research cases
such as the Rayleigh—Taylor, Kelvin—Helmholtz and Richtmeyer—-Meshkov instabilities
(Cook, Cabot & Miller 2004; Olson et al. 2011; Tritschler et al. 2014). The particular
version utilized for this study is part of an ongoing effort to port MIRANDA to
heterogeneous architectures, which contain both traditional central processing units as
well as novel graphics processing units. This section will briefly outline the governing
equations and numerical methods of MIRANDA, but interested readers are encouraged
to consult Cook (2007, 2009) for more details regarding MIRANDA, and Rieben et al.
(2020) for more information regarding the graphics processing unit porting effort.
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2.1. Governing equations

MIRANDA solves the three-dimensional, compressible Navier—Stokes equations

ap  pU;
w —0, 2.1
ot + 0x; @b
apU; 9pU;U; oP 0t
R R it ot N 2.2)
ot 8Xj ox; 8xj
IE  AE+PVU; dtU; g
— = —, 2.3
ot + 0x; ox; + ox; (2.3)

where p is the fluid density, U; is the velocity, P is pressure, 7;; is the ijth component of the
viscous stress tensor, E is the total energy (internal plus kinetic) and g; is the ith component
of the conductive heat flux vector. For a Newtonian fluid, invoking Stokes’ hypothesis, the
viscous stress tensor is given by

ey =2u (85— 2 2%, (2.4)
j= M| o 3ox V) .

where §;; is the Kronecker delta, u is the dynamic viscosity and S;; is the strain-rate tensor
(Kundu & Cohen 2002)

U=%<aa—i]jl+aa—i]l]) (2.5)

The total energy E is given by
E=ple+UU;/2), (2.6)
where e is the internal energy per unit mass, and the heat flux ¢; is given by Fourier’s Law
qi = Kg—;, 2.7)

with « as the thermal conductivity. To close the above equations, the gases are assumed
to be perfect, i.e. the ratio of specific heats y = ¢, /¢, is constant and equal for all species
such that

P=(y —1)pe. (2.8)

Finally, the advection—diffusion equation is solved for a passive scalar @, with molecular
diffusivity D,

dpd  dpdU; 9 [ dpd
LA i (D’O—>. (2.9)

ot ox;  ax \ ox
In subsequent sections, fluid velocities Uy, U,, Uz in the xi1, xp, x3 directions will be
freely interchanged with U, V, W, which represents velocities in the x, y, z directions,

respectively.

2.2. Numerical methods

Spatial derivatives in MIRANDA are estimated by a tenth-order, compact finite difference
scheme (Lele 1992). A five stage, fourth-order, low storage Runge—Kutta scheme is used
for temporal integration of the governing equations (Kennedy, Carpenter & Lewis 2000).
The conserved variables are dealiased each time step with an eighth-order, compact filter
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designed to remove the top 10 % of wavenumbers. An adaptive time step is used to ensure
numerical stability, determined by

~1
At Y i e LU ey B S T 1/2 (2.10)
=min|—+—+—+¢|—+—+— , .
crt Ax Ay Az AT AR T AZ

where ¢; = (yRT)_l/ 2 is the speed of sound in the fluid, and Ax, Ay, Az represents the
grid spacing in the x, y, z directions (see § 2.3). For the simulation results presented here,
the Courant—Friedrichs-Lewy (CFL) number is set to 0.95.

MIRANDA was designed to be used in either a DNS or LES configuration; if no
physical fluid diffusivities, i.e. i, k, D, are defined, then a ‘hyperdiffusivity’ is included
in the relevant equations of motion (Cook 2007). For the results presented here, the
hyperdiffusivity has been disabled for all fluid properties, and constant parameters for
i, k and D have been defined explicitly (see § 2.3).

2.3. Simulation parameters

A turbulent, planar, temporal mixing layer is simulated for this study, which is a useful
tool for analysing turbulence and mixing due to its relative simplicity, while also retaining
many fundamental characteristics of turbulent mixing. As opposed to its spatial equivalent,
the temporal mixing layer evolves in time, in which the mixed region of fluid grows
outward towards the boundaries in a self-similar manner. The computational domain is
a rectangular prism that consists of 4096 x 1536 x 1024 (6.4 x 10”) grid points in the
x, y, z directions, respectively. The lengths of each dimension, Ly, Ly, and L, are 16005,
6005p and 4005, respectively, where &g is the momentum thickness of the mixing layer
(defined in (4.2)) at t = 0. Boundary conditions are periodicity in the streamwise (x)
and spanwise (z) directions, with free-slip conditions at the top (y = Ly/2) and bottom
(y = —Ly/2) boundaries, i.e. Vly=1,/2 = V|y=—,/2 = 0, in addition to 0 gradients in y of
horizontal velocities and the scalar @ at these boundaries. The initial mean streamwise
velocity, (Up)(y) is given by

AU y
U = —tanh| — |, 2.11
(Uo)(y) 5 tan (260) (2.11)
where the upper and lower stream velocities are given by Uy and U_ = —U,, and

the velocity difference AU = U4 — U_. Initial mean velocities in the cross-stream and
spanwise directions are set to zero, where the mean and fluctuating velocities are given by
the Reynolds decomposition (see § 3.1). The initial momentum thickness, &, is 0.01.

Three-dimensional, homogeneous, isotropic velocity fluctuations are imposed on the
initial mean velocity field. The fluctuating velocity field is initialized by randomly
assigning Fourier coefficients based on a model kinetic energy spectrum

Eo(k) = k* exp(—(k — ky)?/k3), (2.12)

where k corresponds to the wavenumber magnitude, and k, and k;, are constants to adjust
the peak and effective width of the energy spectrum in wavenumber space. For this study,
ky, = 4 and k; = 1/8¢. Further details of the velocity initialization procedure can be found
in Mell ef al. (1994). A spatial filter is applied to the resulting velocity fluctuations to
confine the initial turbulent motions to be near the region of shear. The maximum value
of the streamwise fluctuating velocity autocorrelation, (uu), at t = 0 is approximately
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0.025AU?, which is comparable to the magnitude of the velocity fluctuations during
the self-similar evolution of the mixing layer. This relatively strong disturbance is used
to facilitate a shortened transition period to achieve fully developed turbulent flow. The
Reynolds number based on the initial momentum thickness is Reg = pAUSy/ 1 = 120.
Details regarding the turbulent flow field during the shear layer evolution are provided in
§4.2.

The passive scalar field is initialized to coincide with the mean velocity field at t = 0,

Bo)(v) = - + L anh L) (2.13
(0)(y)—2—|—2an (280 , 13)

where the upper stream takes on a value of @ = 1, the lower streamis ® = 0and A® = 1.
No fluctuations were imposed on the mean scalar concentration, rather it was allowed
to evolve with the turbulent flow field. The Schmidt number of the passive scalar, Sc =
i/ pD, is set to a constant value of 0.7 for the simulation.

