THE RELATION BETWEEN FUNCTIONS SATISFYING
A CERTAIN INTEGRAL EQUATION AND
GENERAL WATSON TRANSFORMS

F. M. GOODSPEED

1. In some work of Ramanujan! certain results are given which are equiva-
lent to the following.

If
¢)) J‘oo F(x)F(ux)dx = !

0 14+u
and f(s) = J:o F(x)x*"dx
then
(2) FEf1 =) = —"—.

smwT S
Also, if G(x) = 1/ <§) f_@z_ﬂ—_@'{)

then the relations

746 6ax - 50
(b)

7569 Gy = 4w

are consequences of one another for arbitrary functions 4 (x).

Examples can be given of both the truth and falsity of these results.

The function F(x) = e~ satisfies (1) and gives f(s) = I'(s) and G(x) =
v/ (2/7) cos x. Therefore (a) is true, and by Fourier integral theory the for-
mulae (b) are consequences of one another for functions 4 (x) with suitable
properties.

On the other hand (1) is satisfied by

Fle) = /‘/(72) 1 _;C x?

which yields f(s) = +v/(%/2) sec 3ws and G(x) = 0 for all values of x except
+ ¢. In this case (a) is true, but the formulae (b) are certainly not conse-
quences of one another under any circumstances.

Received June 14, 1949.
1See, for example, Ramanujan by G. H. Hardy, Chapter 11, Formula F.
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Taking the results as they stand, if (1) need hold for real values of u only,
then F(x) need be defined for real values of x only, and there is no obvious
reason to suppose that F(ix) or G(x) can be defined in any sense.

2. The results proven in this paper show that if F(x) € L?(0,~) and satisfies
(1) then (a) is true and F(x) is the value taken on the real axis by an analytic
function F(z), regular for R(z) > 0. Also, the formula

Gi(x) = lim 1/ <?> J * F(u + iv) + F(u — iv) dv
u—0 T/Jo 2

defines a function Gi(x) for almost all positive x, and Gi(x)/x is a Watson
kernel, i.e. Gy(x)/x € L*(0,o) and the relations

d 1(903’) ,
@j A - B(y)

and

d Gy (xy) B
? Jo B(y) — A

are consequences of one another for A(x) € L*0,).

3. The tools most often used in the following work are L? Mellin transform
theory and general Watson transform theory. The main results of the Mellin
transform theory used are given? in T., Theorems 71 and 72 with & = %,
while the Watson (or general) transform theory is described in T., Chapter
VIIL

TurEOREM 1. Let F(x) belong to the class L*(0,« ) and satisfy (1) for allu > 0.
Let f(s) be the Mellin transform of F(x) defined in the mean square sense for
R(s) = . Then
(2) fEf(L —s) = T(s)I(1—s)
for R(s) = %

For, applying the Parseval formula for Mellin transforms (T., Theorem 72)
to the left-hand side of (1), we have

L™ poa—spumas = 1
— s —s)u"*ds =
27ri.%—ioof f 14+«
since f(s)u™* is the Mellin transform of F(ux). But
1 (3 +ic0 1
— ()Tl — s)u—*ds =
271 J 3 —io 1+4+u
r} +ico
and so -1— {f)f1 — 5) — T(s)T(1 — s)} u*ds = 0.
27t J } —ico

Since I'(3 + 4t) and f(3 + i) are L*(— o ,»), f(s)f(1 —s) — T'(s)T(1 — s) is
L(} — i, % + i) and so the inverse form of T., Theorem 32, can be applied.

2The abbreviation T. is used for E. C. Titchmarsh, Introduction to the Theory of Fourier
Integrals, Oxford, 1937.
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This vields the formula f(s)f(1 — s) — I'(s)T(1 — 5s) = 0 and proves Theorem
1.

Theorem 1 shows that the assertion (a) holds rigorously for functions of
L*(0,=).

