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Abstract. Observations of massive, extended discs around both pre-main-sequence and 
main-sequence stellar systems indicate that protoplanetary discs larger than the observed 
planetary system are a common phenomenon, while the existence of large comets suggests 
that the total cometary mass is much greater than previous estimates. Both observations 
suggest that theories of the origin of the solar system are best approached from the 
perspective provided by theories of star formation, in particular that the protoplanetary 
disc may have extended up to ~ 1 0 3 AU. A model with a surface density distribution 
similar to a minimum-mass solar nebula, but extending further in radius, is derived by 
considering the gravitational collapse of a'uniform, slowly rotating molecular cloud. The 
boundary of the planetary system is determined not by lack of mass, as in previous 
'mass-limited' models (i.e. those with a sharp decrease in surface density Σ beyond the 
radius of the observed planetary system), but instead by the increasing collision time 
between the comets or planetesimals initially formed by gravitational instability beyond 
the planetary zone. Bodies formed beyond ~50 AU have sizes on the order of 10 km 
and represent a collisionally unevolved population; they are composed of relatively small, 
unaltered clumps of interstellar dust and ices with individual sizes estimated to range up 
to ~10m. By contrast, bodies formed closer in, for example in the Uranus-Neptune zone, 
consist of larger agglomerations of dust and ices with individual sizes ranging up to ~1 km. 
Planetesimals formed by gravitational instability at smaller heliocentric distances r are 
typically much smaller than those formed furth*er out, the masses mp being proportional 
to Σ 3 Γ 6 , but subsequent collisional aggregation in the planetary region is expected to 
produce bodies with sizes ranging up to 10 2 km or more. In both cases the first-formed 
solid objects may be identified with observed cometary nuclei; some accumulate to produce 
the outer planets, but the majority are ejected, either to interstellar space or into the Oort 
cloud. Observed comets represent a dynamically well-mixed group from various sources; 
they are expected to comprise a heterogeneous mix of both pristine and relatively altered 
material and to have a broad mass distribution ranging up to the size of the largest 
planetesimals. 

1. Introduction 

Comets and planetesimals play a key role in discussions of the origin of the so-
lar system. They have sizes typically in the range 1-100 km, intermediate between 
interstellar grains and planets, and provide crucial clues to the evolution of inter-
stellar dust and the processes leading to the formation of the sun and planetary 
system. Theories of the origin of the latter span a very wide range, manifested 
at one extreme by the standard planetesimal hypothesis, in which a ready-formed 
sun is assumed to be surrounded by a dense gas-and-dust disc with surface density 
proportional to r~ 3 / 2 or r~ 2 and normalized to reproduce the observed planetary 
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masses corrected to solar abundances. Such a model is here defined to be 'mass-
limited' if it has an outer radius comparable to the size of the observed planetary 
system. Depending on the surface density within the planetary system such a model 
may or may not also be a 'minimum-mass' nebula. A mass-limited minimum-mass 
model of the protoplanetary disc typically has a total nebular mass ^Ο.ΟδΜ©. 

At the other extreme are theories which approach the problem of solar system 
formation from the perspective provided by star formation, and which begin either 
with a collapsing protostellar or molecular cloud, or with accretion of gas and 
dust on to a pre-main-sequence star from an extended protoplanetary disc. These 
theories discuss both star and planet formation and usually consider a much greater 
mass of circumstellar material, ejecting most of it to interstellar space. However, 
although the initial conditions for such a scenario are generally more easily denned, 
for example from observations of molecular clouds or star-forming regions, it is 
unclear precisely which initial conditions are most likely to lead to the formation 
of a single solar-mass star surrounded by the observed nine planets. The existence 
of comets introduces further complications (e.g. Bailey et al. 1990), the major 
uncertainty of principle being the theoretical possibility that comets may only 
recently have been captured into the solar system (within the past ~ 10 6 -10 8 yr) , 
having originally been formed in molecular clouds or star-forming regions (e.g. 
Napier 1990) and captured as a result of gravitational or other perturbations. 