Although MIRANDA solves the equations of motion for a compressible fluid, the
simulation reported here is carefully designed to simulate an effectively incompressible
flow. Based on the speed of sound in the fluid, the convective Mach number, Ma = AU /c;,
is approximately 0.15. This is well under the accepted threshold of Ma = 0.3, below
which compressible effects on flow dynamics become negligible. To further verify that
the flow is effectively incompressible, the root mean square (r.m.s.) of the velocity
divergence is consistently found to be three orders of magnitude less than the tangential
strain-rate throughout the simulation. This demonstrates that it is safe to neglect the
effects of compressibility on the flow dynamics. In addition, a thermal conductivity must
be specified for the fluid in order to close the governing equations (§ 2.1 above). The
Prandtl number, Pr = ¢,/ is set to a constant value of 0.7 to approximate atmospheric
conditions. Despite the presence of thermal conduction in the governing equations,
temperature deviations throughout the flow are less than 0.2 %, indicating that the flow
is effectively isothermal and incompressible.

3. Mathematical description
3.1. Reynolds averaged equations for a temporal mixing layer

Consider the turbulent flow field in a temporally developing shear layer with velocities
Ukx,y,z,0),V(x,y,z, 1), W(x,y, z, t) and passive scalar @ (x, y, z, t). In this configuration,
the flow is statistically homogeneous in the x, z directions, which implies that for any
quantity Q, 9(Q)/dx = 0(Q)/dz =0, where (Q) is a probability average of Q. From
ergodic theory, the probability averages are estimated by spatial averaging over the two
homogeneous directions, i.e.

| (L2 L2
() (y. 1) = / f O(x, v, 2, 1) dxdz, 3.1)

Lil: J 1,2)-1.)2

and the Reynolds decomposition is used to define the fluctuating quantity ¢(x, y, z, 1) =
O, y,z,t) — (Q)(y, ). With the simplifications provided by incompressible flow and
statistical homogeneity in the streamwise and spanwise directions, the following equations
for the mean momentum, (U), turbulent kinetic energy k = 1 /2(u2 + v? + w?), mean
scalar concentration (@), and mean scalar fluctuation (¢) can be obtained:

a(U) a(uv)

ar By

) (3.2)
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Ik _ _dpvy 00k, 30U (3.3)

ot dy Ay dy ' ‘
HP) () 3.4)
ar dy '

19(p%)  103(vg?) 3(P)

2 o1 ——Ea—y—(v@a—y—x- (3.5)

The dissipation-rate of turbulent kinetic energy is given by &€ = 2v(s;;s;j), where v = /p
is the kinematic viscosity and s; is the strain-rate tensor of the velocity fluctuations.
The scalar dissipation-rate is y = 2D(V¢ - V¢). An important consequence of statistical
homogeneity in the temporal shear layer is that the mean velocity in the cross-stream
direction y is equal to zero. From conservation of mass, using homogeneity in x and z and
incompressibility, then

a(Vv
L =0, (3.6)
dy
which implies that (V) is equal to a constant. Because the cross-stream velocity goes to
zero at the free-slip boundaries, then (V) = 0 everywhere (note that the fluctuations are
not zero, i.e. v #0).

3.2. Isosurface considerations
Consider again the passive scalar field, @(x,y,z, ), described by (2.9) above. An
isosurface of @ is defined as a two-dimensional surface where the scalar field takes on
a constant value, i.e. @ = ®j,. The isosurface is characterized by a surface normal vector

1 0o a7
n=-————, .
! IV®| dx;

where |[V@| = (V@ - V@) 1/2 is the magnitude of the gradient of the scalar field. Due to

molecular diffusion, a passive scalar isosurface will propagate relative to the fluid in its
surface normal direction at a speed given by (Gibson 1968)

D 39 3.8)
Wif = ——— ——. .
TVl a2
The diffusion velocity wyjr, of a passive scalar surface depends only on molecular
diffusivity, but there may be other effects in active surfaces, e.g. chemical reactions in
premixed combustion, that enhances the speed of isosurface propagation.
The surface area corresponding to an isovalue @;y, can be defined as

A,-w:/ ds=/ >'dy, (3.9
12 12

where the first equality represents the surface integral over the level set 92 corresponding
to @ = @, (Storti 2010). In the second equality, the surface area is computed as a volume
integral, where V is an arbitrary volume containing ®;5, and X’ is, by definition, the
isosurface area density, X' = |[V®|§(® — Pj5,) (Pope 1988; Trouvé & Poinsot 1994).
Because the surface area is an extrinsic quantity, it is useful to work instead with the
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mean isosurface area density, X = (X’), which is an intrinsic property given by (Vervisch
et al. 1995)

X =(IVOIS(P — Diso)) = (IVP| | D = Piso) P(Piso)- (3.10)

Here (|V®| | @ = ®;,) is the average of |V@| conditioned on the scalar isovalue @;y,,
and P(P;,,) denotes the probability density function of @ evaluated at @;5,. The numerical
methodology utilized to extract the isosurface area density from the DNS data yields,
in essence, a discrete form of X’; this is discussed in further detail in the Appendix
(Appendix A). In brief, the resulting output is a three-dimensional, time dependent field
that represents X’(x, y, z, f). From statistical homogeneity in the x and z directions, the
mean surface area density X' is a function of y and ¢,

: L2 py+msy (Lj2
Yy, )= ——"— / f X'(x,y,z, t)dxdydz, (3.11)
LyL;(mAy) J 1.2 )y —L.)2

where m is an integer value that denotes the number of grid points included in the average
for the y direction. For m = 1, this average reduces to the two-dimensional average defined
in (3.1). The y profiles of X' were compared for multiple values of m and found to be
insensitive of the value of m as long as mAy is small compared with typical length scales
of the mean flow; for the present study, a value of m = 16 is used.

Although subtle, the distinction between the mean isosurface area density X'(y, 1),
as defined in (3.11), and the volume-averaged isosurface area density, say X (1) =
Aiso/LiLyL,, is crucial. Due to the inhomogeneity of the mixing layer configuration,
2 (y, t) is an intrinsic quantity of the flow, whereas ) depends on the volume chosen
for integration. This is easily demonstrated by considering two domains with equal L, and
L., but one is twice the length, 2L,, in the cross-stream direction. For the temporal mixing
layer presented here, the surface area Az, would not change between the two cases, but
the domain volume L,LyL, would double causing the ‘total’ isosurface area density, x>,
to differ by a factor of two. In contrast, the y-dependent isosurface area density, X' (y, t)
would not differ between the two cases.

4. Baseline mixing layer statistics

In this section several canonical results from the temporal mixing layer simulation are
presented and compared with previously published results; in particular these results come
from the self-similar period of the mixing layer evolution.

