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Electrohydrodynamics of drops is a classic fluid mechanical problem where deformations
and microscale flows are generated by application of an external electric field. In weak
fields, electric stresses acting on the drop surface drive quadrupolar flows inside and
outside and cause the drop to adopt a steady axisymmetric shape. This phenomenon
is best explained by the leaky-dielectric model under the premise that a net surface
charge is present at the interface while the bulk fluids are electroneutral. In the
case of dielectric drops, increasing the electric field beyond a critical value can
cause the drop to start rotating spontaneously and assume a steady tilted shape. This
symmetry-breaking phenomenon, called Quincke rotation, arises due to the action of the
interfacial electric torque countering the viscous torque on the drop, giving rise to steady
rotation in sufficiently strong fields. Here, we present a small-deformation theory for the
electrohydrodynamics of dielectric drops for the complete Melcher–Taylor leaky-dielectric
model in three dimensions. Our theory is valid in the limits of strong capillary forces
and highly viscous drops and is able to capture the transition to Quincke rotation. A
coupled set of nonlinear ordinary differential equations for the induced dipole moments
and shape functions are derived whose solution matches well with experimental results in
the appropriate small-deformation regime. Retention of both the straining and rotational
components of the flow in the governing equation for charge transport enables us to
perform a linear stability analysis and derive a criterion for the applied electric field
strength that must be overcome for the onset of Quincke rotation of a viscous drop.
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1. Introduction

When applied to fluid media and interfaces, electric fields give rise to a wide variety of
phenomena relevant for both fundamental research and industrial applications. The study
of such phenomena has come to be known as electrohydrodynamics (EHD) and has a rich
history in the fluid mechanics literature (Melcher & Taylor 1969; Saville 1997). The first
study on the subject can be traced back to the work of Rayleigh (1882) on the stability of
charged raindrops. Building on his pioneering work, Zeleny (1915, 1917) and Wilson &
Taylor (1925) performed experiments and theoretical analyses on the stability of charged
prolate-shaped droplets as well as uncharged soap bubbles in electric fields. A few decades
later, Taylor (1964) performed an ingenious yet simple analysis showing that a conical
interface between a conducting liquid and a dielectric medium can exist in equilibrium in
an electric field but only when the cone has a semi-vertical angle of 49.3◦ (Fernández de
La Mora 2007; Collins et al. 2008, 2013). Under certain conditions, such Taylor cones on
the tips of prolate drops can emit extremely fine jets. This EHD phenomenon forms the
basis of electrospraying techniques used in mass spectrometry (Fenn et al. 1989). Early
models for the deformation of drops assumed a balance of normal electric stresses with
hydrodynamic pressure across the interface and were able to explain the steady prolate
shapes seen in most experiments. However, other experiments (O’Konski & Harris 1957;
Allan & Mason 1962) also reported steady oblate shapes, leading Taylor (1966) to posit the
existence of a surface charge density at the drop surface giving rise to tangential interfacial
stresses. These stresses then drive a quadrupolar fluid flow inside and outside the drop and
are responsible for the reported oblate shapes. The leaky-dielectric model used in this
analysis, subsequently formalized by Melcher & Taylor (1969), hypothesizes that the rate
of accumulation of surface charge is balanced by Ohmic currents from the bulk and that
surface charge is advected by the flow.

In a weak electric field, the drop assumes a steady axisymmetric shape that is either
prolate or oblate depending on material properties, and we refer to this as the Taylor
regime. However, on increasing the electric field strength, the system can become unstable
and spontaneously adopt a non-axisymmetric shape with a tilted dipole moment and
steady electro-rotation of the drop (Krause & Chandratreya 1998; Ha & Yang 2000b;
Sato et al. 2006; Salipante & Vlahovska 2010). This spontaneous symmetry breaking,
known as Quincke rotation, was first observed in solid spheres by Quincke (1896). Even
though it is well explained by the Melcher–Taylor leaky-dielectric model proposed in
1969, a theoretical analysis of Quincke rotation was presented much later by Jones (1984).
There has been a revival of interest in Quincke rotation of particles (Bricard et al. 2013,
2015; Das & Lauga 2019; Karani, Pradillo & Vlahovska 2019) and drops (Salipante &
Vlahovska 2010, 2013; Rozynek, Bielas & Józefczak 2018), fuelled in part by an interest in
designing self-propelled particles with controllable collective dynamics and suspensions
or emulsions with tunable rheological properties (Pannacci, Lemaire & Lobry 2007).
Readers are referred to Vlahovska (2019) and Papageorgiou (2019) for recent reviews on
the subject.