These different ideas for the origin of the solar system and for the significance or 
otherwise of comets in the overall cosmogonical picture each have various points in 
their favour. The main problem, in view of the wide range of possibilities (e.g. Wil-
hams 1974; Woolfson 1993), is to identify the particular grains of truth contained 
in each theory and to strike an appropriate balance between them. Comets play a 
key role in these discussions, with the most detailed theoretical studies being de-
voted to the standard planetesimal picture. This hypothesis has been particularly 
successful in unifying concepts relating to planet, planetesimal and comet forma-
tion and formation of the Oort cloud, but it faces potentially severe difficulties in 
resolving questions such as the timescale for formation of the planets (particularly 
Uranus and Neptune) and the total mass of comets in the Oort cloud. These pro-
blems suggest that the standard model should be revised to include aspects of the 
star-formation approach, although it is possible that the outcome of such a course 
might then be to lose some of the advantages of the former approach by decoupling 
theories of comet formation from those of the origin of planets (e.g. Hills 1982) 
and leaving open the question whether recently discovered bodies orbiting beyond 
Neptune, the so-called Kuiper-belt candidates, are best thought of as giant comets, 
primordial planetesimals, or merely as stray asteroids ejected from the inner solar 
throughout its 4 billion year lifetime. 

This review primarily focusses on the standard planetesimal theory for the for-
mation of comets in the protoplanetary disc, but argues for an approach placing it 
firmly in the context of star-formation theories for the origin of the solar system 
and the interstellar-dust model for the origin of comets. So far as the standard mo-
del is concerned, the principal difference is that the revised model accommodates 
a much larger, more massive protoplanetary disc, with an outer radius Rd on the 
order of 10 3 AU and a total mass of solids in the range 1 0 2 - 1 0 3 M $ . Such a disc is 
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not mass-limited, in the sense of having a sharp cut-off in surface density beyond 
the observed planetary system, but the surface density within the planetary region 
is nevertheless close (i.e. within a factor of a few) to that of previously considered 
minimum-mass nebulae. 

Evidence for the existence of extended discs is provided by observations of pre-
main-sequence stars (e.g. Sargent 1989; Strom et al. 1989a,b; 1993; Weintraub et 
al. 1989; Beckwith et al. 1990; Beckwith and Sargent 1993; Montmerle et al. 1993; 
cf. Pringle 1989) and main-sequence stars such as Beta Pictoris and Vega (e.g. Au-
mann et al. 1984; Aumann 1985; Telesco et al. 1988; Artymowicz et al. 1989; Piirola 
et ai. 1992; Bachman and Paresce 1993; Sicardy 1994). These data strongly suggest 
that the boundary of the solar system is not determined solely by a rapid decrease 
in surface density of the primordial disc near the edge of the observed planetary 
system; rather, the reason there are no major planets beyond Neptune is princi-
pally a result of accretion dynamics. In particular, the observed boundary may be 
understood as a consequence of the rapid increase in the collision time of the first 
solid bodies to be formed by gravitational instability on the outskirts of the pro-
toplanetary disc : the edge of the planetary system occurs where the planetesimal 
collision timescale first exceeds ~ 1 0 8 - 1 0 9 yr. In addition to providing a theoreti-
cally attractive explanation for why the edge of the planetary system lies where 
it is, such a model has the significant advantage of accommodating a large initial 
mass of planetesimals at great heliocentric distances. Comets formed throughout 
the protoplanetary disc may be ejected by gravitational or other perturbations to 
produce both the Oort cloud and the massive inner core necessary to replenish the 
dynamically unstable outer layers of the system. Here we briefly review the compo-
nents of such a theory of comet formation : the origin of a massive, extended disc; 
interstellar dust evolution and grain growth; and the argument based on cometary 
masses that the Oort cloud cannot have originated from planetesimals produced in 
a conventional mass-limited minimum-mass model of the protoplanetary disc. 

2 . Massive disc 

There have been many recent reviews of the planetesimal theory, including planet 
formation in both the inner and outer solar system (up to the distance of Neptune) 
and comet formation in the outer planetary region extending roughly from Jupiter 
through Neptune (e.g. Safronov 1969; Öpik 1973; Horedt 1979; Wetherill 1980, 
1989, 1990; Safronov and Ruzmaikina 1985; Greenberg 1989; Weidenschilling et 
al. 1989; Bailey et al. 1990; Weidenschilling and Cuzzi 1993; Lissauer and Stewart 
1993; Lissauer 1993). According to this picture, the observed planetary masses 
when corrected to solar abundances and distributed over rings of appropriate width 
and heliocentric distance r imply an initial disc surface density Σ ( Γ ) 25 where 
estimates of α lie in the range 1.5-2 (e.g. Weidenschilling 1977; Nakano 1987; 
Tremaine 1990) and the outer radius is on the order of 50 AU. 