4.1. Identification of the self-similar region

A key characteristic of the shear layer is the emergence of a self-similar period of evolution
in which the flow varies continuously in time and space, but does so in such a way that
the characteristic shapes of the flow variables are preserved. For the temporal mixing layer
discussed here, the existence of self-similarity requires that quantities which depend on the
two independent variables (y, f) can be expressed in terms of a single similarity variable.
For the quantity Q(y, t) to be self-similar, there must exist a non-dimensional quantity

0(&), such that
0(y, 1) = Qo(nQ(), (4.1)

where & = y/h(t), and Qp() is a reference quantity used to scale Q. The quantity A(?) is
a measurement of the thickness of the mixed region of fluid, which is known to increase
over time due to turbulent entrainment.
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The momentum thickness, §,,, is most commonly used to describe the width of the
mixing layer, which for constant density flows is

The ‘visual thickness’ & can also be used to denote the width of the mixing layer, which is
defined here as

h =yli=v,—01aU — YU)=U_+0.1AU> (4.3)

i.e. the distance between y values corresponding to the upper and lower 10 % of the mean
velocity profile. This definition is not common in the literature, but it is arguably a better
estimate of the integral scales of the flow (Baltzer & Livescu 2020). As such, the visual
thickness is used herein as the characteristic length scale of the mixing layer width.

Mixing length scales can also be defined for the passive scalar field that are analogous
to the definitions for the velocity field above for both the ‘scalar visual thickness’ hg and
the ‘scalar width’ §4, that is

he = Y(#)=0.9 — Y|(@)=0.1 4.4)
and
50 =/ (@)(1 — (@))dy. (4.5)

An important consequence of self-similarity is that the growth rate of the mixing layer
width must be constant, i.e. di/df = const.. This results in the well-established finding that
the width of the mixing layer increases proportionally with time during the self-similar
period of the temporal mixing layer (Tennekes & Lumley 1972). Because both §,, and h
characterize the width of the mixing layer, the two widths are proportional and increase
linearly in time, e.g. &  8,, ~ t'. In particular, the mixing width % is approximately
4.68 x §,, throughout the self-similar period. Furthermore, from a self-similar analysis of
(3.4), it can be shown that the scalar mixing widths are proportional to the velocity mixing
widths, e.g. h o¢ hg . The mixing widths for both the velocity and scalar fields, normalized
by their initial values, are shown in figure 1 as a function of the non-dimensional
time tAU/hg, where hg is the visual thickness at the initial time. The mixing widths
demonstrate a linear trend early in the development of the mixing layer, indicating
the emergence of the self-similar regime in the flow. Although a consequence of
self-similarity, the linear growth of 4 is not sufficient to identify the self-similar period
(Almagro, Garcia-Villalba & Flores 2017; Baltzer & Livescu 2020). Instead, the beginning
of the self-similar period is identified by the collapse of the fluctuating velocity profiles,
which are more sensitive to the flow conditions (discussed in § 4.2). For the present study,
the self-similar period of the mixing layer was found to begin around tAU/hy =~ 250 as
demarcated in figure 1.

Another consequence of self-similarity is that the dissipation rates of turbulent kinetic
energy, €, and scalar variance, x, attain a constant value when integrated across the shear
layer (see the self-similar forms of € and x given by (3.3) and (3.5) to establish this). The
integrated dissipation rates £ and X are given by

E= / e(y, t)dy, (4.6)
—00

X = / x(y, 1) dy. 4.7
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Figure 1. Evolution of mixing layer widths §,,, 8¢, h, and hg, as defined in (4.2)—(4.5). Widths are normalized

by their respective values at = 0. The mixing layer widths are expected to be proportional and to increase
linearly with time during the self-similar period.
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Figure 2. Time history of the integrated dissipation-rate of (a) turbulent kinetic energy, £, normalized by AU3,
and (b) scalar variance, X', normalized by A®2AU. Dotted lines of constant value are included as reference.

As shown by figure 2(a), £ does in fact reach an approximate steady state after the initial
transient period associated with the transition to turbulence. The value of £ during the
self-similar period is found to be approximately 0.0048, which is consistent with previous
studies that have obtained a value between 0.004 and 0.006 (Rogers & Moser 1994;
Almagro et al. 2017; Baltzer & Livescu 2020). Similarly, X reaches an approximate steady
state after the transition to turbulence, as shown by figure 2(b). The steady state value for
X is approximately 0.012.

From these results, it is expected that the mixing layer will develop in a self-preserving
manner over the range 250 < tAU/hy < 580, wherein the width of the mixed region of
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fluid increases linearly in time and the integrated rate of dissipation across the shear layer
is constant. In the case of the present DNS, the simulation parameters were carefully tuned
to achieve a significant increase in the mixing layer width during the self-similar period.
A large increase in & makes the self-similar scaling patterns more easily distinguishable
from the inherent variation of the flow statistics. For the DNS presented here, the mixing
layer width is found to increase by approximately 86 %, from h/ho = 22 to 41 during the
self-similar period.

Note that this identification of the self-similar region is unique to the simulation
described here; initial conditions have a significant impact on the early growth of unstable
modes in the shear layer, based on the initial spectrum and magnitude of the background
perturbations. As such, it is not expected that the onset of self-similarity will occur at the
same non-dimensional times for two simulations with sufficiently distinct initial conditions
(Rogers & Moser 1994; Baltzer & Livescu 2020).

It should also be noted that self-similar growth will not continue indefinitely in the
simulations since, once the length scales of the flow become large enough, the flow will
interact with the boundaries and break self-similarity. For the results presented here,
self-similarity is found to hold for the entirety of the simulation, except for a small
deviation in the spanwise velocity fluctuations, (w?), near the end of the simulation.
However, the dissipation-rate and streamwise velocity correlations continue to demonstrate
excellent self-similar behaviour up to the end of the simulation at tAU/hg = 580, when
the visual thickness £ is approximately 30 % of the cross-stream domain length L.

4.2. Turbulence characterization

To ensure that all of the relevant length scales in the DNS are properly resolved, the grid
spacing should be, at maximum, 2.1 times the Kolmogorov length scale (Pope 2000),

defined as
1/4

U3
n = (—) . (4.8)
&

The value of ¢ is taken at the centreline of the mixing layer, corresponding to the
peak of the turbulence fluctuations and dissipation rate. The ratio Ax/n throughout the
present simulation is plotted in figure 3(a) as a function of the non-dimensional mixing
layer time (tAU/hy). The peak of the curve, which obtains a value of approximately
Ax/n = 1.9, occurs during the transition of the mixing layer into turbulence, where
the smallest scales in the flow are formed. During the self-similar evolution of the
velocity field (tAU/hy > 250) Ax/n is < 1.3, indicating a well-resolved velocity field
consistent with other simulations reported in the literature (Rogers & Moser 1994; Pantano
& Sarkar 2002; Almagro et al. 2017; Baltzer & Livescu 2020). The Batchelor scale,
ng = nSc~'/2, associated with the dissipation scales for the passive scalar, will be larger
than the Kolmogorov scale n since the Schmidt number is slightly less than unity. This
ensures that the scalar field is always similarly (or more) resolved than the velocity
field.

