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Abstract

In this paper we develop a prelimit analysis of performance measures for importance
sampling schemes related to small noise diffusion processes. In importance sampling
the performance of any change of measure is characterized by its second moment. For
a given change of measure, we characterize the second moment of the corresponding
estimator as the solution to a partial differential equation, which we analyze via a full
asymptotic expansion with respect to the size of the noise and obtain a precise statement
on its accuracy. The main correction term to the decay rate of the second moment solves
a transport equation that can be solved explicitly. The asymptotic expansion that we
obtain identifies the source of possible poor performance of nevertheless asymptotically
optimal importance sampling schemes and allows for a more accurate comparison among
competing importance sampling schemes.
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1. Introduction

Consider a d-dimensional process Xε
.= {Xε(s), t ≤ s ≤ T } satisfying the stochastic

differential equation (SDE)

dXε(s) = b(Xε(s)) ds + √
εσ (Xε(s)) dW(s), X(t) = x, (1)

where 0 < ε � 1 and W(s) is a standard d-dimensional Wiener process.
Assume that we are interested in estimating a quantity such as

Et,x

[
exp

(
−1

ε
h(Xε(T ))

)]
or Pt,x[Xε(T ) /∈ D],

where h(x) : R
d �→ R is a given nonnegative, bounded and continuous function and D an

appropriate set.
It is well known that standard Monte Carlo methods perform poorly in the small noise limit in

that the relative errors under a fixed computational cost grow rapidly as the event becomes more
rare. A popular variance reduction technique ina Monte Carlo simulation that addresses this
problem is importance sampling. The simulation is performed under an alternative probability
measure, absolutely continuous with respect to the original one, such that the variance of the
resulting unbiased estimator (under the new probability measure) is as small as possible in the
limit as ε ↓ 0. Due to unbiasedness, minimizing the variance is equivalent to minimizing the
second moment of the estimator.
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The asymptotically optimal change of measure is related to the gradient of the solution to
a Hamilton–Jacobi–Bellman (HJB) equation. Under certain conditions, the gradient of the
system exists in the classical sense and is continuous, and then one can guarantee asymptotic
optimality. The authors in [16] considered importance sampling schemes that use as change of
measure the gradient of the associated HJB equation, and proved their asymptotic optimality
in regions of strong regularity (see Definition 2) under the assumption that the gradient of
the solution to the HJB equation is continuously differentiable. However, such smoothness of
the solution to the HJB equation is usually not the case, as in the case of computing exit or
hitting probabilities; see [8]. Also, even if the problem is such that the gradient of the solution
is smooth, it may be difficult or actually impossible to reliably compute it in practice, even
numerically. As the numerical results of [8] demonstrate, this is certainly the case for points
that are not in regions of strong regularity.

For these reasons, a theory has been developed in [5], [6], and [7] that gives precise bounds
on asymptotic performance for schemes that are based on subsolutions to this HJB equation
rather than to the solution itself; see also [3] for the closely related concept of the associated
Lyapunov inequalities that can be also used to find bounds of the performance measures in
the prelimit. Such results have been used to test the efficiency of state-dependent importance
sampling schemes in the heavy tail and discrete setting; see, for example, [1], [2], [4], and [6].
Counterexamples in the discrete, nondynamic setting, where seemingly reasonable importance
sampling schemes perform poorly in practice can be found in [13] and [14]. In the continuous,
dynamic setting, similar issues for metastable problems were investigated in [8].

The goal of this paper is to characterize the performance of a given importance sampling
scheme (not necessarily associated with a subsolution of the related HJB equation) for small
but fixed ε > 0. For a given change of measure, we analyze the second moment of the estimator
under the alternative probability measure through an asymptotic expansion in terms of ε. Under
regularity conditions, we obtain the main correction terms in the logarithmic asymptotics of the
second moment for a given change of measure. This expansion characterizes the performance
of an importance sampling algorithm for a small but fixed ε > 0.

The key contribution of this paper is the characterization of the second moment of an
importance sampling estimator as the solution to a partial differential equation (PDE) and
the accuracy of the approximation of its solution by the corresponding asymptotic expansion;
see Theorems 3 and 4. The authors in [9] and [11] discussed the convergence of solutions
to the log transform of this type of PDE as ε ↓ 0. They characterized the limit of such
equations as the viscosity solution to a certain PDE and discussed its smoothness properties.
We refer the interested reader to those papers and to the references therein for an extensive
discussion on these issues. In this paper we make the discussion specific for the particular
problem of interest, which is the second moment of importance sampling schemes. We obtain
representation formulae for the lower order correction terms in the asymptotic expansion of
its solution. It turns out that the main correction term to the decay rate of the second moment
solves a transport equation that can be solved explicitly.