However, observations of pre-main-sequence stars demonstrate the existence of 
more massive protoplanetary discs than those usually envisaged in the planetesimal 
hypothesis, showing that such structures are a common feature of young stellar 
systems. Here we argue that a disc with a similar density profile to that of the 
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standard model, but extending much further in radius, could naturally arise as 
a consequence of the gravitational collapse of a protostellar cloud. This supports 
an approach from the direction of star formation whilst retaining the principal 
advantages of the planetesimal picture (cf. Cameron 1962, 1978, 1985; Cameron 
and Pine 1973; Biermann and Michel 1978; Lin and Papaloizou 1985). 

Consider a cold, slowly rotating molecular cloud with outer radius Rc in the 
range 0.1-1 pc, temperature Τ ~ 10 Κ and total mass Mc in the range 1-2 M©. 
Following Mestel (1963) and Mestel and Ray (1985), disc formation may be assumed 
to occur in two phases : formation of a 'projected disc' with radius Ro similar to 
that Rc of the initial molecular cloud through gravitational collapse parallel to 
the rotation axis, followed by gradual contraction of the projected disc towards 
centrifugal equilibrium by a process that conserves both the mass and angular 
momentum of separate fluid elements within the projected disc. The original cloud 
is assumed to be threaded by a weak interstellar magnetic field, and to be uniformly 
rotating with a net rotational velocity vTOt(zu) = β(τν / Rc)vc[rc(Rc), where t> c i rc ( r ) 

denotes the circular velocity at radius r from the cloud centre and w is the axial 
distance in the equatorial plane. 

This leads to formation of a quasi-static disc, supported in the radial direction 
by magnetic stresses and in the direction perpendicular to the plane by thermal 
motions and possibly turbulence driven by residual infall of gas. Decay of the ma-
gnetic field by ambipolar diffusion (Mestel and Spitzer 1956; McKee et ai. 1993) or 
magnetic reconnection results in slow contraction of the disc, culminating in a rota-
tionally supported Keplerian configuration with radius Rd < Ä o . Ignoring possible 
non-homologous collapse of the cloud core, expected to lead to the formation of a 
central star surrounded by a relatively small central accretion disc, and assuming 
that the original molecular cloud is uniform or has only a weak degree of central 
concentration (e.g. pc ~ constant or pc oc r - 1 ) , results in a Keplerian disc with 
surface density approximately proportional to r~ a , with a ~ 3/2. 

For example, if the cloud is uniform the projected disc has a surface density 
E p r o j ( t J 7 ) = 3M C (1 — x2)1/2/AnR2, where χ — zv/Rc, and conservation of mass du-
ring evolution from an initial radius zu to a final radius r leads to a surface density 
E(r) given by E(r) = (zu/fr)(dzu/raV)Eproj(zz7) The relation between r and zu eviden-
tly depends on the distribution of angular momentum in the projected disc, which 
in turn depends on that in the cloud. If the original cloud is uniformly rotating, 
for example V r o t ( ^ ) = ßzu(GMcjR?c)

ll2, then detailed conservation of angular mo-
mentum implies rvc[rc(r) = zuvTOt(zu), and hence (zu/r)(dzu/dr) = R^2r~3/2 /4ß. 
The final Keplerian disc thus has E(r) close to the standard form, i.e. 

S(r)=I f i? /V 3 / 2 E p t o j Hr)) (1) 

where E p r o j is a weak function of radius, r = ß2zu4/R3

c and Rd = ß2Rc-
This argument suggests that extended circumstellar discs will have surface den-

sities that are generally close to the standard form E(r) oc r~ 3 / 2 , although their 
radial extent will be primarily determined by the size and degree of rotation of the 
primordial molecular cloud. For values of β in the approximate range 0.1-0.5, the 
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outer radius Rd = ß2Rc is much larger than the ~ 5 0 A U size of the observed pla-

netary system. Normalizing the surface density to 500-1000 kg m - 2 at ro = 10 AU, 

inferred from the observed planetary mass distribution, thus indicates a total disc 

mass between 10 AU and 1000 AU in the respective ranges 0.064-0.12 M® or 0.016-

0.032 M © , for values of a = 3/2 or 2. If the effective surface density of solids (i.e. 

rock + ice) is close to 2% of the total mass density, i.e. E e ( r ) ~ 0.02Σ, the total 

mass of solids ~ 100-800 Λ/φ, depending on the assumed surface density normali-

zation and power-law index a. An extended protoplanetary disc with radial extent 

Rd ^ 10 3 AU could easily contain several 100 Μφ of dust and ice, not only repre-

senting a reservoir from which to make comets but also the dominant sink of heavy 

elements (apart from the sun) in the solar system. 