Turbulent flows are commonly characterized by the transverse Taylor length scale, A,,
defined as, for isotropic turbulence (Pope 2000),

Ay = (15%)1/2 W, (4.9)

where the r.m.s. velocity is given by u' = ((u®> + v + w?)/3)!/2. Although the mixing

layer is obviously not isotropic, A, is commonly used to characterize the turbulence in a
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Figure 3. (a) Grid spacing of the DNS compared with the Kolmogorov scale, 1. (b) Evolution of the ratio of
length scales h/Ag, h/ Ay and h/n. The length scales Ag, Ay and 7 are evaluated at the centreline of the mixing
layer. The ratios 7/, and h/ Ay have been multiplied by a factor of 10 for visual clarity.

mixing layer (Almagro et al. 2017; Baltzer & Livescu 2020). Additionally, a Taylor length
scale associated with the passive scalar field, Ay, can be defined as (Donzis, Sreenivasan
& Yeung 2005)

<6LD> - <f—;, (4.10)

for an isotropic flow. Directional Taylor scales were calculated for the passive scalar, but
were found to be approximately invariant with direction. As such, the definition in (4.10)
will be used to characterize Ay. The Taylor length scales are evaluated at the centreline of
the shear layer corresponding to the maximum values of turbulence and scalar fluctuations
and dissipation rates.

The evolution of the ratios of the mixing layer width to the Kolmogorov and Taylor
length scales are displayed in figure 3(b). The increase in h/Ag, h/Ay and h/n over
the self-similar period indicates an increasing scale separation between the integral and
small scales of the flow. The integral Reynolds number, Re = AUh/v increases from
approximately 12 000 to 22 000 over the self-similar period. The Taylor Reynolds number,
Rey=u Ag/v, also increases due to the growth of A, but to a lesser extent; the value of
Re, increases from approximately 115 to 135 over the self-similar period. Notably, the ratio
Ag /7 is found to increase over the self-similar period, commensurate with the increase in
Taylor Reynolds number.

Because the Schmidt number in the present DNS is a constant value near unity, the
Taylor length scales of the velocity and scalar fields are expected to be proportional
and similar in magnitude during the self-similar period, i.e. 4z o Ay. This is validated
in the present DNS by the fact that the ratio Ay/1y ~ 1.5 throughout the self-similar
period.
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Figure 4. Self-similar profiles of (a)—(c) fluctuating velocities, and (d) Reynolds stress in the present DNS
compared with published data. The solid line represents the time-averaged y profile over the self-similar period.
The grey, shaded region indicates the values contained in &1 standard deviation from the self-similar average.
Symbols represent profiles from previous studies, as follows: Baltzer & Livescu (2020) are circles; Almagro
et al. (2017) are squares; Bell & Mehta (1990) are triangles; Rogers & Moser (1994) are plus signs.

4.3. Self-similar statistics

In the following analysis, the self-similar forms for (U), (u;u;), (uv) and € are assumed to
be

({U)(y. 1) = AUU(), (4.11)
(uiu)(y, 1) = AU?R;;(§), nosumoni, i = 1,2 or3, (4.12)
() (3, 1) = AU*Ruw(8) (4.13)
and
U3
e(.0) = 3B, (4.14)

where & = y/h(t), as defined above.

To verify that the temporal mixing layer is developing as expected, self-similar profiles
of the fluctuating velocities and the Reynolds stress from the present simulation are
compared with several data sets from the literature in figure 4. Normalized, instantaneous
profiles are averaged over a number of points in time in the self-similar period (defined in
§4.1) to create the solid line, with self-similar results from previous studies represented
as symbols. The grey shaded region represents the values contained within +1 standard
deviation of the time averaged profile. Profiles of the mean square fluctuating velocities,
(uju;) are plotted in figure 4(a—c), respectively, with the Reynolds stress, (uv), plotted in
figure 4(d), all as functions of the normalized cross-stream direction, y/h.

The self-similar profiles from the present DNS compare most favourably with the
data from Baltzer & Livescu (2020). There exist notable differences in the self-similar
profiles, particularly between the present DNS data and those from Almagro ef al. (2017).
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Figure 5. Self-similar profiles of (a) the fluctuating scalar concentration, (¢2), normalized by A®? and
(b) the scalar dissipation-rate, x, normalized by /1/(AUA®?2). Dashed lines represent instantaneous y profiles
distributed uniformly throughout the self-similar period, and the solid line represents the time-averaged y profile
over the self-similar period. The grey, shaded region indicates the values contained in %1 standard deviation
from the self-similar average.

Several factors may contribute to the differences observed in the self-similar profiles,
including Reynolds numbers near the mixing transition, the size of the simulation domain
compared with the integral length scales (Baltzer & Livescu 2020), and the initial
conditions used to induce turbulence in the mixing layer, which can result in non-universal
self-similar development (Dimotakis & Brown 1976; Vreman, Geurts & Kuerten 1997;
Redford, Castro & Coleman 2012). Overall, the results of this comparison demonstrate
that the self-similar development in the present simulation is comparable to published
experimental and numerical simulation data.

In addition to the velocity field, the passive scalar field also evolves in a self-similar
manner. The self-similar forms of the scalar field statistics (@), (¢2) and x are assumed
to be

(@)(y, 1) = ADD(§), (4.15)
(@) (y, 1) = AD?P?(8) (4.16)
and
oy = A2AU @17)
x(y, 1) = WX ). .

The self-similar forms of the fluctuating scalar concentration, (¢2), and the scalar
dissipation-rate, y, are plotted in figure 5(a) and 5(b), respectively. Dashed lines represent
normalized, instantaneous profiles of the scalar field statistics at several time points during
the self-similar period. The solid line is the time averaged profile over the self-similar
period. The agreement between the time-averaged profile and the instantaneous profiles
demonstrate that (¢2) and x evolve in a self-similar manner.

5. Scalar isosurface statistics

In the previous section, it was established that both the velocity and scalar fields of
the present temporal mixing layer exhibit a robust period of self-similarity beginning at
tAU/hy =~ 250. This section will explore the statistics of the passive scalar isosurfaces
embedded within the flow. Because the scalar field simulated here is passive and not
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Figure 6. Temporal evolution of isosurface area, A;g,, normalized by initial area, A, for several values of @;,.
Due to the problem symmetry, isosurface evolution is mirrored around ®;5, = 0.5, i.e. Ap,, = A|—g,,. Note
that error bars denoting £1 standard deviation of each data point are subsumed by the line markers.

iso*

coupled, for example, to the flow dynamics nor the fluid chemistry, there is no ‘preferred’
scalar isosurface to analyse; rather than focus on a single isosurface of chemical or
dynamical importance (i.e. the flame surface or T/NT interface), a wide range of
isosurfaces available in the flow will be examined. This is intended to give a somewhat
broad characterization of these isosurface behaviours in this turbulent flow. In total, the
statistics of 21 isosurfaces have been examined, ranging from 0.01 < @;,, < 0.99. For
clarity, the following figures will only contain data from a small but representative subset
of these isosurfaces, @;,, = (0.05, 0.25, 0.5, 0.75, 0.95).

5.1. Isosurface area

The isosurface area, A;s,, computed using the algorithm described in the Appendix (A)
and normalized by the initial isosurface area, Ao = L,L;, is shown in figure 6 as a function
of time for five different values of @®;,,. The isosurface areas can be seen to increase
steeply during the early simulation times, which is consistent with the behaviour of the
scalar dissipation rate (figure 2) during the growth of unstable modes and subsequent
transition to turbulence. In contrast to the scalar dissipation rate, however, the surface
areas do not asymptote to constant values once the flow has transitioned to turbulence; on
average, Az, continues to increase throughout the self-similar period for all isosurfaces
examined. Isosurface area is also shown to depend strongly on the value of @;,, with the
largest values of Ajs, occurring for @;5, = 0.5. This corresponds to the central region of
the mixing layer where the peak values of fluctuating velocities exist (see figure 4). For
isosurfaces towards the outside of the mixing layer, where @;, approaches values of 0 or
1, the surface area was found to be less than half of the surface area at ®@;,, = 0.5.