The analysis of the leading order terms in the asymptotic expansion shows that for certain
problems it may be possible to have relatively poor performance for moderately small values
of ε even if a change of measure with good asymptotic performance is being used. As we shall
see, the main correction term to the logarithmic asymptotics is related to the trace of the second
derivative matrix of the limiting logarithmic asymptotics. If the trace of that second derivative
matrix term takes large values or if the time horizon under consideration is large, it may be the
case that the correction term has a significant contribution to the second moment for a fixed
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choice of ε, yielding a poor performance of the estimator. This could be useful in quantifying
the question of when a specific choice of a subsolution is better than another one for small but
a fixed range of ε > 0.

A partial motivation for this work is the investigation of importance sampling schemes for
problems with rest points in [8]. The authors studied the problem of exit from an asymptotically
stable equilibrium point of a dynamical system by a given time T . It was found that nearly
asymptotically optimal changes of measures may actually perform poorly, which is due to the
presence of rest points (i.e. in this case, the stable equilibrium point). In the setting of [8],
the authors also construct changes of measure that behave optimally both asymptotically and
nonasymptotically.

In this paper the goal is to provide a nonasymptotic analysis of importance sampling schemes
in a general setting. This is useful (a) in obtaining nonasymptotic performance characterization,
(b) in providing a way to mathematically compare the performance of different competing
changes of measure for a specific problem, and (c) in understanding why asymptotically optimal
importance sampling schemes may actually perform poorly in practice.

Lastly, we would like to emphasize that the asymptotic series expansion that we obtain is
not tied to importance sampling schemes that are based on the solution or on a subsolution of
the associated HJB equation. The asymptotic expansion is valid for any ‘sufficiently smooth’
change of measure. If the change of measure happens to be related to a smooth subsolution
of the associated HJB equation, then one can recover the well-known asymptotically optimal
characterization of the related importance sampling scheme.

The paper is organized as follows. In Section 2 we establish notation and recall the relevant
large deviations results and results on asymptotically optimal importance sampling for small
noise diffusions. In Section 3 we analyze the prelimit behavior of the second moment of an
unbiased estimator based on a given change of measure by performing an asymptotic expansion
of the solution to the PDE that it satisfies in terms of ε. In Section 4 we show how the well-
known asymptotic performance can be recovered from the asymptotic analysis. In Section 5
we present an example where the issues addressed in this paper appear. Concluding remarks
are in Section 6.

2. Notation and asymptotically optimal change of measure

In this section we introduce notation and review the related large deviation results for small
noise diffusions. Moreover, in Section 2.1 we review the problem of importance sampling in
the context of small noise diffusions as well as the role of subsolutions in the construction of
asymptotically optimal importance sampling schemes.

First, we establish some notation. Typically (t, x) denotes a specific starting time and initial
state. With an abuse of notation (t, x) will also be used sometimes to denote a generic point in
[0, T ] × R

d (the intended use will be clear from the context).
We define

‖v‖B
.=

√
vTBv

for any v ∈ R
d and symmetric positive definite matrix B. When B is the identity matrix, ‖v‖B

is just the standard Euclidean norm ‖v‖. Our main assumption is as follows.

Condition 1. (i) The drift b(x) is bounded and Lipschitz continuous.

(ii) The coefficients σ are bounded, Lipschitz continuous, and uniformly nondegenerate with
the inverse being bounded as well.
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The action functional associated with process (1) takes the form (see [12]),

StT (φ)
.=

⎧⎨
⎩

∫ T

t

1
2‖φ̇(s)− b(φ(s))‖2

a−1(φ(s))
ds, φ ∈ AC([t, T ]) and φ(t) = x,

+∞ otherwise,
(2)

where a(x) = σ(x)σ�(x) and AC([t, T ]) represents the set of absolutely continuous functions
on [t, T ] with values in R

d .
Given a bounded and continuous function h(x) : R

d �→ R, consider the problem of
estimating

θ(ε; t, x) .= Et,x

[
exp

(
−1

ε
h(Xε(T ))

)]
,

where E is the expectation operator associated with the reference probability measure P.
Defining

Gε(t, x)
.= −ε ln θ(ε; t, x),

the large deviations result in the following theorem is well known; see, for example, [10], [12].

Theorem 1. Assume Condition 1 holds. Then for each (t, x) ∈ [0, T ] × R
d the following

statement holds:

lim
ε↓0

Gε(t, x) = G(t, x)
.= inf
φ∈C([t,T ]),φ(t)=x[StT (φ)+ h(φ(T ))].

