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GILLIS’S RANDOM WALKS ON GRAPHS

NADINE GUILLOTIN-PLANTARD,∗ Université Claude Bernard Lyon 1

Abstract

We consider a random walker on a d-regular graph. Starting from a fixed vertex, the
first step is a unit step in any one of the d directions, with common probability 1/d for
each one. At any later step, the random walker moves in any one of the directions, with
probability q for a reversal of direction and probability p for any other direction. This
model was introduced and first studied by Gillis (1955), in the case when the graph is
a d-dimensional square lattice. We prove that the Gillis random walk on a d-regular
graph is recurrent if and only if the simple random walk on the graph is recurrent. The
Green function of the Gillis random walk will be also given, in terms of that of the simple
random walk.
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1. Introduction and results

Let � = (V , E) be a locally finite graph, with vertex set V and edges E, that may have
loops. The degree deg(x) of a vertex x is equal to the number of incident edges, namely

deg(x) = card{e ∈ E | e = (xy) for some y ∈ V }.
When deg(x) = d for all vertices x, the graph is called d-regular (for example the homogeneous
trees Tm and Z

m). We say that two vertices x and y are adjacent, and write x ∼ y, if they are
connected by an edge. Assume that � is a d-regular graph. A Gillis �-random walk (Xn)n≥0,
starting from a fixed vertex 0 ∈ �, is the random process defined by X0 ≡ 0;

P(X1 = x) = 1

d
for all x ∼ 0;

and, for every x ∈ � and all n ≥ 1,

P(Xn+1 = y | Xn = x; Xn−1 = z) =

⎧⎪⎨
⎪⎩

q if y ∼ x, y = z,

p if y ∼ x, y �= z,

0 otherwise,

where (d − 1)p + q = 1.
Let δ = dp − 1 = p − q; in the sequel, we shall assume that |δ| �= 1. Let us define the

probability of return to the origin after n steps, for every n ≥ 0, as

Rn,d(δ) = P(Xn = 0).
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For � = Z
d , Gillis (1955) investigated some of the properties of this correlated random walk

and, in particular, proved that if d = 1 or if d is even, then

R2n,d(δ) ∼
(

1 − δ

1 + δ

)d/2

R2n,d(0), (1.1)

and conjectured that (1.1) should hold for any integer d. Gillis’s aim was to obtain the following
(so-called Gillis) conjecture.

Conjecture 1.1. The Gillis random walk on Z
d is recurrent if d = 1, 2, and transient if d ≥ 3.

This conjecture was first proved by Domb and Fisher (1958). They even considered a
more general model called the Gillis–Domb–Fisher random walk, allowing the walker to move
with different probabilities along the different directions. Chen and Renshaw (1992), (1994)
used characteristic function methods to study the Gillis–Domb–Fisher random walk and, in
particular, they gave a new proof of Conjecture 1.1. Another proof of this conjecture was given
by Iossif (1986), who established, using a renewal argument, that R2n,d(δ) = O(n−d/2), which
implies the transience of the Gillis random walk for any d ≥ 3. All the methods used up to
now in order to prove Gillis’s conjecture are based on an estimation of the probability of return
to the origin for the Gillis random walk. We give a new and simple proof of this conjecture
using powerful combinatorial results recently obtained by Bartholdi (1999). The method is
quite efficient since it can be applied to any d-regular graph. It is worth noting that these
correlated random walk models have important applications in physics (scattering of waves),
biology (rooting patterns of special trees, animal diffusion) and polymer chemistry. The reader
can find interesting discussions and references for applications of correlated random walks in
Chen and Renshaw (1992), (1994). Our main result is the following theorem.

Theorem 1.1. The Gillis random walk on a d-regular graph � is recurrent if and only if the
simple random walk on � is recurrent.

Let us denote by Rd,δ the generating function of the sequence (Rn,d(δ))n≥0, as follows:

Rd,δ(z) =
∞∑

n=0

Rn,d(δ)zn.

When δ = 0, Rd,0(·) is the Green function of the simple random walk evolving on �.