From the problem configuration, the isosurfaces should exhibit symmetry about @;5, =
0.5, i.e. the isosurfaces of @5, and 1 — @;5, should be equivalent. Comparison between
symmetric isosurfaces can be inferred from figure 6, which demonstrates approximate
agreement between isovalues corresponding to @;,, = 0.95, 0.05 and &;,, = 0.75, 0.25.
Symmetric isosurfaces sufficiently far away from @;,, = 0.5 are largely contained on
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Figure 7. Three-dimensional visualization of the ®;5, = 0.95 isosurface at (a) tAU/hg = 250 and
(b) tAU/hg = 580.

opposing sides of the computational domain, and are therefore interacting with distinct,
quasi-independent regions of the turbulent flow. As such, the differences that do appear
between symmetric isosurface properties give a clear indication of the statistical error in
the simulation.

Some qualitative insight into the temporal development of the isosurface area can be
achieved by visual inspection of the isosurface. In figure 7 is shown the isosurface @;5, =
0.95 at (figure 7a) the beginning and (figure 7b) the end of the self-similar evolution of
the flow. Several observations can be made regarding the development of the isosurface.
First, the surface can be seen to translate in the +y direction, as expected from the linear
increase in the mixing layer width, &, during self-similar development. Second, it can
be observed qualitatively that the characteristic size of features that comprise the interface
have increased during the self-similar period. This is also expected, since the characteristic
scales of the velocity and scalar field are known to increase over time. A final observation,
related to the increase in the characteristic size of surface features, is that the extent of
the isosurface has increased in the y direction. That is, the range of y values over which
the surface is present has increased. This is thought to be due, once again, to the increase
of large-scale motions that are of the order of the mixing width, A. In particular, fluid
motions that are responsible for engulfing ambient fluid and transporting it to the centre of
the mixing layer create large surface features in the cross-stream direction of the order of
the mixing layer width.

The above observations regarding the complexity and multi-faceted nature of the
growth and development of A;, during the self-similar period clearly require additional
investigation to properly understand and characterize the temporal evolution. The aim
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Figure 8. Unscaled cross-stream profiles of X'(y, ¢) throughout the self-similar period of the mixing layer for
(a) @iso = 0.5 and (b) @5, = 0.95.

of subsequent analysis of the isosurface area is to consider both why the surface area
increases, and the rate at which the area increases during the self-similar period of the
mixing layer.

5.2. Isosurface area density

In this section, the evolution of the mean isosurface area density, X'(y, t) (as defined
in (3.11)), is considered during the period of self-similar development. Instantaneous,
cross-stream profiles of X are shown in figure 8 at several times during the self-similar
development for two separate isosurfaces, ®;, = 0.5 (figure 8a) and @j5, = 0.95
(figure 8b). The isosurface area density appears to take a roughly Gaussian shape and,
for @, = 0.5 in figure 8(a), there is a monotonic trend for the peak value to decrease
and the width of the curve to increase. This is true for figure 8(b) as well, with the added
trend of the peak translating in the positive y direction. This translation in the y direction
is expected to occur as the width of the mixing layer increases, and can also be observed
as a slight translation in the +y direction in figure 7.

Analysis of X' is complicated by the fact that the characteristics of X (i.e. the peak
value Xy, the location of the peak y,,y, and the width o) depend not only on time but
also on the value of @;5,. The temporal development of these three characteristics during
the self-similar period are plotted in figure 9 for the same values of @y, as in figure 6.
Recall that the isosurface development should be approximately symmetric around @;5, =
0.5. Differences between isovalue behaviour (in particular, differences between @;5, =
0.95, 0.05 and @;,, = 0.75, 0.25) in the corresponding curves give some indication of the
statistical error of the results.

The peak location of an isosurface y,,y, shown in figure 9(b), is expected to translate
in the &£y directions as the mixing layer widens over time, as observed in figure 8(b).
This translation is a direct consequence of the increase in the mixing layer width. This is
supported by the apparent linear evolution of y,,,,, which is proportional to the increase in
mixing layer width. Notably, the location of y;,, for @;5, = 0.5 remains at the centreline
of the domain during the self-similar period, which is expected from the geometry of the
temporal mixing layer.

The width of the X' profiles, displayed in figure 9(c), is shown to increase during the
self-similar period for all values of @;5, examined in the study. The physical interpretation
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Figure 9. Temporal development of unscaled X'(y, r) characteristics during the self-similar period: (a) peak
value X,,4; (b) location of peak value, y,,4y; (¢) characteristic width, o, for several values of @;s, as in figure 6.
Note that error bars denoting £1 standard deviation of each data point are subsumed by the line markers.

of the width of the profile, o, may be related to integral scale motions in the flow. It is
postulated that the vertical ‘extent’ of the isosurface (as discussed above in § 5.1) increases,
in part, during the engulfment process where unmixed scalar is advected towards the
centreline. This could result in an isosurface feature of the order of the integral scale
(h/2), as a turbulent eddy transports fluid from outside the mixing layer to the centre.
This explanation suggests that the increase in o during the self-similar period might be
proportional to the integral scales /, which is supported by the somewhat linear increase
in o during the self-similar period.

Finally, the peak value, Xy, is shown to decrease in time during the self-similar
period in figure 9(a). This is an interesting finding due to the fact that the integral of
XY (i.e. the surface area) was found to increase over this period. This suggests that X,
is decaying more slowly than o is increasing, resulting in a net increase of A;s,. From a
physical perspective, X,y is expected to be related to the complexity of the isosurface;
larger values of X, correspond to smaller characteristic scales of the interface, resulting
in a more complicated surface with increased area density. There is some evidence that
the length scale defined by X,,,, may be proportional to the wrinkling length in the
Bray—Moss—Libby model for flame surface density (Bray, Libby & Moss 1985; Kulkarni
et al. 2021).
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Figure 10. Self-similar profiles of X', normalized by /ldjl, for (a) @5, = 0.5 and (b) D5, = 0.95. Dashed lines
represent instantaneous y profiles distributed uniformly throughout the self-similar period, and the solid line
represents the time-averaged y profile over the self-similar period, tAU/hg > 250. The grey, shaded region
indicates the values contained within 41 standard deviation from the self-similar average.