Lastly, for notational convenience we define the operator · : ·, where for two matrices A =
[aij ],B = [bij ],

A : B
.=

∑
i,j

aij bij .

2.1. Asymptotically optimal importance sampling

Let us now briefly review the problem of importance sampling for estimating θ(ε) for a
given function h. Consider �ε(t, x) a random variable defined on some probability space with
probability measure P̄ such that

Ē[�ε(t, x)] = θ(ε; t, x),
where Ē is the expectation operator associated with P̄. In other words �ε(t, x) is an unbiased
estimator of θ(ε; t, x).

In Monte Carlo simulations one generates a number of independent copies of�ε(t, x) and the
estimate is the sample mean. The specific number of samples required depends on the desired
accuracy, which is measured by the variance of the sample mean. Clearly, since the samples are
independent, it suffices to consider the variance of a single sample. Then unbiasedness implies
that minimizing the variance is equivalent to minimizing the second moment. By Jensen’s
inequality

Ē(�ε(t, x))2 ≥ (Ē�ε(t, x))2 = θ(ε)2.

The large deviation principle of Theorem 1 implies that

lim sup
ε→0

−ε log Ē(�ε(t, x))2 ≤ 2G(t, x),
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and, thus, 2G(t, x) is the best possible rate of decay of the second moment. If

lim inf
ε→0

−ε log Ē(�ε(t, x))2 ≥ 2G(t, x),

then �ε(t, x) achieves this best decay rate, and is said to be asymptotically optimal.
The choices of unbiased estimators �ε(t, x) that we shall consider are as follows. Consider

ū(s), a sufficiently smooth function such that the change of measure

dP̄
ε

dP
= exp

{
− 1

2ε

∫ T

t

‖ū(s)‖2 ds + 1√
ε

∫ T

t

〈ū(s), dW(s)〉
}

(3)

defines the family of probability measures P̄
ε. Then by Girsanov’s Theorem

W̄ (s) = W(s)− 1√
ε

∫ s

t

ū(ρ) dρ, t ≤ s ≤ T

is a Brownian motion on [t, T ] under the probability measure P̄
ε, Xε satisfies Xε(t) = x, and

dXε(s) = [b(Xε(s))+ σ(Xε(s))ū(s)] ds + √
εσ (Xε(s)) dW̄ (s).

Letting

�ε(t, x) = exp

{
−1

ε
h(Xε(T ))

}
dP

dP̄ε
(Xε),

it follows easily that under P̄
ε, �ε(t, x) is an unbiased estimator for θ(ε). The performance of

this estimator is characterized by the decay rate of its second moment

Qε(t, x; ū) .= Ē
ε

[
exp

{
−2

ε
h(Xε(T ))

}(
dP

dP̄ε
(Xε)

)2]
. (4)

As is demonstrated in [6] and [7], the asymptotically optimal change of measure is associated
with subsolutions to a certain class of HJB equations of the following type:

Ut(t, x)+ 〈b(x),∇xU(t, x)〉 − 1
2‖σ�(x)∇xU(t, x)‖2 = 0, (t, x) ∈ [0, T )× R

d ,

U(T , x) = h(x) for x ∈ R
d . (5)

It can also be shown that if G, defined in Theorem 1, is regular enough, then G is actually the
unique, bounded, continuous viscosity solution of (5); see [10].

Let us now recall the notion of subsolutions.

Definition 1. A function Ū (t, x) : [0, T ] × R
d �→ R is a classical subsolution to the HJB

equation (5) if

(i) Ū is continuously differentiable;

(ii) Ūt (t, x)+H(x,∇xŪ(t, x)) ≥ 0 for every (t, x) ∈ [0, T ] × R
d ;

(iii) Ū (T , x) ≤ h(x) for x ∈ R
d .

The use of subsolutions for importance sampling often leads to imposing stronger regularity
conditions that go beyond those of Definition 1. For presentation purposes we shall assume
Condition 2 holds, which, however, is by no means the most economical, and can be replaced
by milder conditions and further effort. Nevertheless, we shall assume it because it guarantees
that the feedback control used in importance sampling is uniformly bounded, which means that
a number of technicalities are avoided.
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Condition 2. It holds that Ū (t, x) ∈ C1,2([0, T ] × R
d) and the first and second derivatives

in x are uniformly bounded.

The connection between subsolutions and performance of importance sampling schemes has
been established in several papers; see, for example, [6], [7]. In the present setting, we have
the following Theorem regarding asymptotic optimality (see [7, Theorem 4.1]).