While models for rigid particles are well developed (Jones 1984; Das & Saintillan 2013),
the case of deformable droplets is significantly more complex due to the nonlinear coupling
between deformations, fluid flow and interfacial charge dynamics. In his original analysis,
Taylor (1966) performed a first-order small-deformation theory for an axisymmetric
dielectric drop in an electric field, neglecting shape and charge transients as well as
interfacial charge advection by the flow. Since his pioneering work, there have been
several attempts to include various effects such as transient shape deformations (Esmaeeli
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Three-dimensional electrohydrodynamic drop theory

& Sharifi 2011), transient charge relaxation and fluid acceleration (Lanauze, Walker &
Khair 2013), or coupling with other fields such as gravity (Bandopadhyay et al. 2016;
Yariv & Almog 2016). On the computational side, several simulation studies have solved
the Melcher–Taylor leaky-dielectric model using boundary integral methods (Sherwood
1988; Lac & Homsy 2007; Lanauze, Walker & Khair 2015; Nganguia et al. 2016; Das &
Saintillan 2017a) or grid-based methods (López-Herrera, Popinet & Herrada 2011; Hsu,
Hu & Lai 2019; Theillard, Gibou & Saintillan 2019) and often match well with experiments
(Ha & Yang 2000a,b; Salipante & Vlahovska 2010). It is also worth mentioning a related
problem concerning the behaviour and breakup of conducting drops in electric fields
(Dubash & Mestel 2007a,b; Karyappa, Deshmukh & Thaokar 2014).

Including charge convection in analytical theories is challenging, as it couples
nonlinearly with the interfacial fluid velocity. However, charge convection can be
significant in strong electric fields and is critical to include in any analysis of Quincke
rotation. Feng (2002) performed an analysis in which he included the effect of both
rotational and straining flows on charge transport. However, as his analysis was limited to
two dimensions, the drop deformation and tilt angle in the Quincke regime were found not
to depend on the viscosity ratio, similar to the Taylor regime, and consequently the critical
electric field for the onset of rotation was the same as that for a solid cylindrical particle.
Yariv & Frankel (2016) also focused on two dimensions but analysed the asymptotic limit
of strong charge convection (large electric Reynolds number). They found that no fore–aft
symmetric solutions exist in this limit, implying a transition to spontaneous rotation.
Shutov (2002) and Shkadov & Shutov (2002) included charge convection for axisymmetric
drops using small-deformation theory. However, they incorrectly neglected it at first order
and only included it at the second order. He, Salipante & Vlahovska (2013) performed a
three-dimensional analysis of the leaky-dielectric model but only included the effect of
solid-body rotation in the charge convection. This assumption also results in the critical
electric field being independent of viscosity as in the two-dimensional case. Tyatyushkin
(2017) proposed a model for very viscous drops in three dimensions in which he focused
on the effect of surface charge conduction and found a modified expression for the critical
electric field for Quincke rotation. In our previous work (Das & Saintillan 2017b), we
developed a small-deformation theory for the complete Melcher–Taylor leaky-dielectric
model, including transient shape deformation, transient charge relaxation and nonlinear
charge convection. However, the drop shape was assumed to remain axisymmetric,
preventing the occurrence of Quincke rotation. Both experiments (Salipante & Vlahovska
2010) and numerical simulations (Das & Saintillan 2017a) have shown that the critical
electric field for the onset of Quincke rotation of a deformable drop deviates from that of
a solid sphere, which demands a theoretical analysis.