3. Interstellar dust 

3. 1. ORIGIN AND PRESTELLAR EVOLUTION 

Following the initial condensation of solid material in gaseous outflows associa-

ted with late stages of stellar evolution (red giants, novae, supernovae; e.g. Bode 

1988; Gehrz 1989; Tielens 1991), newly formed grains spend typically 1 0 7 - 1 0 9 y r 

in the interstellar medium before finally being incorporated into bodies the size 

of planetesimals, comets or asteroids. During this phase of prestellar evolution an 

individual interstellar dust grain will probably undergo many transitions between 

different components of the interstellar medium, for example from the diffuse high-

temperature phase to the warm neutral phase; into a cool HI cloud or molecular 

cloud, and back again. During these excursions the grain may grow by accretion 

of volatiles or by inelastic grain-grain collisions, and fragments may be lost as a 

result of disruptive collisions in shocks, through sputtering, or simply by thermal 

evaporation in a locally more intense radiation field (Seab and Shull 1986; Seab 

1988; Jenkins 1989; Tielens 1989; McKee 1989). 

The resulting interstellar grain aggregates, modified by thermal and radiative 

processing, have a complex structure and abundances and chemistry which reflect 

the history of each grain (e.g. Greenberg 1988, 1989; Greenberg and Hage 1990; 

Clayton and Liffman 1988; Clayton et ai. 1989; Liffman 1990). A few aggregates are 

bound to be larger than the average, and in general a percentage of interstellar par-

ticles will be much larger than the ~0.25 μπι upper limit imposed by the canonical 

Mathis et ai. (1977) law based on observations of interstellar extinction (cf. Bai-

ley 1987a,b, 1988, 1991a). Several lines of argument demonstrate the existence of 

exceptionally large grains (~1-100 μτη) in or around dense interstellar clouds (e.g. 

Lefèvre 1974; Jura 1980; Elmegreen 1981; Mathis and Wallenhorst 1981; Elsässer 

et ai. 1982; Bhatt 1986), while it is also important to emphasize that observations 

of interstellar dust near Jupiter (Grün et ai. 1993) and of apparently hyperbolic 

meteors on Earth (Baggaley et ai. 1993; Taylor et al. 1994; cf. Brophy 1991; Fogg 

1990; Napier 1990) also support the notion that interstellar dust includes a signi-

ficant proportion of relatively large grains. Although hyperbolic meteoroids could 

be produced locally by sputtering or by erosion from the surfaces of much larger 

interstellar particles (e.g. comets), it seems reasonable to assume that whatever 
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their immediate provenance such particles were originally produced by accretion as 
a result of grain-grain collisions in dense regions of the interstellar medium. They 
probably have a fluffy 'fractal' structure, in accordance with expectations based on 
models of random aggregation (e.g. Meakin et al. 1985; Donn and Hughes 1986; 
Meakin and Donn 1988; Donn 1990; Jewitt and Meech 1988; Brooks 1990, 1992). 
By the time a given parcel of interstellar gas has evolved to produce a gravitatio-
nally unstable cloud prior to forming a new solar system, it seems certain that it 
will include a significant number of large grains. 

3. 2. PROTOSTELLAR COLLAPSE 

A marginally unstable cloud of mass MC ~ 1 MQ destined to form a star has a radius 
(cf. Larson and Starrfield 1971) on the order of Rc ~ 0 . 4 1 G M c / c 2 ~ 10 4 AU, where 
c9 = ( f c T / m ) 1 / 2 ~ 186 m s - 1 is the isothermal sound speed in the cloud and the 
numerical value assumes Τ = 10 Κ and a mean particle mass m = 4.0 χ 1 0 ~ 2 7 kg, 
appropriate for a molecular cloud of solar composition. Assuming the cloud is 
approximately uniform with a mean mass-density of solids ps = ζρ0 ~ 0.02p c , 
grains of mean radius α ~ 0.1 μτη and bulk density pg, the grain-grain collision 
time tco\\ = l/(ng4wa2vre\) is on the order of 