Theorem 2. Let {Xε, ε > 0} be the unique strong solution to (1). Consider a bounded
and continuous function h : R

d �→ R and assume Condition 1 holds. Let Ū (t, x) be a
subsolution according to Definition 1 such that Condition 2 holds and define the control
ū(t, x) = −σ(x)�∇xŪ(t, x). Then

G(t, x)+ Ū (t, x) ≤ lim inf
ε→0

−ε lnQε(t, x; ū) ≤ 2G(t, x).

Since Ū is a subsolution, we have Ū (s, y) ≤ G(s, y) everywhere. This implies that the
scheme is asymptotically optimal if Ū (t, x) = G(t, x) at the starting point (t, x). Hence, any
subsolution with value at the origin (t, x) such that

0 � Ū (t, x) ≤ G(t, x)

will have a better asymptotic performance than that of the standard Monte Carlo that corresponds
to the zero subsolution.

3. Nonasymptotic performance of a given change of measure

In Section 2 we recalled the construction of asymptotically optimal importance sampling
schemes for small noise diffusion processes. As we saw there, under regularity conditions, a
change of measure based on the solution or on a subsolution to the associated HJB equation will
be asymptotically optimal in that the bound of Theorem 2 is achieved. However, note that this is
a logarithmic bound based on a large deviations analysis. This means that the pre-exponential
terms are ignored. Nevertheless, the simulation is performed for a fixed ε > 0, and how
small ε should be so that the logarithmic asymptotics dominate the performance may depend
on the particular problem. This is exactly the situation that we want to study. By performing an
asymptotic expansion of the second momentQε(t, x; ū) in terms of ε, we quantify this relation.

We proceed as follows. Consider ū(t, x) : [0, T ] × R
d �→ R

d to be a given sufficiently
smooth function and consider the change of measure given by (3). We start with the following
key result that characterizes the second moment Qε(t, x; ū) as a solution to a PDE.

For a function f ∈ C2(Rd), we define the operator

Lε
ūf (x) = 〈(b(x)− σ(x)ū(t, x)),∇xf (x)〉 + ε

2
σ(x)σ�(x) : ∇2

xf (x).

Theorem 3. Let ε > 0 and assume Condition 1 holds. Consider h : R
d �→ R to be continuous

and bounded and ū : [0, T ]×R
d �→ R

d to be uniformly bounded, continuous in t , and Lipschitz
continuous in x. Assume that the following equation has a unique C1,2([0, T ] × R

d) bounded
solution:

�εt (t, x)+ Lε
ū�

ε(t, x)+ 1

ε
‖ū(t, x)‖2�ε(t, x) = 0, (t, x) ∈ [0, T )× R

d ,

�ε(T , x) = e−(2/ε)h(x), x ∈ R
d , (6)
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and that the derivative of �ε(t, x) up to second order with respect to x and of first order with
respect to t are bounded and continuous in (t, x) ∈ [h, T ] × R

d for every h ∈ (0, T ). Then we
have �ε(t, x) = Qε(t, x; ū).

Proof. We start by proving an equivalent representation for the second moment defined in
(4). In particular, we prove that

Qε(t, x; ū) = Ē
ε

[
exp

{
−2

ε
h(Xε(T ))

}(
dP

dP̄ε
(Xε)

)2]

= E

[
exp

{
−2

ε
h(X̄ε(T ))+ 1

ε

∫ T

t

‖ū(s, X̄ε(s))‖2 ds

}]
, (7)

where X̄ε satisfies X̄ε(t) = x and

dX̄ε(s) = [b(X̄ε(s))− σ(X̄ε(s))ū(s, X̄ε(s))] ds + √
εσ (X̄ε(s)) dW(s).

Due to our assumptions, ū(s, x) is uniformly bounded. Therefore, Girsanov’s theorem
implies that

dQ

dP

.= exp

{
− 1√

ε

∫ T

t

〈ū(s, X̄ε(s)), dW(s)〉 − 1

2ε

∫ T

t

‖ū(s, X̄ε(s))‖2 ds

}

defines a new probability measure Q under which

Ŵ (s) = W(s)+ 1√
ε

∫ s

t

ū(ρ, X̄ε(ρ)) dρ

is a Brownian motion. For notational convenience, we write ū(s) = ū(s, X(s)) even though
the particular process X may change from line to line depending on the measure under which
it is considered. Therefore, X̄ε under P has the same distribution as Xε under Q. This implies
that