In this paper, we present a three-dimensional small-deformation theory for EHD of a
drop using the complete Melcher–Taylor leaky-dielectric model. The theory is valid in the
limits of strong capillary forces and highly viscous drops. The novelty of our work lies in
the retention of the transient charge relaxation term and straining component of the flow in
the surface charge evolution equation, which renders the governing equations nonlinear but
allows for numerical solutions. Furthermore, inclusion of the latter enables us to perform a
linear stability analysis to determine the critical electric field for the onset of rotation. The
problem definition and its solution are presented in §§ 2 and 3, respectively. We show in § 4
that our theory recovers Quincke rotation of a solid sphere in the limit of infinite viscosity
ratio. Results for deformable drops are compared with experiments and discussed in § 5.
Conclusions are summarized in § 6.
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Figure 1. Problem definition. (a) Prolate- and (b) oblate-shaped drops in the Taylor regime. Quadrupolar
flow fields inside and outside the drop advect charges (depicted as + and − symbols) from equator to poles
in the prolate case and from poles to equator in the oblate case. Here V± denote the exterior and interior
domains, respectively, and (ε±, σ±, μ±) are the corresponding dielectric permittivities, electric conductivities
and dynamic viscosities. (c) Tilted drop in the Quincke regime with both quadrupolar and rotational flow fields
present. Here L and B denote the longest and shortest dimensions of the drop, while φ∗ is the angle between
the direction of maximum deformation and the x-axis. The electric field is applied along the y-axis.

2. Problem definition

Let us consider an uncharged neutrally buoyant dielectric droplet suspended in a weakly
conducting fluid medium as shown in figure 1. The volumes occupied by the droplet
and surrounding fluid are denoted by V− and V+, respectively. In the absence of an
electric field, the droplet remains spherical. However, under the influence of an applied
field, the shape deviates from a sphere and undergoes small ellipsoidal deformations
in the limit of high viscosity and high surface tension. The unit normal vector on the
droplet–fluid interface S is denoted by n and points into the suspending fluid medium.
The electric field may point in any direction, and without loss of generality we choose
a coordinate system in which it is aligned with the y-axis. Let (ε±, σ±, μ±) be the
dielectric permittivities, electric conductivities and dynamic viscosities of the two fluids,
respectively. Non-dimensionalization of the material properties yields three dimensionless
groups, typically defined as

R = σ+

σ− , Q = ε−

ε+ , λ = μ−

μ+ . (2.1a–c)

The low-drop-viscosity limit λ→ 0 describes a bubble, whereas λ→ ∞ describes a rigid
particle. The product RQ can also be interpreted as the ratio of the inner to outer charge
relaxation times:

RQ = τ−

τ+ where τ± = ε±

σ± . (2.2)

Under the assumptions of the Melcher–Taylor leaky-dielectric model (Melcher & Taylor
1969), all charges in the domain are concentrated on the drop–fluid interface, so that the
electric potential in both fluid domains is governed by Laplace’s equation:

∇2ϕ±(x) = 0 for x ∈ V±. (2.3)
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Three-dimensional electrohydrodynamic drop theory

The electric potential and the tangential component of the local electric field are
continuous across the interface:

[[ϕ(x)]] = 0 and [[Et(x)]] = 0 for x ∈ S, (2.4a,b)

where E±
t = (I − nn) · E± and E± = −∇ϕ±. We have introduced the notation

[[ f (x)]] ≡ f +(x) − f −(x) for any field variable f (x) defined on both sides of the interface.
The normal component of the electric field E±

n = n · E± undergoes a jump due to the
mismatch in electrical properties between the two media (Landau, Lifshitz & Pitaevskiì
1984), resulting in a surface charge distribution q(x) related to the normal displacement
field by Gauss’s law:

q(x) = [[εEn(x)]] for x ∈ S. (2.5)

The surface charge density q obeys a conservation law that prescribes a balance between
temporal changes in charge, Ohmic currents from the bulk and charge advection by the
fluid flow with velocity v(x) on the drop surface. Accordingly, it satisfies the conservation
equation

∂q
∂t

+ [[σEn]] + ∇s · (qv) = 0 for x ∈ S, (2.6)

where ∇s ≡ (I − nn) · ∇ is the surface gradient operator. Since the droplet and medium
are leaky dielectrics, freely moving charged ions in the bulk are assumed to be present in
negligible quantities and only surface charges are assumed to exist in the physical domain.
A detailed derivation of the leaky-dielectric model from a more generic electrodiffusion
model is provided in the recent work of Mori & Young (2018).