comparable to the collapse timescale ~ (Gpc)~
ll2 for the cloud. The larger particles 

in the system will thus grow during collapse of the cloud, and a substantial propor-
tion of the smallest grains will accrete into systematically larger particles (Burke 
and Silk 1976; Arnold 1977; Kessel'man 1978, 1979). Insofar as the chemistry of a 
collapsing protostellar cloud differs in detail from that in a dense molecular cloud 
(Fegley and Prinn 1989; Van Dishoeck et al. 1993; Prinn 1993), so too any mole-
cular ices condensing on or within these prestellar grain aggregates will reflect the 
conditions of their formation. Comets or planetesimals are thus expected to contain 
grains and interstellar condensates that reflect the 'interstellar' environment at the 
time of the grains' initial formation and growth. 

3. 3. PROTOPLANETARY DISC 

Following the Mestel-Ray prescription for the origin of a flattened Keplerian disc, 
a uniform, slowly rotating cloud with initial radius Rc « 10 4 AU and rotational ve-
locity V r o t ( ^ ) will evolve to produce a massive, extended protoplanetary disc with 
surface density E(r) 2S r~ 3 / 2 and outer radius Rd on the order of 1 0 2 - 1 0 3 AU, where 
we assume β « 0.1-0.5. Interstellar grains are expected to coalesce throughout the 
collapse phase, producing composite particles with a loosely bound fractal struc-
ture and a tendency for the volatile compounds and ices to reside on the surfaces 
of the growing grains and to fill the voids in the overall grain structure. Whereas 
grains in the inner regions of the disc are likely to be destroyed by collisions or by 
heating associated with formation of the pre-main-sequence star and its surroun-
ding accretion disc (e.g. Morfill and Volk 1984; Tscharnuter and Boss 1993), those 
in the outer region are expected to retain their cosmic chemical memory (Clayton 
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1982; Sandford 1989) and to have a complex, hierarchical physical structure which 
may be sampled in situ next century by the European cometary mission Rosetta. 

4 . Grain growth 

4. 1. GAS DISC 

Following these prestellar phases of grain growth, the process of accumulation of 
grains in the protoplanetary disc may be divided into two phases : that in the 
presence of gas, lasting ~ 1 0 6 - 1 0 7 yr (Strom et ai. 1993), and that in a gas-free 
environment following dispersal of the gas disc. Considering the first of these, if we 
take a grain of radius a, which we assume to be somewhat larger than the mean 
radius a/ of the background 'field' population, then its collision cross-section with 
respect to the background grains is ac = π(α + α / ) 2 ~ πα 2 . Turbulence in the gas, 
expected to occur, will drive significant relative velocities vTe\ between grains of 
different sizes (Volk et ai. 1980; Mizuno 1989; Weidenschilling and Cuzzi 1993), 
leading to grain growth at a rate given by 

da ^ PsVrd ( . 

dt * 4pg

 v ' 

Assuming that the field particles have a Maxwellian velocity distribution with a 

one-dimensional velocity dispersion c/ and that the large grains have a significan-

tly smaller velocity dispersion owing to their greater mass, then vTe\ ~ ( δ / π ) 1 / 2 ^ 

and hydrostatic equilibrium of the small grains perpendicular to the plane re-

sults in a Gaussian density distribution normal to the plane, given by p8{z) = 

pe(0)exp(-z2/2h2

f) where hf = c / / Q = c / ( r 3 / G M 0 ) 1 / 2 . The total surface density 

of solids in the disc is thus E a = y/2np8(0)hf, so 

— = HéL (4) 
dt 2πρ9

 ( ' 

Thus the grain radius at time t is given by a(t) = αο + Σ3ί/Ρρ91 where P(r) = 2π /Ω 
is the orbital period of grains at heliocentric distance r. 