E exp

{
−2

ε
h(X̄ε(T ))+ 1

ε

∫ T

t

‖ū(s, X̄ε(s))‖2 ds

}

= E
Q exp

{
−2

ε
h(Xε(T ))+ 1

ε

∫ T

t

‖ū(s)‖2 ds

}

= E exp

{
−2

ε
h(Xε(T ))+ 1

2ε

∫ T

t

‖ū(s)‖2 ds − 1√
ε

∫ T

t

〈ū(s), dW(s)〉
}

= Ē
ε exp

{
−2

ε
h(Xε(T ))+ 1

ε

∫ T

t

‖ū(s)‖2 ds − 2√
ε

∫ T

t

〈ū(s), dW(s)〉
}

= Ē
ε

[
exp

{
−2

ε
h(Xε(T ))

}(
dP

dP̄ε
(Xε)

)2]
,

which completes the proof of the equivalent representation for the second moment.
With expression (7) at hand, the result follows by applying Itô’s formula to the process

Ys = exp

(
1

ε

∫ s

t

‖ū(r, X̄(r))‖2 dr

)
�ε(s, X̄(s)).
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In particular, by Itô’s formula (see, for example, [15]), we have

exp

(
1

ε

∫ T

t

‖ū(r, X̄ε(r))‖2 dr

)
�ε(T , X̄ε(T ))

= �ε(t, x)+
∫ T

t

√
ε exp

(
1

ε

∫ r

t

‖ū(ρ, X̄ε(ρ))‖2 dρ

)

× 〈∇x�ε(r, X̄ε(r)), σ (r, X̄ε(r)) dW(r)〉

+
∫ T

t

exp

(
1

ε

∫ r

t

‖ū(ρ, X̄ε(ρ))‖2 dρ

)[
�εt (r, X̄

ε(r))+ Lū�
ε(r, X̄ε(r))

+ 1

ε
‖ū(r, X̄ε(r))‖2�ε(r, X̄ε(r))

]
dr.

By our assumptions, the stochastic integral term is a square-integrable martingale and has
mean 0. Thus, taking the expected value and recalling that �ε satisfies (6), we conclude the
proof of the theorem.

It is convenient to consider the function 	ε(t, x) = −ε log�ε(t, x). It is easy to see that
	ε satisfies the following:

	εt (t, x)+ Lε
ū	

ε(t, x)− 1
2‖σ�(x)∇x	ε(t, x)‖2 − ‖ū(t, x)‖2 = 0, (8)

where (t, x) ∈ [0, T )× R
d ,	ε(T , x) = 2h(x), and x ∈ R

d .

Since ‖ū‖ and h are assumed to be bounded, the maximum principle for parabolic PDEs
implies that |	ε(t, x)| ≤ C uniformly in (t, x) ∈ [0, T ] × R

d and ε ∈ (0, 1). In fact one can
show, as in [10], that uniformly in compact subsets of [0, T ] × R

d , we have 	ε → v0, where
v0 is the unique bounded, continuous viscosity solution of the HJB equation:

∂tv0 + 〈(b(x)− σ(x)ū(t, x)),∇xv0〉 − 1
2‖σ�(x)∇xv0(t, x)‖2 − ‖ū(t, x)‖2 = 0, (9)

where (t, x) ∈ [0, T )× R
d , v0(T , x) = 2h(x), and x ∈ R

d .

We want to derive an asymptotic expansion for 	ε(t, x) in terms of ε > 0. This will give
an asymptotic expansion for �ε(t, x). At this point, we recall the notion of a region of strong
regularity with respect to a vector β; see, for example, [9].

Definition 2. We say thatN is a region of strong regularity with respect to a vector β = β(s, x)

with (s, x) ∈ [0, T ] × R
d if the following hold:

(i) N is an open subset of [0, T )× R
d ;

(ii) β(s, ·) is Lipschitz for each fixed s ∈ [0, T ].
(iii) Consider the differential equation

ẏ(s) = β(s, y(s)), s ∈ [t, T ), y(t) = x.

Clearly, y(s) = y(s; t, x). For (t, x) ∈ N , define σ(t, x) = inf{s > t : (s, y(s)) /∈ N}.
Let us also define

z(t, x) = (σ (t, x), y(σ (t, x); t, x)), γ (t, x) = {(s, y(s)) : t ≤ s ≤ σ(t, x)}.
Define the set � = {z(t, x) : (t, x) ∈ N}. Then ∂N = �

⋃

, where � is relatively open

subset of ∂N , a C∞ manifold such that γ (t, x) crosses � nontangentially.
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Assume the formal asymptotic expansion

	ε(t, x) = v0(t, x)+ εv1(t, x)+ ε2v2(t, x)+ · · · + εnvn(t, x)+O(εn).

In regions of strong regularity one can prove that this expansion is valid. In particular, we
have the following theorem.