The fluid velocity field v±(x) and corresponding pressure field p±(x) satisfy the Stokes
equations in both fluid domains:

− μ±∇2v± + ∇p± = 0 and ∇ · v± = 0 for x ∈ V±. (2.7a,b)

The fluid velocity is continuous across the interface S,

[[v(x)]] = 0 for x ∈ S, (2.8)

and the shape of the interface, parametrized by an implicit equation ξ(x, t) = 0, deforms
as a material surface,

Dξ

Dt
= ∂ξ

∂t
+ v · ∇ξ = 0 for x ∈ S. (2.9)

The dynamic boundary condition requires that the jumps in electric and hydrodynamic
tractions across the interface balance surface tension forces:

[[ f E]] + [[ f H]] = γ (∇s · n)n for x ∈ S. (2.10)

Here, γ is the constant surface tension and ∇s · n = 2κm is twice the mean surface
curvature. The jumps in tractions are obtained in terms of the Maxwell stress tensor T E
and hydrodynamic stress tensor T H as

[[ f E]] = n · [[T E]] = n · [[ε(EE − 1
2 E2I)]], (2.11)

[[ f H]] = n · [[T H]] = n · [[−pI + μ(∇v + ∇vT)]]. (2.12)

The jump in electric tractions can also be expressed as

[[ f E]] = [[εEn]]Et + 1
2 [[ε(E2

n − E2
t )]]n = qEt + [[pE]]n. (2.13)

The first term on the right-hand side captures the tangential electric force acting on the
interfacial charge, while the second term captures normal electric stresses and can be
interpreted as a jump in electric pressure pE = 1

2ε(E2
n − E2

t ) (Lac & Homsy 2007).

914 A22-5

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

92
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.924
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The characteristic length and time scales of the problem are the initial radius of the
droplet ad and the Maxwell–Wagner relaxation time τMW , which is the time scale for
polarization of the drop surface upon application of the field (Das & Saintillan 2013):

τMW = ε− + 2ε+

σ− + 2σ+ . (2.14)

Non-dimensionalization of the electric tractions with ε+E2
0, hydrodynamic tractions with

μ+a/τMW and surface tension forces with γ /a gives rise to two additional dimensionless
numbers. They consist of the electric capillary number CaE, denoting the ratio of electric
to capillary forces, and the electric Mason number Ma, denoting the ratio of viscous to
electric stresses:

CaE = adε
+E2

0
γ

, Ma = μ+

ε+τMWE2
0
. (2.15a,b)

The Mason number is inversely proportional to the electric Reynolds number ReE
sometimes used in the literature (Salipante & Vlahovska 2010; Lanauze et al. 2015; Yariv
& Frankel 2016) and defined as

ReE = 1
Ma

1 + 2R
R(Q + 2)

. (2.16)

Since we choose τMW as the time scale for the problem, the Mason number, Ma, appears
in the stress balance equation (3.26). Alternatively, one can choose the EHD straining flow
time, τHD = μ+(1 + λ)/(ε+E2

0), as the relevant time scale for the problem, which would
result in the Mason number, Ma, appearing in the charge conservation equation (3.36), as
done in some previous studies (He et al. 2013).

3. Problem solution

We now present the solution to the governing equations introduced above using a
small-deformation or domain perturbation theory (Taylor & Acrivos 1964; Matunobu
1966; Barthès-Biesel & Acrivos 1973; Rallison 1980). Note that the solutions are expressed
in the laboratory frame of reference.

3.1. Shape of a slightly deformed drop
Let us parametrize the drop–fluid interface as ξ ≡ r − [1 + δf (θ, φ, t)] = 0, where
(r, θ, φ) are spherical coordinates with polar angle θ and azimuthal angle φ. Departures
from the spherical shape are assumed to be small, as evidenced by the small-deformation
parameter δ to be defined more precisely later (see § 3.5). The shape f of the drop is
expanded on the basis of spherical harmonics:

f (θ, φ, t) =
∞∑

l=0

l∑
m=−l

Lml(cos θ)[ fml(t) cos mφ + f̃ml(t) sin mφ], (3.1)

where Lml(cos θ) are the associated Legendre functions of order m and degree l. Owing
to the quadratic nature of electric stresses, the applied field induces perturbations in the
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Three-dimensional electrohydrodynamic drop theory

drop’s shape that are of even order (Das & Saintillan 2017b). Retaining terms to the leading
order of deformation (l = 2), we obtain the following expression for the shape:

f (θ, φ, t) = 1
2(3 cos2 θ − 1) f02(t) − 3 cos θ sin θ [ f12(t) cos φ + f̃12(t) sin φ]