THEOREM 2. Let F(x) be a real function defined in (0,) satisfying the con-
ditions of Theorem 1 and let f(s) be defined as before. If

_fd=y)
®) K =Ty
and
4) §@=iJW5ﬂir%
x 2m Ji—-im 1 — 5

the integral being defined in the mean square sense, then K.(x)/x belongs to the
class L*(0,) and s the kernel of a Watson transform and
) Pl =« J Ki(e=dt = —x & f SSIOpEE
0 dx Jo ¢

for almost all values of x.  The function F(x) is therefore almost everywhere the
value taken on the real axis by a function F(z) = F(x + 1y) regular in the right
half-plane.

The statement that K;(x)/x is the kernel of a Watson transform means that
it has the same properties as the function k1(x)/x of T., Theorem 129.

Using the results of Theorem 1 we have
(©) ks)k( — ) = JWU =9 _y

rés)r1 — s
Also, as F(x) is a real function, f(s) and therefore k(s) take conjugate values
for conjugate values of s and so
kG + i) = [k} + k(G — )] = 1.
Therefore K(x)/x, as defined by (4), is a function of L*(0,« ) and is a Watson

kernel.
We also have for almost all x
1 [Hie [ [t _
F(x) = — f(s)x~ds = —f k(1 — s)T(s)x~%ds
27t J 3 —ico 27t J 4 —ico
bH® gy o gy _
= —1~—J Msl‘(s)x"‘ds: —LJV M T(s+1)x~%ds
27 Jt—im S 271) 3 —ioo s

[ee) (o]
= J K—;(Q xte”*dt = xJ K, (t)e~=tdt.
0 0

The first integral is the usual inverse Mellin transform, the second is obtained
by using (3) and finally we apply the Parseval formula for Mellin transforms
and use the fact that k(s)/(1 —s) is the transform of K(¢)/t and that T'(s+1)x™*
is the transform of xte™*%.
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The second formula for F(x) in (5) can be obtained from the first by an
appeal to general theory of reversion of the order of integration and differ-
entiation, or by differentiation with respect to x of the relation

[HO oo L[ R 0n

PE 27t Ji—ioo s
o
= J K\0) e~*t dt.
o ¢

This relation is obtained by using the Parseval formula for Mellin transforms
and the information that the transform of F(¢) is k(1 — s)T'(s), the transform
of the function equal to 1/t for ¢ 2 x and zero elsewhere is — x*~1/(s — 1),
and the transform of e™* is I'(s)x™°.

The integrals over the range (3 — i», 1 4 ¢=) occurring in this transfor-
mation are mean square integrals in Mellin transform theory, but, as £(1 —s)

. . =it
is bounded and T'(3 4+ 4t) = O(e"2 ), they are absolutely convergent as well,
and so may be taken in the ordinary sense.

CoroLLARY 1. The condition that F(x) be real in Theorem 2may be dispensed
with if k(s) as defined by (3) is bounded on R(s) = 3.

For in the argument used in proving Theorem 2 the condition that F(x) be
real is only used to prove the boundedness of k(s) on R(s) = 1.

COROLLARY 2. Any function F(x) defined by (5), where K1(t)/t is a Watson
kernel, will satisfy (1).

If K,(#)/t is a Watson kernel, the final part of the argument may be reversed
and we obtain

1 3} +io
F(x) = —J k(1— s)T(s)x"%ds
27t J 4 —iw
where k(s)k(1 — s) = 1. Thus F(x) is the Mellin transform of k(1 — s)T'(s),
and applying the Parseval relation,

JZOF(x)F(ux)dx = 2L‘”.J’%+i°° R(S)T(1 — s)k(1 — s)T'(s)u"ds

}—ico
1 3 +io B
= 9.7 oo ()T — s)u=ds = lta

THEOREM 3. Let F(x) satisfy the conditions of Theorem 2 and let F(z) be its
continuation, regular for R(z) > 0. Then if