Theorem 4. Assume that

h ∈ Cb(R
d) ∩ C∞(Rd), ‖ū‖ ∈ Cb([0, T ] × R

d) ∩ C∞([0, T ] × R
d).

Let N be a region of strong regularity with respect to

β(s, x) = b(x)− σ(x)ū(s, x)− a(x)∇xv0(s, x)

such that v0 ∈ C∞(N̄). Then for every n = 0, 1, 2, . . . , uniformly on compact subsets of
N ∪ (∂N ∩ ({T } × R

d)), we have

	ε(t, x) = v0(t, x)+ εv1(t, x)+ ε2v2(t, x)+ · · · + εnvn(t, x)+O(εn) as ε ↓ 0.

The main term in the asymptotic expansion, v0, satisfies (9). Moreover,

∂tv1 + 〈(b(x)− σ(x)ū(t, x)),∇xv1〉 + 1
2α(x) : ∇2

xv0 − 〈σ�(x)∇xv0, σ
�(x)∇xv1〉 = 0,

where (t, x) ∈ N, vε1(T , x) = 0, and (T , x) ∈ (∂N ∩ ({T } × R
d)), and, for every n ≥ 2,

∂tvn + 〈(b(x)− σ(x)ū(t, x)),∇xvn〉 + 1
2α(x) : ∇2

xvn−1

−
∑

i+j=n,0≤i<j
〈σ�(x)∇xvi, σ�(x)∇xvj 〉 − 1

2
‖σ�(x)∇xvn/2‖2χ{n/2 is integer}

= 0,

where (t, x) ∈ N, vεn(T , x) = 0, and (T , x) ∈ (∂N ∩ ({T } × R
d)).

Proof. The proof is similar to [9, Theorem 5.1] and is thus omitted. The equations that
are satisfied by the correction terms in the asymptotic expansion can be formally found by
substituting in the asymptotic expansion in (8) and matching powers of ε, εκ for κ = 0, 1, 2, . . ..

We conclude this section with a few useful remarks. Under sufficient regularity; see, for
example, [10, Theorem I.5.1], the leading order term v0(t, x) can be written as the value function
to a variational problem. To be precise

v0(t, x) = inf
φ∈AC([t,T ]) : φ(t)=x

{∫ T

t

[
1

2
‖φ̇(s)− (b(φ(s))− σ(φ(s))ū(s, φ(s)))‖2

a−1(φ(s))

− ‖ū(s, φ(s))‖2
]

ds + 2h(φ(T ))

}
. (10)

Also note that the equation for κ = 1 is a transport equation. Thus, we can explicitly solve
for the correction term in the asymptotic expansion v1, thus

v1(t, x) =
∫ T

t

1

2
α(ψ1(s; x)) : ∇2v0(s, ψ1(s; x)) ds, (11)
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where ψ1(s; x) for s ≥ t solves the ordinary differential equation (ODE)

ψ̇1(s; x) = b(ψ1(s; x))− σ(ψ1(s; x))ū(s, ψ1(s; x))− a(ψ1(s; x))∇v0(s, ψ1(s; x)),
ψ1(t; x) = x. (12)

Note that in a similar fashion, we can solve for the next lower terms of the formal asymptotic
expansion vi, i ≥ 2 as well.

4. Recovering the known asymptotically optimal performance results

Theorem 4 states that for small values of ε the theoretical performance of an importance
sampling scheme based on a given control ū(·) (equivalently change of measure) and for a
fixed starting point in a region of strong regularity, can be approximated under smoothness
assumptions by

�̃ε(t, x) = exp

{
−1

ε
v0(t, x)−

∫ T

t

1

2
a(ψ1(s; x)) : ∇2v0(s, ψ1(s; x)) ds

}
, (13)

where v0(t, x) satisfies (9) and ψ1(s; x) satisfies the ODE (12).

Remark 1. Clearly, the sign of v1(t, x) is of vital importance for the performance of a given
importance sampling change of measure and one would like it to be positive. However, the
point is that the situation where the rate of decay v0(t, x) is positive but the correction term
v1(t, x) is negative can happen, as the example in Section 5 shows. In such a case the two
terms compete and the question of which terms dominates which depends on the relative size
of (1/ε)v0(t, x) and of the correction term v1(t, x).

In this section we show that the leading order term v0(t, x) matches the asymptotically
optimal bounds of Theorem 2 if ū(t, x) is chosen to be the solution or a subsolution to the
associated HJB equation (5).