+ 3 sin2 θ [ f22(t) cos 2φ + f̃22(t) sin 2φ]. (3.2)

The time-dependent coefficients fml and f̃ml are unknown and to be determined as part of
the solution. Using (3.2), we can obtain the unit normal vector and mean curvature as

n =
[ ∇ξ

|∇ξ |
]

r=1
= r̂ − δ∇f + O(δ2), κm = 1

2∇s · n. (3.3a,b)

Detailed expressions for n and κm are provided in appendix A.

3.2. Electric problem
The solution for the electric potential in a spherical geometry is best written in terms
of harmonic multipoles (Jackson 1998), with the leading-order term corresponding to a
dipole in this problem. Higher-order multipoles can arise even at first order in deformation
due to the nonlinear charge conservation equation, but we neglect them here. The leading
order of these higher-order multipoles is O(Ma−nλ−n) with n > 2 and they become
stronger with decreasing Mason number and viscosity ratio (see §§ 3.6 and 5.2 for details).
Our theory is therefore valid for drop–fluid systems in which the straining component of
the flow is relatively weak. It is also noted that including higher-order electric multipoles
will in turn induce higher-order shape multipoles in (3.2).

The induced dipole moment on the drop is denoted by P = (Px, Py, Pz) and is
non-dimensionalized by a3E0. The electric potential, non-dimensionalized by aE0, at
location r = r(sin θ cos φ, sin θ sin φ, cos φ) outside and inside the drop is then given by

ϕ+ = −ê · r + P · r
r3 , ϕ− = −ê · r + P · r, (3.4a,b)

respectively, where ê = E0/E0 denotes the direction of the external field. Equations
(3.4a,b) satisfy the boundary conditions (2.4a,b). The normal component of the electric
field is discontinuous, while its tangential components are continuous. Note that, in
the leading-order perturbation analysis, the boundary conditions are enforced on the
surface of the undeformed sphere r = a. Therefore, the leading-order electric field
components are

E+
r = P+

x sin θ cos φ + P+
y sin θ sin φ + P+

z cos θ, (3.5a)

E−
r = P−

x sin θ cos φ + P−
y sin θ sin φ + P−

z cos θ, (3.5b)

Eθ = P−
x cos θ cos φ + P−

y cos θ sin φ − P−
z sin θ, (3.5c)

Eφ = −P−
x sin φ + P−

y cos φ. (3.5d)

We have introduced the short-hand notation P+ = ê + 2P and P− = ê − P for the
coefficients appearing in the combined electric field accounting for the applied field and
induced dipole moment. Doing so allows us to keep the direction ê of the applied field
arbitrary, only to be specified when dealing with the charge conservation equation in § 3.6.
For example, if the electric field is applied in the y-direction, we substitute P+

y = 1 + 2Py,
P−

y = 1 − Py, P+
x,z = 2Px,z and P−

x,z = −Px,z.

914 A22-7

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

92
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.924


D. Das and D. Saintillan

The surface charge density, given by Gauss’s law, and the jump in Ohmic current at the
interface can both also be expressed in terms of surface harmonics as

q = E+
r − QE−

r = q01 cos θ + q11 sin θ cos φ + q̃11 sin θ sin φ, (3.6)

n · [[ j]] = RE+
r − E−

r = jn,01 cos θ + jn,11 sin θ cos φ + j̃n,11 sin θ sin φ, (3.7)

where the coefficients qml and jn,ml are linear functions of the dipole moment:

q01 = P+
z − QP−

z , q11 = P+
x − QP−

x , q̃11 = P+
y − QP−

y , (3.8a–c)

jn,01 = P+
z − QP−

z , jn,11 = P+
x − QP−

x , j̃n,11 = P+
y − QP−

y . (3.9a–c)