It is expected that the temporal development of the X' profiles is determined by the
various flow properties of the mixing layer. Assuming that y,,, and ¢ are both controlled
by the integral scales of the flow, then both the peak location and the width of the curves
should collapse when normalized by the mixing layer width, 4. These empirical findings
suggest that X' develops in a self-similar manner along with the velocity and scalar fields,
such that

Z(y, 0 = S0 E), (5.1)

where £ = y/h is the same similarity variable defined above, and X is the characteristic
length scale associated with the peak value, X,,.. The appropriate length scale which
determines X is not immediately clear. Through extensive empirical testing, consistent
with the theoretical argument given below, it was found that the best self-similar collapse

was achieved when X (f) = /1;1.
Cross-stream profiles of X', normalized by /l(;I, are displayed in figure 10(a) for @;5, =

0.5 and in figure 10(b) for @;,, = 0.95. Dashed lines represent instantaneous profiles
taken throughout the self-similar region, with the solid black line corresponding to a time
average of the instantaneous profiles. These data demonstrate an excellent collapse of
the isosurface area density profiles and indicate that the profiles evolve in a self-similar
manner. It is particularly interesting to note that the scaling applies to all isovalues
examined in this study, regardless of the temporal variation of the peak value yy . As
suggested by figure 10(b), the non-dimensional location of the peak value, y/h, is constant
throughout the self-similar region.

The introduction of the Taylor length scale in the self-similar scaling of X' is anomalous
when compared with typical scaling relations for the velocity and scalar fields (and the
corresponding dissipation rates), which scale with the velocity difference, AU, scalar
difference, A®, and mixing width, 4. To gain a deeper understanding of the relationship
between X' and Ay, a rough, order-of-magnitude scaling argument is developed here that
suggests a direct link between the two.

Consider again the definition of the mean isosurface area density X from (3.10) as
the probability average of |V®|5(® — ®;y,). The following analysis can be simplified
by neglecting the §(® — ®j5,) term, which removes the isosurface dependence from the
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Figure 11. Self-similar profiles of (a) ((V®)%)!/? and (b) ((V®?)!/2), both normalized by /1;1. Solid lines
represent the time average over the entire self-similar period, and dashed lines are the instantaneous profiles at
multiple different times during the self-similar period. The grey, shaded region indicates the values contained
in 1 standard deviation from the self-similar average.

scaling argument. It is clear that the properties of X' depend strongly on @, (see figure 9),
yet the scaling of these parameters appears to be similar over a wide range of isovalues.
This is demonstrated in figure 10 in that, despite X', —0.5 and X, —0.95 taking on distinct
profiles, they are both scaled similarly by Ay and h, suggesting that

Y x ([V®)). (5.2)

This is a relatively common simplification for LES models of premixed flames, and
is referred to as the generalized surface area density (Boger et al. 1998). The explicit
modelling assumption is typically used for ‘thin’ flames, where the isovalue does not
significantly affect the isosurface area. While this is obviously not the case for the
present simulation, it does suggest that there is a common scaling factor between differing
isosurfaces.

Now, it can be shown that the mean of the magnitude of the scalar gradient, (|V@®|), and
the r.m.s. of the scalar gradient, (V@) 1/2 should scale similarly, provided that (V@)?)
follows a log-normal distribution (Wang 2013). This can be demonstrated empirically from
the current DNS data by comparing the self-similar development of these two quantities, as
shown in figure 11. From this figure, it can be observed that both ([V®|) and ((V®)?)!/?
collapse nicely onto self-similar curves when scaled by Ay, which suggests that both
the r.m.s. of the scalar gradient and mean of the magnitude of the scalar gradient scale
similarly in the present flow.

The r.m.s. of the scalar gradient is closely related to the scalar dissipation-rate, y,

suggesting that

X >1/2
= > 53
D (5.3)
and from the definition of the Taylor length scale of the scalar field in (4.10), this implies
that

=~ (vl ~ |

£ >1/2 9 (5.4)

T ~(2 ,
!l T,

where ¢’ = (¢2)'/2 is the r.m.s. of the fluctuating scalar field. For the mixing layer
configuration, ¢’ takes on a self-similar form, and is relatively constant over the width
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of the shear layer (see figure 5a). Based on these observations, it can be argued that the
mean isosurface area density of a passive scalar field in a turbulent mixing layer should
scale with the inverse of the scalar Taylor scale,

>~ Aq;l. (5.5)

Despite the roughness of the scaling argument, when combined with the above data
establishing self-similarity of X, these results suggest that A4 should be used to scale
isosurface area density in the turbulent shear layer.

This finding is contrary to some established viewpoints in the literature. For example,
in the review article ‘“Turbulent Mixing’ by Dimotakis (2005, p. 340), it is stated that
the isosurface area density should scale as X ~ n~!, presumably because the isosurface
area is expected to be characterized by the smallest length scale present in a turbulent
flow. This assertion could be justified based on previous studies on the fractal nature of
turbulent isosurfaces by Sreenivasan, Ramshankar & Meneveau (1989), which found that
the smallest scale associated with an isosurface is proportional to the Kolmogorov scale,

n. Clearly, the present assertion that X' ~ /1;1 disagrees with these studies. While there is
not enough scale separation in the present study between Ay and 7 to conclusively rule out
a dependence on 1, the combination of empirical and theoretical evidence presented above
suggests that the previous conclusions by Dimotakis (2005) and Sreenivasan et al. (1989)
may require further refinement. Furthermore, the results presented herein are qualitatively
consistent with recent results from Driscoll er al. (2020) and Kulkarni er al. (2021),
wherein the Taylor length scale was found to be an important indicator of isosurface area
density.

5.3. Implications of self-similarity and the Taylor scale

Although a thorough knowledge of X'(y, f) is necessary to understand the fundamental
behaviour of an isosurface in a turbulent flow, the desired output in many engineering
applications is the surface area A(¢). Based on (5.5) and using the self-similarity of X, the
scaling argument discussed in § 5.2 can be extended to include the normalized isosurface
area.

Consider that the normalized isosurface area is equivalent to the integral of the mean
isosurface area density in the cross-stream direction (see (3.9) and (3.11)),

. L,/2
AlSO / Y
= | 2dv = S(y, 1) dy, (5.6)
Ao v —L,/2

where Ag = L,L, is the initial area of a planar isosurface. Substituting the self-similar form
of X, defined in (5.1), into the above equation and changing variables of the integral yields

A L2 R norL/2h
_ / S0 ) dy oc - / £() de. 5.7)
Ao —Ly/2 Ag J-r,/2n

Because the shape of 2 (&) does not vary, the integral over £ results in a constant value.

Hence, if the self-similar scaling proposed in (5.5) holds, the normalized surface area is
expected to scale as

Ajso ~ i

Ag Ay

The scaling suggested by (5.8) can be directly tested using simulation data by scaling

A /Ao with A4 /h. If the scaling is correct, the resulting curve should tend towards a constant
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Figure 12. Temporal evolution of normalized isosurface area, A;s, /Ao, scaled with the ratio of the Taylor
to integral scales, Ay /h, for several values of ®;y, as in figure 6. Note that error bars denoting £1 standard
deviation of each data point are subsumed by the line markers.

value in the self-similar region. In figure 12 is plotted the scaled area ratio, A/Ao(4g/h), for
the same values of @;q, as in figure 6. During the self-similar period, the scaled area ratio
appears to asymptote towards a constant value, although the curves continue to decline
slightly. The difference in the scaled area ratio between the beginning and end of the
self-similar period is found to be < 10 % for isosurfaces in the range 0.2 < ®;5, < 0.8. In
contrast, when scaled by the Kolmogorov scale, the scaled area ratios A/Ao(n/h) (for the
same values of @;5,) decreases > 20 % over the same time period. Overall, this suggests
that for the DNS presented here, A4 /A is the most appropriate scaling factor for the area
ratio A/Ayp.