Theorem 1.2. The following relation holds:

Rd,δ(z) = 1

1 + δ

{
δ + 1 − δ2z2

1 + δz2 Rd,0

(
(1 + δ)z

1 + δz2

)}
. (1.2)

From this, we easily deduce that Conjecture 1.1 holds.
In Sections 2 and 3, we introduce the result of Bartholdi (1999) and use it to prove

Theorems 1.1 and 1.2. In Section 4, we discuss some characteristics of Gillis random walks on
graphs (namely the asymptotic probability of returns to the starting point, and the estimation
of the expected number of returns to the origin) using (1.2).

2. Counting paths in graphs

Bartholdi (1999) extended Grigorchuk’s formula (see Grigorchuk (1978), (1980)), relating
co-growth and the spectral radius of random walks on graphs, as follows. Let 0 be a fixed vertex
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of a locally finite graph � = (V , E), which might have multiple edges and loops; let C(n) be
the number of circuits (i.e. closed sequences of edges) of length n at 0; and let C(n, m) be the
number of paths of length n with m backtrackings, i.e. with m occurrences of an edge being
followed twice in a row.

Consider the formal power series

F(u, t) =
∞∑

m,n=0

C(n, m)umtn and G(t) =
∞∑

n=0

C(n)tn.

Let us note that F(0, t) is the generating function of proper circuits, i.e. those without back-
tracking, and that F(1, t) = G(t).

Theorem 2.1. (Bartholdi.) When � is a d-regular graph, the following relation holds:

F(1 − u, t) = 1 − u2t2

1 + u(d − u)t2 G

(
t

1 + u(d − u)t2

)
.

Two different proofs of this theorem can be found in Bartholdi (1999).

3. Proofs of Theorems 1.1 and 1.2

Let Nn be the number of backtrackings in a circuit of length n. The random variable Nn

takes its values in {0, . . . , n − 1}. Then, we obtain

Rn,d(δ) = P(Xn = 0) =
n−1∑
m=0

P(Xn = 0; Nn = m).

By definition of the random walk (Xn)n≥0, each circuit of length n, n ≥ 1, with m backtrackings
is assigned the relative probability qmpn−m−1/d and, if C(n, m) denotes the number of such
circuits, we then obtain P(Xn = 0; Nn = m) = C(n, m)qmpn−m−1/d. We can rewrite this as

Rn,d(δ) = 1

pd

n−1∑
m=0

C(n, m)qmpn−m.

The generating function Rd,δ of the sequence (Rn,d(δ))n≥0 is then given by

Rd,δ(z) = 1 +
∞∑

n=1

Rn,d(δ)zn (since P(X0 = 0) = 1)

= 1 + 1

pd

∞∑
n=1

(n−1∑
m=0

C(n, m)

)(
q

p

)m

(pz)n

= 1 + 1

pd

∞∑
m=0,n=1

C(n, m)

(
q

p

)m

(pz)n

= 1 + 1

pd
F

(
1 − δ

p
, pz

)
− F(0, 0)

pd

= 1

1 + δ

{
δ + F

(
1 − δ

p
, pz

)}
, (3.1)
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since F(0, 0) = 1 and δ = dp − 1 = p − q. We use the convention that C(n, m) = 0 when
m ≥ n. When δ = 0, i.e. p = q = 1/d , the Gillis random walk we consider is just the simple
random walk evolving on � and

Rd,0(z) =
∞∑

n=0

Rn,d(0)zn =
∞∑

n=0

C(n)

(
z

d

)n

= G

(
z

d

)
. (3.2)

Since the graph � is d-regular (see Theorem 2.1), we obtain the following relation with u = δ/p

and t = pz:

F

(
1 − δ

p
, pz

)
= 1 − δ2z2

1 + δ(pd − δ)z2 G

(
pz

1 + δ(pd − δ)z2

)
.

From (3.1) and (3.2), we obtain

Rd,δ(z) = 1

1 + δ

{
δ + 1 − δ2z2

1 + δ(pd − δ)z2 Rd,0

(
dpz

1 + δ(pd − δ)z2

)}
,

which can be simplified, since pd − δ = 1, as follows:

Rd,δ(z) = 1

1 + δ

{
δ + 1 − δ2z2

1 + δz2 Rd,0

(
(1 + δ)z

1 + δz2

)}
. (3.3)

This completes the proof of Theorem 1.2. Theorem 1.1 is easily deduced from the above
relation, since the function

φ : z �→ (1 + δ)z

1 + δz2

is continuous at the point z = 1 (δ �= −1), and φ(1) = 1. Consequently, we can let z → 1− in
(3.3), and so obtain

lim
z→1− Rd,δ(z) = 1

1 + δ

{
δ + (1 − δ) lim

z→1− Rd,0(z)
}
.