The radial, polar and azimuthal components of the jump in electric tractions in (2.13) can
similarly be written as

[[pE]] = [[pE]]00 + [[pE]]02 cos2 θ + ([[pE]]12 cos φ + [[p̃E]]12 sin φ) sin 2θ

+ ([[pE]]22 cos 2φ + [[p̃E]]22 sin 2φ) sin2 θ, (3.10a)

qEθ = qEθ,02 sin 2θ + qEθ,10 cos φ + q̃Eθ,10 sin φ

+ (qEθ,12 cos φ + q̃Eθ,12 sin φ) cos 2θ + (qEθ,22 cos 2φ + q̃Eθ,22 sin 2φ) sin 2θ

(3.10b)

and

qEφ = qEφ,01 sin θ + (qEφ,11 cos φ + q̃Eφ,11 sin φ) cos θ

+ (qEφ,21 cos 2φ + q̃Eφ,21 sin 2φ) sin θ. (3.10c)

The unknown coefficients in this case are quadratic functions of the dipole moments and
are provided in appendix C. It is instructive to notice that the radial, polar and azimuthal
components of the tractions contain harmonic functions of degrees two, two and one, and
one, respectively. We also note that the terms containing qEθ,10, q̃Eθ,10 and qEφ,01 in the
tangential tractions capture the net electric torque acting on the droplet.

3.3. Flow problem
We solve the Stokes equations (2.7a,b) in spherical coordinates using Lamb’s general
solution (Happel & Brenner 1965; Kim & Karrila 2013). The pressure p satisfies Laplace’s
equation and constitutes the particular solution for the Stokes momentum equation, while
the homogeneous solution consists of the velocity potential Φ and toroidal flow field χ .
Inside the drop, only growing harmonics are retained,

pl = rl
l∑

m=0

Lml(cos θ)[aml cos mφ + ãml sin mφ], (3.11a)

Φl = rl
l∑

m=0

Lml(cos θ)[bml cos mφ + b̃ml sin mφ], (3.11b)

χl = rl
l∑

m=0

Lml(cos θ)[cml cos mφ + c̃ml sin mφ], (3.11c)
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Three-dimensional electrohydrodynamic drop theory

while decaying harmonics are used outside,

p−l−1 = r−l−1
l∑

m=0

Lml(cos θ)[Aml cos mφ + Ãml sin mφ], (3.12a)

Φ−l−1 = r−l−1
l∑

m=0

Lml(cos θ)[Bml cos mφ + B̃ml sin mφ], (3.12b)

χ−l−1 = r−l−1
l∑

m=0

Lml(cos θ)[Cml cos mφ + C̃ml sin mφ]. (3.12c)

The velocity fields inside and outside the drop are written as

v− =
∞∑

l=1

[
(l + 3)r2∇pl − 2lplr

2λ(l + 1)(2l + 3)
+ ∇Φl + ∇χl × r

]
,

v+ =
∞∑

l=1

[−(l − 2)r2∇p−l−1 + 2(l + 1)p−l−1r
2l(2l − 1)

]
+

∞∑
l=0

[∇Φ−l−1 + ∇χ−l−1 × r
]
.

(3.13)
and the corresponding pressure fields are p− = ∑∞

l=0 pl and p+ = ∑∞
l=−1 p−l−1. The

velocity and pressure fields are then used to obtain the hydrodynamic tractions inside and
outside,

f ±
H = −r̂p± + μ±r̂ · (∇v± + ∇v±T) + O(δ), (3.14)

which must balance electric stresses as well as capillary forces. Inspecting the radial and
tangential components of these various tractions, we can deduce the harmonics that need
to be retained:

f −
H = −r̂p−

0 + 8
21 r∇p2 − 19

21 r̂p2 + 2λr−1∇Φ2, (3.15a)

f +
H = −r̂p+

0 + 1
2 r∇p−3 − 3

2 r̂p−3 − 8r−1∇Φ−3 − 3∇χ−2 × r̂. (3.15b)

Using the identity r · ∇pl = lpl, we find the radial, polar and azimuthal components of
the jump in hydrodynamic tractions to be

r̂ · [[ f H]] = −[[p0]] − 3p−3 + 24Φ−3 + 1
7 p2 − 4λΦ2, (3.16a)

θ̂ · [[ f H]] = 1
2 θ̂ · ∇p−3 − (8θ̂ · ∇Φ−3 + 3φ̂ · ∇χ−2) − 8

21 θ̂ · ∇p2 − 2λθ̂ · ∇Φ2,

(3.16b)

φ̂ · [[ f H]] = 1
2 φ̂ · ∇p−3 − (8φ̂ · ∇Φ−3 − 3θ̂ · ∇χ−2) − 8

21 φ̂ · ∇p2 − 2λφ̂ · ∇Φ2.