Crlu) = /‘/(72r> J’ 0 F(u 4 iv) z Fu = i) 4

the limit as u — + 0 of Gi(u,x)/x exists for almost all x in (0, ) and defines a
function G1(x)/x which belongs to the class L*(0,») and is the kernel of a Watson
transform. The Mellin transform of Gi(x)/x is /(2/7) f(s)cos 3ws/(1 — s)
where f(s) is the Mellin transform of F(x).
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1/(,2—,) J: F(u + iv)2+ F(u — 1) dv
YO

and using (5), with > 0,

2 u+tiz ©
,‘/(-)J wd'wJ. Ki(t)e~vtdt

™ U—1iT 0
VO 8ems)e

™ u—1z dw Jo t

© utiz u+tiz @

O] B2 ] o000 oy

T 0 t u—iz u—iz 0 t

In order to calculate the limit of Gi(u,x) as # — 0 we refer to T., Theorems
94 and 95. After a change of variable amounting to the rotation of the com-
plex plane through a right angle, these theorems show that if ®(x) has a
Fourier transform ¢(x) which is null for x < 0, then

We have
Gi1(u,x)

1Gi(ux) =

(S

O

]
W=

[N

d(u + ix) = m J:o o(t)e~(vtin iy

converges in mean square as well as almost everywhere to ®(x) as « — 0.
Here ®(x) is taken to be

J Kl(t) e—iztdt
0 t

where the integration is in the mean square sense, and its transform ¢(x) is
V/(27)K1(x)/x for x 2 0 and zero for x < 0. Hence, as u — 0,

[ee]
J K;(t) e=(wHD 1 = B(u + ix)
0
converges in the mean square sense and also in the ordinary sense almost
everywhere to
[eo)
J- LS10) e~ tds,

0 ¢

But mean square convergence over the infinite range in x implies mean con-
vergence with index 1 over any finite range, and so

z © ©
limJ J Bsll) pmtutin iy —J KIT(’) vty } dy = 0
u—0J—1z 0

0 t
u+iz © +iz ©
or lim J de' K‘T(‘) it = J' de' E®) gy,
t

>0 Ju—-iz 0 -1z 0
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Therefore the limit of 1G,(u,x) as # — 0 is

3 1/(‘3‘_){ — i J.:O KITO) ettt — 1x J[‘:o uS10) e~V dt
+ J‘ﬂij dw Jm I%-(—t—) e'“"dt}
= —1 V(g){xro I—%(i) cos xtdt — J‘I dy J K cos ytdt}

(8) Gl(x) _ hm Gl(u,x)

X u—0 X

= "/<2>1 F dy Jm B cos ytdt — /‘/(2>J B0 cos atar
T/ X Jo 0 14 T/Jo ¢
or
@ G _ 1/(2>r° Ei(@) sinxt |, _ 1/(2>J K os wide.
x w)Jo ¢t xt LV

Another and more direct method of deriving (8) and (9) from (7) is as follows.
In the first expression in (7) for 4G1(u#,x), if we reverse the order of integration
(as is justified by uniform convergence), carry out the integration with respect
to w and then rearrange we obtain

2 (o] [e0]
Gi(ux) = V(;)(uJ' 5;—(0 e ¥'sin xtdt — x J Kl—t(t) e~ %! cos xtdt
0 0

+ J K, () sin xt e““‘dt) -
0 t t

Now applying the Parseval relation for cosine transforms to the integral in
the second term of this expression, we have

2\[® Ei®) —ue oy lr’ { u
/‘/<7r>J'o — e "t cos xtdt = - K.(y) ) + u'*'—i-(x—y)"’} dy

where K, (y) is the cosine transform of K(¢)/¢t and

N 2 u u }
’ 1/<7r>{u?—l-(x-|-y)2 N wt(x—y)°

is the cosine transform of e “fcosxt. But by the theory of the Cauchy
singular integral (T., Theorem 13 and 1-17),

lim —J . PR A =0

)y KO 2+(x+y)°

.o1re u -
and i, ], KO ity - 50

https://doi.org/10.4153/CJM-1950-020-3 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1950-020-3