Let us assume that the actual solution to the related HJB equation is smooth enough and
consider the control ū(t, x) = −σ�(x)∇xG(t, x). Recalling that

G(t, x) = inf
φ∈AC[t,T ],φ(t)=x

{∫ T

t

1

2
‖φ̇(s)− b(φ(s))‖2

a−1(φ(s))
ds + h(φ(T ))

}

and that G(t, x) satisfies (5), we obtain

v0(t, x) = inf
φ∈AC[t,T ],φ(t)=x

{∫ T

t

[
1

2
‖φ̇(s)− (b(φ(s))− σ(φ(s))ū(s, φ(s)))‖2

a−1(φ(s))

− ‖ū(s, φ(s))‖2
]

ds + 2h(φ(T ))

}

= 2G(t, x).

This is the known asymptotically optimal decay rate for the second moment (compare with
Theorem 2 by taking Ū = G). Assuming enough smoothness of G(t, x), the leading order
correction term in the approximation, v1(t, x), takes the form of (11) with v0(t, x) = 2G(t, x)

Due to possible nonsmoothness of the solution to the HJB equation or because it may be very
difficult (which is usually the case) to compute it, the theory of subsolutions has been developed;
see [6], [7]. Let us now study what v0(t, x) looks like when ū(t, x) = −σ�(x)∇xŪ(t, x),
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where Ū (t, x) is a subsolution to the associated HJB equation according to Definition 1 and
subject to Condition 2. In this case we cannot obtain a closed form expression for v0(t, x) as
was done in the case of Ū (t, x) = G(t, x). However, using the subsolution property we can find
the asymptotic bound obtained in Theorem 2. In particular, given an arbitrary φ ∈ AC([t, T ])
with φ(t) = x, the subsolution property implies that

− 〈φ̇(s)− b(φ(s)),∇xŪ(s, φ(s))〉 − 1
2 〈∇xŪ(s, φ(s)), a(φ(s))∇xŪ(s, φ(s))〉

≥ −∂t Ū (s, φ(s))− 〈∇xŪ(s, φ(s)), φ̇(s)〉
= − d

ds
Ū(s, φ(s)).

Integrating both sides on [t, T ] and using the terminal condition Ū (T , x) ≤ h(x), we obtain

−
∫ T

t

(〈φ̇(s)− b(φ(s)),∇xŪ(s, φ(s))〉 + 1
2 〈∇xŪ(s, φ(s)), a(φ(s))∇xŪ(s, φ(s))〉) ds

≥ −h(φ(T ))+ Ū (t, x).

Expanding the square in the expression for v0(t, x) in (10) and using the last display, we indeed
see that

v0(t, x) ≥ G(t, x)+ Ū (t, x),

which, as expected, is the asymptotic lower bound obtained in Theorem 2.

5. An illustrating example

In this section we present a simple example that demonstrates some of the issues mentioned
in the introduction and can be explored via the analysis of Sections 3 and 4. Consider the
reversible process

dXε(s) = −∇V (Xε(s)) ds + √
ε dW(s), X(0) = y.

Let us consider an open set D and define τε to be the exit time of Xε from D,

τε = inf{s > 0 : Xε(s) /∈ D}
and we assume that V ∈ C2(D) with bounded derivative for x ∈ D. We make the assumption
now that the initial point y ∈ D is the global minimum of V (x) such that ∇V (y) = 0 and that
∇V (x) �= 0 for all x �= y. Without loss of generality, we further assume that V (y) = 0. Thus,
the initial point y is an asymptotically stable equilibrium point for the stochastic dynamical
system under consideration and the probability of going away from y is a rare-event probability.
Let 0 ≤ � < L, define

Aκ = {x ∈ R
d : V (x) = κ}, D = {x ∈ R

d : � < V (x) < L}.
We want to estimate the probability

Py[Xε hits AL before hitting A� and before time T ].
In this case we have h(x) = 0 if x ∈ AL and h(x) = ∞ if x ∈ A�. The terminal cost

h(x) is neither bounded nor continuous but, as it is shown in [7], a smooth subsolution will still
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satisfy Theorem 2. It is easy to see that Ū (x) = −2(V (x)−L) is a classical subsolution to the
associated HJB equation, i.e. it satisfies Definition 1. Moreover, it is also easy to see that using
the related control

ū(t, x) = −∇Ū (t, x) = 2∇V (x)
for the change of measure results in essentially simulating under a new change of measure with
reversed potential function in the domain of interest D. Let us analyze the performance of
such an importance sampling scheme, i.e. where under the new measure the potential function
has been reversed. This means that, under the new dynamics, the rare event is no longer rare
because the dynamics do not push the trajectories towards the stable equilibrium point any
more.