We now consider a general power-law model of the form Σ9 = kar~a for the 
surface density of solids, allowing a to be either 3/2 or 2 and choosing the normali-
zation so that the dust surface density at 10 AU is 10 kg m ~ 2 , roughly corresponding 
to that of a minimum-mass nebula within the planetary system. Ignoring the initial 
grain radius, equation (4) implies a(t) = k9{GMç))lf2r~a~zf2/2πρ9, or 

ί 0 . « ( ^ ) ' ( γ * ? ) - and « = 3/2 

I O . I O ^ ) 7 ( n ^ ) m and « = 2 

where we have assumed Ω = (GMQ/T3)1^2. We conclude that substantial growth 
of grains occurs before dispersal of the gas disc, producing a population of large 
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particles close to the equatorial plane. Equation (5) shows that after 3 Myr the 

dimensions of particles in the Uranus-Neptune zone (r ~ 25 AU) are on the order of 

50m whereas those formed at a distance of 100AU or more have radii $ l m . Tur-

bulent grain growth in the presence of gas thus leads to a strong gradient in mean 

particle size, producing bodies with sizes ranging from ~ l - 1 0 k m in the Jupiter-

Saturn zone to less than l m beyond 100 AU. This result jointly arises from the 

increase in orbital period at large heliocentric distances and the assumed decrease 

in the primordial disc surface density. 

4. 2. DUST DISC 

The phase of random accumulation in the presence of nebular gas ends with disper-

sal of the latter after ~ 10 6 -10 7 yr. The clock is reset and the 'initial' conditions 

become those appropriate to a quiescent dust disc containing cometary building 

blocks of various sizes, comprising ice-covered interstellar dust aggregates and mo-

lecules reflecting the history of the dust in the presence of gas. Although grain 

growth by coagulation will continue, it seems likely that due to decreasing grain-

grain relative velocities (no longer driven by turbulence) the process of random 

accretion will be overtaken by gravitational instability. As discussed by Goldre-

ich and Ward (1973), the dust disc fragments into subdiscs with a characteristic 

length-scale that depends on the surface density and heliocentric distance. The 

first gravit at ionally unstable modes have a wavelength \p = 4 7 Γ 2 ( 7 Σ β / Ω 2 , while the 

most unstable mode has a wavelength about half this (Binney and Tremaine 1987). 

In this way, the mass of the first-formed planetesimals is approximately 

where we have assumed Ω = (GMQ/Γ3)1^2. The first planetesimals in a disc with 

initial surface density Σ3 oc r~a thus have masses mp proportional to r 6 _ 3 a . Since 

the timescale for the instability to grow is on the order of 1/Ω, or about the 

rotation period at radius r, i.e. on the order of 3 x 10 4 yr at r = 1000 AU, the disc is 

expected to fragment rapidly and to form a large number of separate planetesimals 

with individual masses at radius r on the order of 

» χ ^ Μ ϊ ο δ χ σ ) 3 7 2 k s a n d « = 3/2 ( 7 ) 

2 χ 1 0 1 7 kg and a = 2 

According to this theory, the first solid bodies to be formed by gravitational insta-

bility in the outer solar system may be identified with cometary nuclei or plane-

tesimals. If they have a bulk density on the order of unity their diameters are on 

the order of 10 2 km, close to those of the 6 recently discovered Kuiper-belt candi-

dates, namely 1992 QBi (220km), 1993 F W (280 km), 1993 RO (180 km), 1993 RP 

(90 km), 1993 SB (180 km) and 1993 SC (280 km), adopting conventional low albe-

dos ( ~ 0.04) for these outer solar system objects. This must be counted as a success 

of the theory. It is also worth noting that whereas the predicted planetesimal buil-

ding blocks are ice-covered interstellar grain aggregates ranging in size from ~1 km 
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(in the Saturn-Uranus zone) down to < l m (beyond 100 AU), the predicted size of 
the resulting planetesimals or cometary nuclei is either constant or a slowly in-
creasing function of heliocentric distance (cf. Tremaine 1990). The bodies formed 
further out are expected to be larger, and to comprise smaller building blocks, than 
those formed closer to the observed planetary system; observed comets should have 
the same range of properties. 

4. 3. COLLISIONAL EVOLUTION 

Detailed discussions of the collisional evolution of planetesimals formed by gra-
vitational instability have been given, for example, by Nakagawa et ai. (1983), 
Greenberg (1985, 1989), Wetherill (1990), Lissauer (1993), Lissauer and Stewart 
(1993) and Weidenschilling and Cuzzi (1993). In the planetary zones ranging from 
Jupiter to Neptune the planetesimals, identified as cometary or protocometary nu-
clei, are either accreted on to planets or dynamically ejected to interstellar space or 
to the inner and outer regions of the Oort cloud (Opik 1973; Duncan et ai. 1987). 
The process has been reviewed, for example, by Bailey et ai. (1990), Fernandez and 
Ip (1991) and Duncan and Quinn (1993a,b). However, as discussed by Greenberg 
et ai. (1984) these theories are not without difficulties, and it remains uncertain 
whether the standard planetesimal theory can produce both comets and planets 
in the timescale available and explain, for example, the time-evolution of the inner 
solar system impactor flux. A further important question is the value of the place-
ment efficiency, defined as the ratio of the initial cometary mass in the Oort cloud 
divided by the original cometary mass required in the protoplanetary disc. Current 
estimates (e.g. Bailey et ai. 1990) suggest that this quantity may be quite small, 
i.e. < 20%. This implies that the original cometary mass in the protoplanetary disc 
must have been at least 5 times the initial mass of the Oort cloud. 