WATSON TRANSFORMS 229

for almost all positive x if K.(y)/(1 + 3% € L(0,»), which is true since
K.(y) € L*0,»). Therefore

2\ [® 2\ [®
lim V(*)J M e ! cos xtdt = 1/(‘)-" Iil—(t—) cos xtdt
u—0 m/Jo t T/Jo t

where the integral on the right-hand side is taken in the mean square sense.

If the cosine is replaced by a sine a similar result holds.

The above is just a proof that the integrals of the L? cosine and sine trans-
forms are Abel summable to the same value as is obtained by mean square
methods.

These results give the limits as # — 0 of the first two terms in the expres-
sion for G1(u,x), while the limit of the third is just the Abel sum of a convergent
integral, since K1(¢)/t and sin x¢/t are both L*(0,). As the limit of the first
term is zero our final result is (9) as before.

Now the first term in (8) is of the form
1 (=

Blx) = —J a(y)dy
X Jo

where a(y), being the cosine transform of a function of L%(0,» ), is also L?(0,« ).
Hence B(x) is of the class L?(0,~) (T., p. 396). The second term of (8) is the
cosine transform of K;(¢)/¢ (a mean square integral) and is also L?(0,«) and
so Gi(x)/x is L*(0,») as well.

In order to complete the proof of Theorem 3 it must now be shown that
Gi(x)/x as defined by (8) or (9) is the kernel of a Watson transform. Three
methods of proof will be used, the first by finding the Mellin transform of
Gi(x)/x, the second by using the properties of the resultants of Watson kernels,
and the third by using a known property of the kernels themselves.

Using the Parseval relation for Mellin transforms,

Jm K(t) sin «t . r““ k(1 — )

sinin(s — 1)T(s — 1)x%ds

0 t xt 27t J3—ico S
$+i0 -
= LJ k(1 = s) cos 3ms I(s) x7%ds
271 J 34— i s 1—s

as the Mellin transforms of K;(t)/t andsinxt/xtare k(s)/(1 —s) and sin 37(s—1)
I'(s — 1)x* respectively.

Similarly,

{3 © © .
J dx J‘ 1—9@ cos xtdt = J MSLn_gt dt
0 0 t 0 t t

34400 _
1 j ML=

}-io s

L) -
3ms ——= E7%ds.
2w s :
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But

3 $+i0 _
J dx —LJ Ze_g____s_) cos 3ws T'(s)x%ds
0 27 J)i-iw s

i COS 3ms
2wt J4—ioo s 1 —35

_ _I_J"Hioo k(1 —5) . T'(s) £ ds

as the Mellin transform of the function equal to unity in (0, £) and zero other-
wise is £*/s and the transform of

1 J*+i°° k(1 —s)

271 J j—iw s

cos imsT'(s)x~%ds

is k(1 — s) cos 3ws T'(s)/s. Therefore, differentiating the last two formulae
with respect to §,

) i+io —_
J Kltm cos xtdt = 1 J Q1 =) cos 3ms T'(s)x™°ds
0

271 J4—iw s

for almost all x. Hence

Gi(x) _ 1/ 2\ 1 (Hep1 -5 L\
x 7) 2mi |y ; cos 3ws I'(s) 1= 1 )x™ds
2 1 $+ic0 1
— 1/(_) __J f(s) cos 3ws ds
w) 271 J4—i0 1 —s

almost everywhere, and so the Mellin transform of Gi(x)/x is /(2/7)f(s)
cos 3ws/(1 — s). Butif g(s) = v/(2/m)f(s) cos irs then
g(s)g(l = 5) = (2/m)f(s)f(1 — 5) cos }ms cos 3w(l — 5) =

by (2) for R(s) = 1. Therefore, if g(s)/(1 — s) is the transform of Gi(x)/x,
g(s)g(1 — s) = 1for R(s) = }

Also, using the fact that f(s) takes conjugate values for conjugate values of
s, lg3 +dt)] =1lfortin (— o, »).