It is well known that the simple random walk is recurrent if and only if

lim
z→1− Rd,0(z) = ∞,

and transient if and only if
lim

z→1− Rd,0(z) < ∞.

4. Some applications of Theorem 1.2

4.1. Application 1

From (1.2) we can compute the Green function of any Gillis random walk evolving on a
regular graph when the Green function of the simple random walk is known. For instance, let
d ≥ 2 and consider Td , the homogeneous tree of degree d. Now, the Green function of the
simple random walk on Td is given, for |z| < (d/2)(d − 1)−1/2, by

Rd,0(z) = 2(d − 1)

d − 2 + √
d2 − 4(d − 1)z2
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(see Kesten (1959)). A simple manipulation gives the following expression for the Green
function of the Gillis random walk on Td :

Rd,δ(z) = 1

1 + δ

{
δ + 2(d − 1)(1 − δ2z2)

(d − 2)(1 + δz2) + √
d2(1 + δz2)2 − 4(d − 1)(1 + δ)2z2

}
.

In particular, if d = 2 then T2 = Z and

R2,δ(z) = 1

1 + δ

{
δ + (1 − δ2z2)√

(1 + δz2)2 − (1 + δ)2z2

}

= 1

1 + δ

{
δ + 1 − δ2z2√

(1 − z2)(1 − δ2z2)

}

= 1

1 + δ

{
δ +

√
1 − δ2z2

1 − z2

}
.

We recover Gillis (1955, Equation 3.17), and an estimate of the probability of returning to the
origin at time 2n for the Gillis Z-random walk is then found to be

R2n,2(δ) ∼
√

1 − δ

1 + δ

1√
πn

for large n (see Gillis (1955) for details). Let us mention that the probability of returning to the
origin at time 2n for the Gillis Z

m-random walk (m ≥ 2) can also be asymptotically evaluated
using complex analysis methods developed in Gillis (1955).

We can also consider the half-line N with edges [i, i + 1] and add a loop at 0 in order to get
a two-regular graph. The Green function of the simple random walk evolving on this graph is
given by

R2,0(z) = 2

1 − z + √
1 − z2

(see Woess (2000)), and the Green function of the Gillis random walk on this particular graph
is

R2,δ(z) = 1

δ + 1

{
δ + 2

√
1 − δz(1 + δz)

(1 − z)
√

1 − δz + √
(1 − z2)(1 + δz)

}
.

4.2. Application 2

Let us consider a transient Gillis random walk (Xn)n≥0 on a d-regular graph �, with d ≥ 3
and |δ| �= 1. Let us denote by N∞(δ) the number of returns to a fixed point 0 in � for the walk
starting from 0. The expected number of returns to the origin for this random walk is finite and
equal to Rd,δ(1), so (1.2) gives us the relation

E(N∞(δ)) = 1 − δ

1 + δ
E(N∞(0)) + δ

1 + δ
. (4.1)

The function δ �→ E(N∞(δ)) is continuous and strictly decreasing for δ ∈ ]− 1, 1/(d − 1)]. If
δ ∈ ]− 1, 0] then

E(N∞(δ)) ≥ E(N∞(0))
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and, if δ ∈ [0, 1/(d − 1)],

E

(
N∞

(
1

d − 1

))
≤ E(N∞(δ)) ≤ E(N∞(0)).

This means that when δ ∈ ]− 1, 0[, the Gillis random walk is less transient than the simple one,
and that when δ ∈ ]0, 1/(d − 1)], the Gillis random walk is more transient than the simple one.
In the most transient case, i.e. δ = 1/(d − 1), we have the following relation:

E

(
N∞

(
1

d − 1

))
= d − 2

d
E(N∞(0)) + 1

d
.

In the particular case of d-regular graphs (d ≥ 3) without cycles (i.e. homogeneous trees
Td , d ≥ 3), we can compute E(N∞(δ)) for any δ ∈ ]− 1, 1/(d − 1)], since E(N∞(0)) =
(d − 1)/(d − 2), and we obtain

E(N∞(δ)) = 1

1 + δ

(
1 + 1 − δ

d − 2

)
.