In the outer solar system, a discussion of the evolution of planetesimals produced 
by gravitational instability has been given by Yamamoto and Kozasa (1988). Their 
theory also provides an explanation of the recently discovered outer solar system 
bodies 1992 QBi and 1993 F W (Yamamoto et ai. 1993). Here we briefly review 
these ideas, emphasizing again the good agreement between the predicted sizes of 
the initial planetesimals and those of the observed objects, and the fact that such 
a theory provides a natural explanation for the lack of planet-sized bodies beyond 
a heliocentric distance on the order of 30-50 AU. 

Following previous authors (Safronov 1969; Yamamoto and Kozasa 1988), the 
newly formed planetesimals have relative velocities vre\ determined by the competi-
tion between acceleration during close encounters and collisional damping. A simple 
kinetic-theory approach contains the essential physics, and assuming that the parti-
cles have a Maxwellian velocity distribution with a one-dimensional velocity disper-
sion c p , their mean relative velocity will be y/2v = 4cp/ y/π. The density distribution 
of planetesimals normal to the disc is approximately Gaussian, with a scale height 
hp = C p / Ω , and the central density is therefore p3 ~ E s O/y^27rc p . Allowing for a 
factor (1 + 29) due to gravitational focussing, where 9 = Gmp/apv^ = vlsc/2v^ 
ap is the radius of the first-formed planetesimals and v e s c is the escape velocity 
from their surface, and assuming a collision cross-section σ0 = 4πα£ (since the 
planetesimals at each heliocentric distance are initially of comparable size), the 
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expression for the mid-plane collision timescale tco\\ = l/[npacvre\(l + 20)] beco-

mes tcon = 0.975(1 + 2e)-1G-1/2MÖ7/6p2p/3r7'2, i.e. 

• \ 2/3 J In 

tmXX= 2 . 2 x 1 0 ^ ( 1 + 2 ^ ( ^ ) ( ^ ) yr (8) 

where />p « 1 g c m - 3 is the bulk density of the newly formed planetesimals and the 
steady-state value of θ is close to 0.5. The significance of this expression (cf. Fig. 
1 of Yamamoto and Kozasa 1988) is that once gravitational instability has occur-
red, the initial collision timescale is not only independent of the assumed surface 
density of the disc but is also a sharply increasing function of heliocentric distance. 
At r ~ 50 AU the collision timescale is on the order of 10 9 yr, and effectively infi-
nite beyond, suggesting that significant accumulation of planetesimals into planets 
can only occur within the region of the observed planetary system. If, as in the 
standard planetesimal theory, comets are interpreted as the result of the formation 
of planetesimals in the outer planetary region (i.e. in the Jupiter, Saturn, Uranus 
and Neptune accretion zones), bodies formed beyond ~50-100AU are likely to re-
present a collisionally unevolved system, i.e. a population of pristine planetesimals 
with predominantly cometary characteristics. 