The variations observed in the scaled area ratio (e.g. the downturn in the area for ®@;5, =
0.5) may be due to a lack of statistical convergence of large-scale flow features at late times
in the DNS, as the sample size of eddies on the integral scale naturally decrease during
the flow field evolution. The decrease in the scaled area ratio could also be due to finite
Reynolds number effects, considering the moderate Re, in the present DNS. Finally, any
deviations from self-similar behaviour would affect the observed scaling.

An additional implication of the self-similar scaling of X' is found by invoking scaling
laws regarding the ratios of length scales in a turbulent flow. In particular, by combining
scaling laws for A/h and Ay /A from Tennekes & Lumley (1972), it can be argued that

A; h
B0~ — ~ (ReSo)'/?, (5.9)
A() /lq)

where Re = AUh/v and Sc = v/D. This result may be of more general interest, since
the proper scaling of the isosurface area in more general turbulent flows remains
an open question. Recently, Kulkarni et al. (2021) studied the development of X' in
spherically expanding flames and found that X'¢ ~ Re/ll'n, where ¢ is an integral scale
of the flow. Despite significant differences between this study and the present DNS
(such as variable density and chemical heat release), the proposed scaling for X' is
comparable (recalling that Re, ~ Re'/? as Re — 00). Another recent study by Gauding
et al. (2022) examined isoscalar sets in both forced and decaying homogeneous isotropic
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turbulence, and recovered the scaling LY ~ Re,, where L is the integral scale and A is
the Taylor length scale, which is consistent with the results presented here. In contrast,
results from Shete & de Bruyn Kops (2020) of a passive scalar in forced, stationary,
homogeneous, isotropic turbulence at very high Reynolds numbers (Re, =~ 400) suggested

that A/A¢ scaled with the Taylor Reynolds number, Rei/ 2, rather than the integral Reynolds
number. According to the study by Gauding et al. (2022), this discrepancy could be
related to differences in the fractal dimension of the isosurfaces computed by the two
studies.

5.4. Parameterization of isosurface area density

Although the normalized profiles of the mean isosurface area density, (), have been
shown to be approximately constant throughout the self-similar period, the characteristics
of the profiles exhibit a strong dependence on the isovalue @;y,. In particular, the peak

value, f}max, peak location, &,,,,, and width, &, are found to be functions of ®;s,. The
value of these characteristics are plotted in figure 13 for a total of 21 isosurfaces in the
range 0.01 < @;,, < 0.99. Note that, due to problem symmetry, values corresponding
to isosurfaces @;;, < 0.5 have been reflected across ®;,, = 0.5. Because symmetric
isosurfaces are interacting with different regions of the flow, this gives an estimate of
the error in the measurement.

A simple algebraic model can be constructed for these characteristic features. The peak
location, &,,,y, is well-approximated by a linear curve across almost all values of @,
while ﬁ‘max and & appear to have a quadratic dependence on @y, centred around @;5, =
0.5. The variation of each of the three terms are estimated with the following equations,
which are determined using a least-squares polynomial fit:

Somax = —1.0502 4 1.05;5, + 0.20, (5.10)
Emar = 1.20®;5, — 0.60, (5.11)
& = —0.4007, + 0.40®;,, + 0.16. (5.12)

From inspection, it seems reasonable to assume that the profiles of X&) are
approximately Gaussian. Under this assumption, X takes the following form:

_ (s - Smax)2>

2 (5.13)

ZA‘(§7 Diso) = ZA‘max exp (
where Z:‘max, &max and 6 depend on the particular value of ®@q,,.

Using these modelled parameters, a family of curves for X (&) were constructed for a
range of isovalues and plotted in figure 14, along with the measured profiles calculated
from the DNS data. For clarity, only five profiles of > are displayed, although the model
given by (5.13) gives similar agreement for any isosurface chosen.

There is clear agreement between the modelled and measured profiles of >, suggesting
that the Gaussian profile is a good approximation for the self-similar form of the mean
isosurface area density. Isosurfaces near the boundaries (®;, — 0, 1) exhibit some
skewness that is not accounted for by the modelled parameters. Interestingly, the profiles
are skewed towards the centre of the shear layer. This is probably due to the fact that the
majority of surface area is produced in the middle of the shear layer (where the turbulent
fluctuations are greatest), which causes the peaks to skew in that direction.
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Figure 13. Relevant features of the self-similar profiles of ) , as a function of @jy,: (a) peak value ffmax;
(b) offset location &,4y; (¢) characteristic width 6. Circles represent data collected from the DNS during the
self-similar region of flow, and dashed lines are best-fit approximations using the polyfit routine in NumPy.
From symmetry, statistics corresponding to @5, < 0.5 have been reflected across @5, = 0.5 and plotted as
open circles. The solid line in (b) is the self-similar profile of the mean scalar, (@), as a function of the
similarity coordinate .

It is not immediately obvious why the peak location, &y, varies linearly across the
range of @;,,. It might be expected for &,,,, to follow the mean scalar profile, that is, for
the value of &, for @ = &, to correspond to the value of & associated with (@) =
®;s,. Indeed, this assumption is approximately correct for the range of isovalues 0.2 <
D5, < 0.8, as shown in figure 13(b). The solid line represents the mean scalar profile
and is shown to agree with &,,,, in the interior portion of the mixing layer. However, the
values of &,,, deviate from the profile of (@) near the outer boundaries. This deviation
may be explained by the reasoning given above for the slight skewness observed in the
Gaussian profiles of 3 for Djs0 = 0.05 and 0.95, which is that the production of isosurface
area is greatest in the centre of the shear layer and could cause the peak location to skew

towards y = 0. This may also help to explain the quadratic dependence of Zmax and &,
which peak at the centreline of the mixing layer where the strongest turbulent fluctuations
occur.
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Figure 14. Profiles of X from the DNS (solid lines) compared with the Gaussian model given by (5.13)
(dashed lines) for @;5, = 0.05, 0.25, 0.5, 0.75 and 0.95 (from left to right).

6. Conclusions and future work

Data from DNSs of a temporally developing mixing layer were shown to exhibit a
robust period of self-similar behaviour for both the velocity and scalar fields that is
consistent with analytical results and with data from previous simulations (Bell & Mehta
1990; Rogers & Moser 1994; Almagro et al. 2017; Baltzer & Livescu 2020). A novel
methodology described in the Appendix (A) was used to compute the isosurface area,
Aiso, and isosurface area density, X'(y, t), in a manner that is consistent with formal
definitions in the literature (Pope 1988; Vervisch et al. 1995). The temporal development
of Ajs, and X were examined in detail in § 5, and it was demonstrated that X~ develops in a
self-similar manner, corresponding to the self-similar evolution of the velocity and scalar
fields. For a given @;,,, cross-stream profiles of X collapse onto a single curve when
normalized by the Taylor length scale, A4, and plotted against the normalized coordinate
y/h. This finding suggests that the isosurface area could be scaled in a similar fashion,
and it was found that, for the mixing layer, the normalized isosurface area is expected to
scale as Ajso/Ag ~ (Re Sc)l/ 2, Finally, a simple mathematical model of the self-similar
isosurface area density, >, was developed for the range of isovalues studied here. Also,

¥ demonstrated good agreement with a Gaussian profile, although some skewness is
observed towards the outer boundaries of the mixing layer, which is thought to be caused
by reduced levels of turbulence intensity away from the centreline.