Therefore, by T., Theorem 129, Gi(x)/x is the kernel of a Watson trans-
form and the Theorem is proved.

For the second method of proof, we first transform (8) by using T., Theorem
69. This Theorem yields the following result: if K1(¢)/¢ has the cosine trans-

form
1/ (;_)L ‘(f) cos ytdt

[oe]
then J’ 1% Ky() du has the cosine transform
t

u
1/ (721_) o—lc J-: dy Jo (t) cos ytdt.
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Therefore

"/<?r) ;16 JZ dy JT K;—(t) cos ytdt = V(%)J:o cos xtdt J'jo%@ du

and so, using (8),

G _ , /(2\[" © Kiw) ,_ Ka(t)
(10) v ‘1/ ()J ‘(J e T)‘”’

Now if L,(x)/x, M1(x)/x and N,(x)/x are Watson kernels with Mellin trans-
forms I(s)/(1 — s), m(s)/(1 — s), and n(s)/(1 — s), and if Bi(x)/x is the M
transform of Li(x)/x and Ci(x)/x the N transform of Bi(x)/x, then the Mellin
transform of Bi(x) is I(1 — s)m(s)/s and that of

Ci(x)/x is I(s)m(1 — s)n(s)/(1 — s)

(T., 8.6). But if p(s) =1(s)m(1 —s)n(s), then p(s)p(1l —s) = 1 and so Ci(x)/x
is the kernel of a Watson transform.

Now let
L(x) 0 (0<x<1), _
T {l/x (1 <x) i) =1,
Mi(x) _ Kix) m(s) = k(s),
x x
’Nl(x)

I

where Ki(x)/x is the kernel in the formula for Gi(x)/x. Then

Bm=grmmﬁ
x dx J1 12
— d x Jm Kl(t) dt _ J'oo Kl(t) dt _ K1(x)
dx T 2 z 2 X

and

Ci(x) _ 1/(g) d r’ sin xt < J°° K@) . _ Kl(t)) i@
X T/ dxJo ¢t ¢ u? t
= /‘/<E>J' cos xt (Jm Ky(w) du — Kl(t)) dt
T/jo ¢ u? t

where the final integral is to be taken in the mean square sense. The final
transformation is valid since the last two expressions are only different forms
for the cosine transform of a function of L?(0,).

But this is just Gi(x)/x. Therefore Gi(x)/x is the kernel of a Watson trans-
form and its Mellin transform is the Mellin transform of Ci(x)/x,

i.e. I(sym(1l — s)n(s)/(1 —s) = 1/(?‘_) k(1 — s)T(s) cos 3ws/(1 — 5)

= 1/ (2) 16 costmss1 - 9
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“For the third method of proof, we write formula (10) in the form

Gl——(@ = 1/<2>J® cos xtdt ro ————————Kl(u) — K0 du
x 7))o t u?

where the inner integral is a function of ¢ of the class L?(0,») and therefore
the outer integral is a mean square integral. Hence the cosine transform of

Gi(x)/x is

D]

j ? Kiw) — K\@®)
t u-
and therefore that of Gi(ax)/ax is
lJ'w Ki(u) — Ki(t/a) .
a Jt/a u?
Using the Parseval relation for cosine transforms,
© [ee] [ee) > [e0) -
I(a) = J Gi(t) Ga(at) dt = J. dtJ Ki(u) —Ki(t) du f Ki(v) — Ky(t/a) dv
0 t t 0 ¢ u? J t/a 9?