5. Total cometary mass 

Recent years have seen several lines of argument converge to the conclusion that 
typical cometary nuclei may be much larger than formerly believed and that the cu-
mulative diameter distribution is approximately proportional to d~2 (Bailey et al. 
1994). The mean cometary mass is dominated by the size of the largest bodies, im-
plying a significant upwards revision of the total cometary mass in the solar system 
(cf. Bailey and Stagg 1988; Bailey 1990, 1991b). For example, we may consider a 
spherically symmetrical model of the Oort cloud with an inner edge corresponding 
to a semi-major axis ÜQ = 4000 AU, a value at = 3.3 x 10 4 AU for the semi-major 
axis above which new comets are directly injected into the inner solar system by 
the Galactic tide, and a power-law energy index 7 = 0 (leading to a total num-
ber of comets roughly proportional to a j j - 1 ) . The total number of comets brighter 
than visual absolute magnitude H \ Q = 7 is then on the order of 5.7 χ 1 0 1 1 for the 
above parameters, of which 5.2 χ 1 0 1 0 have semi-major axes greater than at and the 
remainder comprise the cloud's dense inner core. Following Donnison (1986) and 
Hughes (1987), the cumulative luminosity distribution of observed long-period co-
mets can be written in the form log[iV(< Ηχο)] = 0.3H\ο + constant, a result which 
may be converted into a cumulative mass distribution if the mass-magnitude rela-
tion is known, and hence into a cumulative diameter distribution given the mean 
density of the cometary nucleus. Adopting three recent determinations for these 
quantities (Bailey et al. 1992; Weissman 1990; Hughes 1987) and a density for 
the cometary nucleus on the order of l g c m - 3 , the corresponding expressions for 
the mean cometary mass per object brighter than H \ Q = 7 as a function of the 
maximum diameter d m a x in the size distribution can be calculated. The respective 
results are m / 1 kg = 4.6 x 1 0 1 6 ( < f m a x / 3 0 0 k m ) 1 1 2 5 , 4.0 x 1 0 1 5 ( < i m a x / 3 0 0 k m ) 0 - 7 5 and 
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3.5 x 1 0 1 6 ( d m a x / 3 0 0 k m ) 1 ' 5 0 , suggesting that despite large uncertainty in the mean 

cometary mass and the precise form of the cumulative diameter distribution the 

present cometary mass must be at least 380 M $ if the upper limit on the diameter 

is taken to be as large as 300 km. The original mass must have been substantially 

more than this owing to the combined placement and survival probability being 

;$ 20%. It is clear that the total cometary mass in the solar system cannot be ac-

commodated within a standard mass-limited minimum-mass planetesimal picture 

(cf. Mendis and Marconi 1986), the evidence from cometary masses thereby provi-

ding an important additional reason for modifying the the theory to encompass a 

more massive, extended disc. However, we note for completeness that an extended 

disc model does not provide the unique solution to this problem; other ideas for 

the origin of comets, also rooted in the star-formation approach to the origin of the 

solar system, should perhaps be given equal weight (e.g. Hills 1981, 1982; Cameron 

1988; Marochnik and Mukhin 1988; Marochnik et ai. 1988, 1989). 

6. Discussion 

Theorists investigating the origin of the solar system have tended to follow one 

of two paths. Some have approached the problem from the point of view of star 

formation, starting with the gravitational collapse of a dense molecular cloud to 

form the sun surrounded by a massive, extended accretion disc in which the planets 

and lesser bodies are eventually formed as a result of coagulation of ice-covered 

interstellar dust grains and gravitational instabilities in an extended dust disc. 

Others have followed the standard planetesimal hypothesis, a theory founded not on 

star formation but on planet formation. This assumes a ready-formed sun initially 

surrounded by a relatively low-mass disc of gas and dust with surface density 

proportional to r~ 3 / 2 and an outer boundary on the order of 30-50 AU. 

Here, we have presented the case for adopting a modified planetesimal theory, 

involving aggregation of ice-covered interstellar dust grains during distinct phases 

of prestellar evolution culminating in the formation and evolution of a relatively 

massive, extended protoplanetary disc. The theory has been developed particularly 

by Yamamoto and colleagues, and appears to be consistent with a wide range of ob-

servational data, not least the argument that cometary ices have much in common 

with those expected to occur in cool interstellar clouds (e.g. Knacke 1989; Bar-Nun 

and Kleinfeld 1989; Lunine 1989; Engel et al. 1990; Yamamota 1991; Mumma et 

al. 1993). Several aspects of the extended disc model clearly need further study, for 

example the mechanisms by which comets are formed at large heliocentric distan-

ces and ejected to produce the Oort cloud (and, of course, its long-term evolution 

and structure), and the detailed differences in size, physical structure and chemical 

composition expected for comets formed in different parts of the disc, and whether 

such differences are detectable by remote observations. But despite these uncertain-

ties, the outer solar system bodies — both comets and planetesimals — provide 

an important link between the sun and other stellar systems. The problem of their 

origin, properly understood, offers the exciting prospect of placing theories of the 

origin of the solar system at the heart of current developments in observational and 

theoretical astrophysics; its solution will provide key insights into the formation not 
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only of our solar system but also that of other stellar and planetary systems in the 
Galaxy. 
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