Based on Theorem 2, the lower bound that characterizes the asymptotic performance is
G(0, y)+ Ū (y), where

G(0, y) = inf
φ∈�(0,y)[S0T (φ)+ h(φ(T ))],

S0T (φ) is given by (2), and

�(0, y) = {φ ∈ C([0, T ] : R
d) : φ(0) = y, φ(s) ∈ D for s ∈ [0, T ], φ(T ) ∈ ∂D}.

It is clear that G(0, y) also depends on T . By the discussion of Section 4, this means that

v0(0, y) ≥ G(0, y)+ Ū (y).

It is shown in [12, Chapter 4], as T gets larger, G(0, y) and Ū (y) get closer in value.
Thus, by Theorem 2 and for large enough T , the particular importance sampling scheme is
asymptotically optimal.

However, it turns out that one can derive a nonasymptotic lower bound for the related
second moment. The bound indicates that the pre-exponential factors (correction terms) have
significant contribution, sufficient to degrade the actual performance. The starting point to
derive a lower bound for �ε(t, x) = Qε(t, x; ū) at the initial point (t, x) = (0, y) with the
control ū(t, x) = 2∇V (x) is the following stochastic control representation (we refer the
reader to [7] for more details on the derivation and on the use of such representations in the
asymptotic analysis of importance sampling schemes). Let A be the set of all Ft -progressively
measurable d-dimensional processes u ∈ {u(s), s ∈ [0, T ]} that satisfy

E

∫ T

0
‖u(s)‖2 ds < ∞,

and for each fixed ε > 0 consider X̄ε to be the unique strong solution to the controlled SDE

dX̄ε(s) = [−∇V (X̄ε(s))+ (u(s)− ū(X̄ε(s)))] ds + √
ε dW(s), X̄(0) = y.

Then with τ̄ε denoting the first time of exit of X̄ε from the set D, we have the representation

	ε(0, y) = −ε logQε(0, y; ū)

= inf
u∈A

E

[
1

2

∫ τ̄ε

0
‖u(s)‖2 ds −

∫ τ̄ε

0
‖ū(X̄ε(s))‖2 ds + ∞χ{T<τ̄ε}

]
. (14)
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Following similar argument as in [8], let us choose a particular admissible control u(s) in
(14). Let T be large and fix 0 < K < T , splitting the time interval into two parts [0, T −K)

and [T −K, T ]. Set u(s) = 0 for s ∈ [0, T −K). It is easy to see that the resulting dynamics
of the X̄ process is stable for s ∈ [0, T −K) and, thus, with high probability it will stay around
the point y for s ∈ [0, T −K). In the second time interval, i.e. for s ∈ [T −K, T ], we choose a
control that leads to escape prior to time T . The cost induced by such a control may depend on
K , but not on T . Since the representation in (14) takes the infimum over all u ∈ A, the choice
of a particular control results in an upper bound. In particular (see also [8]), we have positive
constants C1, C2 > 0, independent of T or ε such that

Qε(0, y; ū) ≥ exp

(
−1

ε
C1 + C2(T −K)

)
.

This lower bound on the second moment indicates that if T is large one may need to go
to considerably small values of ε before the theoretically optimal asymptotic performance is
observed.

6. Concluding remarks

The expression in (13) gives an approximation to the second moment of an unbiased estimator
for a given change of measure for small but fixed ε > 0. It characterizes the leading order
terms in the asymptotic expansion of the performance measure of an importance sampling
estimator. Moreover, it shows that even in the case that the change of measure is chosen based
on a subsolution, the correction term v1(t, x) may dominate the main term of the asymptotics
−(1/ε)v0(t, x), degrading the performance for small but fixed values of ε > 0. A reason for
that could be the consideration of large time horizon T values.

Hence, for certain choices of change of measure, one may need to go to considerably
smaller values of ε in order to observe a good performance. An example where issues like these
occur is studied in [8], where it is shown that the phenomenon of good theoretical asymptotic
performance but poor actual performance is especially evident in problems with rest points.

The expression for the main correction term v1(t, x) allows us to compare importance
sampling schemes for small but fixed ε > 0. It also shows that the choice of change of measure
does not only affect the leading order term in the asymptotics but also the correction terms. As
it is demonstrated in the general framework considered here and shown in the specific example
of Section 5, the reason of poor actual performance of nevertheless theoretically asymptotically
optimal changes of measure lies in the behavior of the correction terms. The correction terms
can have a significant contribution to the performance of the simulation algorithm, which is
implemented for small but fixed nonzero strength of the noise. In this paper we have quantified
in precise mathematical terms these issues.
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