—a J . @Jm Kiut) = Ka®) r Llo/e) — K/e) g,
o £J1 u? 1 o2

The order of integration in the final triple integral may be changed as this
integral is absolutely convergent. For

©di [*|Ki(u) |+ K ()] “Ki(w/a)|+|Kq(t/a)]
2 D du dv

o 21 u?

1 92

Q=

Jm d r ESIO] R JESTOIPH J“’ K@)+ K /e

0 t u? t/a 22

Jm dt {Jw @Zi)ldu + E{—‘t—@}{r @ gy g LI&%’/L)}

0 t u t/ja V%

SER

[e0)
|
!—[g—lizﬁ—du (T., Theorem 69 as before) and

¢ u
the integrand of the ¢ integral is the product of two functions of L?(0,%) and
is therefore L(0,x).
Changing the order of integration,
Ia) = aJ QJ _dv_J (K@) — K\ Kaw/a) = Ka(t/a)}
1 y2J1 92

0 12

and since K;(¢)/¢ is L*(0,o) so is J-

=a Jl %L% {min (u,9/a)+min (1,1/a) —min (1,0/a) —min (1,1/a)}
since J ———————Kl(at) ——I\l(bt) dt
o ¢ b
as Ki(f)/t is the kernel of a Watson transform.
If we assume 0 < e < 1, then min (1,1/a) = min (1,2/a) = 1 for ¢ 2 1.
Therefore

= min (e,b).

https://doi.org/10.4153/CJM-1950-020-3 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1950-020-3

WATSON TRANSFORMS 233

I(a) = aJ'mﬁJwg;{min (u,0/a) — min (u,1/a)}.
v

1 y? Ja
Also, if # < 1/a then u < v/a in our range of integration and so min (#,v/a)
— min (%,1/a) = 0 and

I(a):aJ d_u(J'au_‘l_).(_iZ}—'-J u@_,]_J’ .dl>
e u2 \J1 a v? aw ¥ ad1 9?

= a.
A similar proof would show that 7(a) = 1if 1 < a, and so

J Gi(t) Gy(at) i
0 t t
Setting @ = b/c and t = cu,

Jm Ga(en) Ga(bu) du = ¢ min (1,b/c) = min (c,b),

o u u
and therefore G1(¢)/! is the kernel of a Watson transform (T., Theorem 131).

COROLLARY. The condition that F(x) be real may be replaced by the condition
that k(3+it) be bounded in (— o, ). )

This follows from Corollary 1, Theorem 2.

The following example shows that Theorems 2 and 3 do not hold for all
functions F(x) satisfying (1) and that some extra condition must be imposed
if F(x) may be complex.

Let F(x) = a*¢™9* where 0 < am a < /2. Then F(x) € L*(0,~) and satis-
fies (1). Also

= min (1,a).

fls) = a%J- e~y dx = o} 7T (s)
0

and k(s) = f(1 — s)/T(1 —s) = a** or k(A +it) = a®t. Thus |k(Z+ )]
e @™ and so k(s)/(1 — s) does not belong to any integrable class in
3 — 4w, % 4 i), The arguments in Theorems 2 and 3 therefore break down
completely.

4. Examples. (i). Let F(x) = e7*. Then (1) is satisfied, f(s) = T'(s),
and k(s) = 1. Therefore Ki(£)/t = 0 for ¢t < 1, Ki(t)/t = 1/t for t > 1 and
Gi(x)/x = +/(2/%) sin x/x.

In this case the result (b) of the formal analysis holds and

oo -y () PR

is a Fourier kernel.

(). If Fx) = 1/ (,%) 7 ixg

2
then f(s) = - 1 , and the Mellin transform of Gi(x)/x is
T/ cos 37s

Y/ (%)f@) cos bas/(1 = 5) = 1/(1 = s).
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Gi(x) _§ 0 (0<=x<1),
Therefore — {1 Jx (1 < x),
and”the Watson transform of which Gi(x)/x is the kernel transforms #4(t)
into A(1/8)/t.