The proper scaling in turbulent flows for the isosurface area and area density is an
open question in the literature. The above results from both the DNS data and a scaling
argument suggest that A4 is an important factor in determining isosurface area density,
and that the ratio, /44, is what determines the isosurface area. The scaling argument
could be improved significantly, particularly by understanding how the conditioning of the
averaging on the isosurface affects the self-similar scaling of X'. Furthermore, due to a
lack of scale separation (i.e. finite Re,), it is difficult to conclusively rule out 1 as a scaling
factor for X'. Despite these concerns, the present results are consistent with recent studies
by Driscoll et al. (2020) and Kulkarni e al. (2021), where the Taylor length scale was
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found to be an important quantity in determining flame surface areas. In addition, a study
by Gauding et al. (2022) also suggests that the surface area density scales with A.

The presence of self-similarity in the velocity field of a temporal mixing layer is a
well-established concept, but there have been no studies, to the authors’ knowledge,
that have analysed the self-similarity of the isosurface area density. In fact, few studies
in the literature have considered the isosurface area density as a function of position
for inhomogeneous flows. The further use of the novel approach to understanding
isosurface behaviour in complex flows developed in this paper is expected to improve
our understanding of a broad class of mixing problems that can be described in terms of
isosurfaces. For example, application of this methodology to the turbulent/non-turbulent
interface and to flame surfaces could yield beneficial results.

Furthermore, the isosurface integration technique discussed in the Appendix (A) is
useful not only for calculating isosurface area, but can be utilized to calculate the surface
integral of any desired quantity. Consider the transport equation for isosurface area density
(Trouvé & Poinsot 1994; van Kalmthout & Veynante 1998), stated here as

0 0 oU; 0 on;
ETHe _8_xi(<Ui)s2) - (”inja_le)sz - a_xi(<Wdifni>s2) + <Wdif8—x:>s2, (6.1)

where the terms on the right-hand side correspond to advection, production, viscous
diffusion, and destruction of surface area density, respectively. The average conditioned
on the isosurface, (), requires the evaluation of a surface integral of the argument over the
isosurface (Pope 1988), which has been shown to be possible using a simple, volumetric
calculation without the need for surface interpolation or triangulation (Blakeley, Wang &
Riley 2019). A detailed study of the terms in the isosurface transport equation based on
the present mixing layer results is currently in preparation.

Finally, it will be interesting to extend this approach to more complicated flow
geometries. For example, studying a temporally developing jet, although similar to the
temporal mixing layer, features additional complications regarding the isosurface area that
will need to be addressed. One example is that, contrary to the mixing layer, as the jet
develops in time, the fluid in the centre of the jet is mixed into the ambient flow and
isosurfaces present at + = 0 may not persist indefinitely. This creates an additional factor
to include when considering the temporal development of isosurface area density.
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Appendix A. Computing isosurface integrals

Computing the area of an implicitly defined isosurface is a challenging problem that
has been addressed by numerous researchers over many years. The most common
methodology for estimating isosurface area is to apply algorithms, e.g. marching cubes
(Lorensen & Cline 1987), which identify the location of the surface and then use patches
(commonly triangular) to recreate the surface. While generally effective, these methods are
not guaranteed to converge to the true area (Zames 1977; Kenmochi & Klette 2000), and
can be computationally burdensome (Newman & Yi 2006). Another method of computing
isosurface area is a stochastic Monte Carlo method using surface crossing, as demonstrated
by Liu et al. (2010) and Shete & de Bruyn Kops (2020). While these methods are able to
achieve extremely accurate answers, they are often slow to converge and require extensive
computing resources.

An alternative algorithm for computing isosurface area of implicitly defined surfaces on
a discretized domain was proposed by Storti (2010) and detailed by Yurtoglu er al. (2018),
which is utilized to compute isosurface areas in this study. In brief, the algorithm computes
surface integrals as a sum of contributions from a stencil computation applied to the
discrete data set without requiring interpolation to, or reconstruction of, the surface. This
method can also be shown to converge to the true surface area based on a wavelet analysis,
provided the implicit surface is continuous (Resnikoff & Raymond 1998). Not only does
this provide an accurate estimation of the surface area, the derivatives can be calculated
efficiently on highly parallel systems using standard finite-difference techniques. A
brief discussion will be included here; for further details regarding implementation and
convergence, readers are encouraged to consult Yurtoglu et al. (2018).

To compute the area of an implicit isosurface, the occupancy function, X, is defined as

1» (p_(pisofo

. Al
0, b — <piso >0 ( )

X(®) = {

From the divergence theorem and properties of the surface normal vector defined in (3.7),
the surface integral of the quantity Q over the boundary 92 defined by @ = ®;, can be
converted to an integral over the volume contained in bounding box V (Storti 2010),

0 X0

Qds = —/ = 277 4, (A2)
092 v V@] dx; 0x;

where ds and dv are surface and volume elements, respectively. Note that for Q = 1, this
quantity reduces to the isosurface area A;s,, but any fluid quantity Q can be integrated over
the surface using the above expression. Discretizing (A2) yields the following expression
for Ajso:

A. _ Z VXl,j,k . V®l,],k
iso — T
ik 1/V‘p,"]"]c . V¢i,j,k

where i, j, k represent indices of the discretized domain and the gradients are evaluated
numerically using Daubechies wavelet connection coefficients at each grid point (which
coincide with second- and fourth-order, central finite difference coefficients for genus 1
and 2 wavelets). Because the area computations require only stencil computations, the
calculations are highly parallelizable and efficient for large, distributed domains.

Another reason to employ this particular algorithm is due to its similarity to the
definition of isosurface area density. For an arbitrary bounding volume ) and letting
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QO = 1, the integrands of (3.9) and (A2) can be equated, such that

IVO|5(D — Djy) = I oxoo (Ad)
BT V| ax; ox;

The relationship between the definitions becomes apparent by noting that the characteristic
occupancy function, X, can be rewritten in terms of the Heaviside function, H, such that
X(®) = H[—(® — Pjy,)]. Using the chain rule and the properties of the delta function
(Pope 2000), it can be shown that

@) Lt - )2 = —5(0 — i) 22 (AS)
ax =590 iso ax; = iso 8)6,-‘

Substituting this result for X /0dx; into (A4) above, it can be established that the algorithm
from Storti (2010) and Yurtoglu et al. (2018) is consistent with the formal definition of
isosurface area density as discussed by Pope (1991), Trouvé & Poinsot (1994) and Vervisch
et al. (1995).
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