When the graph has cycles, it is much more difficult to estimate E(N∞(0)). Let us consider
the case of Z

m, m ≥ 3 (here, d = 2m). The expected number of returns to the origin for the
simple Z

m-random walk has been extensively investigated, both numerically and analytically,
and explicit analytic expressions can be derived in a variety of ways. For example, we have

E(N∞(0)) = R2m,0(1) =
∫ ∞

0
e−xIm

0

(
x

m

)
dx,

where I0 is the modified Bessel function given by

I0(x) =
∞∑

k=0

1

(k!)2

(
x2

4

)k

.

There is no way to evaluate the above integral for m ≥ 3: it can only be numerically estimated.
Numerical estimates of E(N∞(0)) for 3 ≤ m ≤ 10 can be found in Bender et al. (1994), which
permits us to give numerical estimations of the expected number of returns to the origin for a
Gillis Z

m-random walk for any m ∈ {3, . . . , 10} and for any δ ∈ ]− 1, 1/(2m − 1)]. It is worth
noting that, given any δ ∈ ]0, 1/(2m− 1)], E(N∞(−δ)) can be obtained from E(N∞(δ)) using
the following formula, which can in turn be deduced from (4.1):

(1 + δ) E(N∞(δ)) + (1 − δ) E(N∞(−δ)) = 2 E(N∞(0)).

Results for three particular values of δ, namely ±1/(2m − 1), and −1 + 10−3, are displayed in
Table 1.

In the most transient case, corresponding to δ = 1/(2m−1), i.e. q = 0 and p = 1/(2m−1),
the Gillis random walk never comes back in one step to the last visited site, but loops are allowed.
Therefore, returns to the origin are possible, but are less numerous than in the simple random
walk. For δ = −1/(2m − 1), i.e. q = 1/m and p = (m − 1)/m(2m − 1), the Gillis random
walk is less transient than the simple one, and the number of returns to the origin is larger than
for the simple one. In the limiting case δ = −1, i.e. q = 1 and p = 0, the Gillis random walk
starts from 0, chooses one of its neighbours – each with the same probability 1/2m – and will
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Table 1.

m E(N∞(0)) E(N∞(1/(2m − 1))) E(N∞(−1/(2m − 1))) E(N∞(−1 + 10−3))

3 1.516 386 059 1.177 590 706 2.024 579 089 2032.255 732
4 1.239 467 122 1.054 600 342 1.485 956 163 1478.694 777
5 1.156 308 124 1.025 046 499 1.320 385 155 1312.459 94
6 1.116 963 374 1.014 136 145 1.240 356 049 1233.809 785
7 1.093 906 315 1.009 062 556 1.192 890 701 1187.718 724
8 1.078 647 012 1.006 316 136 1.161 310 871 1157.215 377
9 1.067 746 087 1.004 663 188 1.138 714 348 1135.424 428

10 1.059 543 752 1.003 589 377 1.121 715 28 1119.027 96

alternately visit the selected site and 0; this is evidently recurrent and the number of returns to
the origin is infinite. A natural question is to ask how the expected number of returns to the
origin for a Gillis random walk with δ > −1 increases when δ tends to −1. What is interesting
in (4.1) is that we can determine the speed of this convergence: for any n ≥ 1,

E(N∞(−1 + 10−n)) = 10n(2 E(N∞(0)) − 1) + 1 − E(N∞(0)).

Therefore, the expected number of returns to the origin for a Gillis random walk is (modulo
only a constant) inversely proportional to the speed with which it approaches −1. In Table 1,
the values of E(N∞(−1 + 10−n)) are given for n = 3 and m ∈ {3, . . . , 10}.

5. Conclusion

Our main result is that the Gillis random walk on a d-regular graph � is recurrent if and
only if the simple random walk on � is recurrent. The proof is based on the use of a very nice
formula recently obtained by Bartholdi (1999). In particular, we have established a relation
between the Green function of any Gillis random walk evolving on a d-regular graph and the
Green function of the simple random walk on this graph. Some applications of this relation
are given in Section 4. From this formula, it should be possible to derive new results about the
characteristics of Gillis random walks on any d-regular graph.
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