In this case 3+/(2/7){ F(ix) + F(—ix)} = 0 for all values of x except =i,
and so the result (b) of the formal analysis does not hold.
Theorem 3 gives

G 1. 1 /(2 +1/ g> :
X _; Llino —2—'2 <7l' u—1ix 1+szz

-1 ym log M2 A him m{ﬂﬂ2}
2mix -0 14+ (u —ix)®  2mx u—o 1+ (u — 2x)?
0 0<x<y,
T\ 1/x (1< x).

2
(iii). If F(x) = 1/(‘) ! then all our conditions are satisfied and
T/ 14 x?

fs)= 4/(721) cosec iws, k(s)= 1/(%) sin iws, Ki(t)/t= 1/(1%)(1~cos x)/x

and Gi(x)/x = 1 log L+ .
T 1 —x

In this case the formal result holds as well with G(x) = 2/7(1 — «?).

(iv). In general, if any function F(x) of the class L*(0,») satisfies (1) then
so does any Watson transform of F(x).

For if the Watson transform with kernel M(¢)/¢ of F(x) is H(x), i.e.
H(x) = ij ORELY
dx Jo

then the transform of F(ux) is

ij F(ut) M‘t(xt) it = (—id;J‘O F(t) M‘(xt/“) it = X H(’—C) .

dx U U

Therefore, by the general Parseval relation for Watson transforms (a slight
extension of T., 8.5.8)

F“’ F(x) Flux)ds = H:o H(x)H<g> dx
- Jm H(x)H(ux)dx
or :° H(x)H(ux)dx = ﬁz :

2 2 -
Taking F(x) = ,‘/(;) ! _‘1_ - and M;(t> = 1/(;) l—t—C(f—t we obtain
x

— 2 [ si
H()_gij 1 cosxtdt=_J smxtdt.
wdxJo (1 +8) mJo 14 ¢
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In this case k(s), the Mellin transform of H(x) is I'(s) tan }ws, and applying
Theorem 2 to H(x) we obtain k(s) = A(1l — 5)/T'(1 — s) = cot 3=s and

K 1, ll + %

t wt 1 —x

Therefore (5) becomes

H(x) = ij e *tlog
mTJo

2 © e Tt

T J o 1 — ¢
after integrating by parts and taking the final integral as a principal value
at ¢ = 1. This second expression for H(x) can also be obtained from the first
by the calculus of residues.

The first expression for H(x) cannot be used in Theorem 3 for calculating
Gi(x)/x as it has no meaning unless x is real. Using the second, however,

we obtain
Gi(x) _ 1/(2) 1 —cosx
X ™ X )

5. The three theorems above may be extended to include the case where
there are two different functions involved in (1).
THEOREM 4. Let F(x) and H(x) of the class L*(0,») satisfy the equation

(11) J:o F) Hluw)ds = - -1+ (u > 0)

14¢
1 —t

ldt

u
and have Mellin transforms f(s) and h(s). Then f(s)h(1 — s) = T'(s)T'(1 — s).

If k(s) = f(1 — 5)/T(1 — 5) and I(s) = k(1 — s5)/T(1 — s) are bounded for
s in the range (3 — i, 3 4 i) then (5) holds with K,(t) defined as in (4). A
stmilar formula holds for H(x) with K.(t) replaced by L.(t) where

L) | L[y
x 27t Ji—iw 1 — s
The functions Ki(t)/t and Ly(t)/t belong to the class L*(0,) and are the
kernels of conjugate Watson transforms.
Functions G1(x)/x defined as tn Theorem 3 and Mi(x)/x defined in the same
way with H(z) replacing F(z) exist and are conjugate Watson kernels with Mellin

transforms 1/(%) f(s) cos 3ws and 1/(%) h(s) cos %ws.

This Theorem is proved in almost the same way as Theorems 1, 2, and 3,
and so no proof will be given.

In this Theorem it must be specified that k(s) and I(s) are bounded on
3 — i», 3 + 1=) and the condition that F(x) and H(x) be real is not suffi-
cient for the sections of the Theorem corresponding to Theorems 2 and 3.

This can be shown by taking F(x) = xe % and H(x) = (1 — e7%)/x. These
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functions are L%(0,») and satisfy (11), but as k(s) = 1 — s no function
K(t)/t can be defined and the argument breaks down. The functions

G(x) = %1/@) {Flix) + F(— ix)} = 1/(%) x sin x
1/ (%) {H(ix) + H(—ix)} = 1/ (72?) sin x/x

obtained as in the initial formal argument are, however, conjugate Fourier
kernels in a certain sense. In fact, if ¢(¢) is a function such that {q(¢) € L*(0,»),
then its G transform is

r(x) = V(%)Jm q(t)xt sin xtdt

= xT.\{fq(f)}
where Téftq(t)} is the sine transform of t¢q(t). Further, the M transform of

r(x) is
2\ [® ;
1/<;>J[o g0} - r\‘ Lt = - xQ(x) = q(x).

Thus, in a certain sense, the original formal assertion (c) still holds even
though our rigorous argument breaks down.

Other extensions of Theorems 1, 2, and 3 are obtained by replacing equation
(1) by slightly more general equations as in the following two theorems.

and M(x) =

W=

THEOREM 5. Let F(x) be a real function defined in (0, )such that

J:o {F(x)} Tldx < o (c > 0),

(12) J:o F(x) F(ux)x*"'dx = (_IFJ(:’u .
and let f(s) be the Mellin transform of F(x) defined for R(s) = ¢/2.

Then f&)f(c —s) =T(s)T(c — ) (R(s) = ¢/2)
and if k(s) = Jle=cs) (R(s) = 1/2)

T'(c — cs)

then k(Sk(l — 35) = (R(s) = 1/2).

If Ki(t)/t is the Watson kernel derived from k(s) in the usual way, then
(13) F(x) = ‘CJ K (t%)e *tdt.

Conversely, if Ki(t)/t is any L* Watson kernel, then (13) defines a function
F(x) that satisfies (12).

The proof will not be given as the only difference between it and the proof
of Theorems 1 and 2 is that the more general Mellin transform theory of T.,
Theorems 71, 72, and 73 is used.
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Examples. (i). If k(s) = 1, then

Kl(t)_{o 0<t<l1)
T\t (<

and this leads to F(x) = ¢~ which obviously satisfies (12).

Gi). Tf Ki(x)/x = 1/ (?r) sin x/x then F(x) = 1/ <;2r> xjje"‘ sin tedt.

This can be integrated in finite terms if ¢ = %, giving

as a solution of (12) with ¢ = 1.

THEOREM 6. Let F(x) be a real function belonging to the class L2(0,o) and

satisfying
o el
(14) J F(x)F(ux)dx = LERNO)
0 (1 4 u)°
with ¢ > 0 for all positive u.
If f(s) is the Mellin transform of F(x) and
_ A=y
k(s) = T 1 )
r 2—l—2~—s
then k(s)k(1 — s) = 1 for R(s) = % and
c—1{® K c—1
(15) Flx) = — g J Balt) 15 vgy
dx ot

where K1(t)/t is the Watson kernel derived from k(s) in the usual way.

This Theorem is proved in the same way as Theorems 1 and 2 and so the
proof will not be given.
As a formal deduction from the formula for F(x) we obtain

c—1[® ¢—1
Flx) = xTJ' 2 e TtK(t)dt
0

where K(¢) is a Fourier kernel.

. o\ 1 _ ’
K ;(t) = /‘/<5> ! fCOSt , then (15) with ¢ = 3 gives

Example. If

™

o /)

as a function satisfying (14).
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