(3.16c)

The radial stresses are conveniently expressed in terms of spherical harmonics
of second degree D, while for the tangential stresses it is convenient to assume
(I − rr) · [[ f H]] = (I − rr) · (∇G + ∇F × r̂), where G and F are spherical harmonics
of second and first degree, respectively. The hydrodynamic stresses are then compactly
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D. Das and D. Saintillan

written as

r̂ · [[ f H]] = −[[p0]] + [ 1
2(3 cos2 θ − 1)D02 − 3 cos θ sin θ (D12 cos φ + D̃12 sin φ)

+ 3 sin2 θ (D22(cos 2φ) + D̃22 sin(2φ))], (3.17a)

θ̂ · [[ f H]] = 3 sin 2θ (−0.5G02 + G22 cos 2φ + G̃22 sin 2φ)

− 3 cos 2θ (G12 cos φ + G̃12 sin φ) + F11 sin φ − F̃11 cos φ (3.17b)

and

φ̂ · [[ f H]] = 3 cos θ (G12 sin φ − G̃12 cos φ) − 6 sin θ (G22 sin 2φ − G̃22 cos 2φ)]

+ F01 sin θ + cos θ (F11 cos φ + F̃11 sin φ), (3.17c)

where the stress coefficients are given by linear combinations of the flow coefficients:

Dml = −3Aml + 24Bml + 1
7 aml − 4λbml, (3.18a)

Gml = 1
2 Aml − 8Bml − 8

21 aml − 2λbml, (3.18b)

Fml = −3Cml. (3.18c)

At this order of approximation, (3.13) for the velocity fields becomes

v− = ∇χ1 × r + 5r2∇p2 − 4p2r
42λ

+ ∇Φ2, v+ = ∇χ−2 × r + 1
2 p−3r + ∇Φ−3.

(3.19a,b)

3.4. Kinematic boundary condition
The no-slip and no-penetration boundary conditions of (2.8) and (2.9) are

v+
θ = v−

θ , v+
φ = v−

φ , v+
r − δv+ · ∇f = v−

r − δv− · ∇f = δḟ , (3.20a–c)

which provide relationships between the flow coefficients inside and outside the droplet.
First, continuity of the polar and azimuthal components of the velocity yields the two
relations

5
42λ

aml + bml = Bml and cml = Cml. (3.21a,b)

The no-penetration boundary condition (3.20c) has two terms that are of O(δ), which
implies that v±

r must be of order O(δ) as well. Since v±
r ∼ λ−1, we require λ−1 = O(δ),

making the theory most accurate for viscous droplets that undergo small deformations
due to high capillary forces. The radial components of the velocity inside and outside the
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Three-dimensional electrohydrodynamic drop theory

drop are

v−
r = 1

7λ
rp2 + 2

r
Φ2 and v+

r = 1
2

rp−3 − 3
r
Φ−3. (3.22a,b)

The no-penetration boundary condition in the radial direction gives us relations involving
the temporal derivatives of the shape and the flow coefficients,

1
7λ

aml + 2bml = 1
2

Aml − 3Bml = δ(ḟml + [v · ∇f ]ml), (3.23)

where we have introduced the following notation for the nonlinear product v · ∇f :

[v · ∇f ] = 1
2 (3 cos2 θ − 1)[v · ∇f ]02 − 3 cos θ sin θ ([v · ∇f ]12 cos φ

+ ˜[v · ∇f ]12 sin φ) + 3 sin2 θ ([v · ∇f ]22 cos 2φ + ˜[v · ∇f ]22 sin 2φ). (3.24)

The coefficients [v · ∇f ]ml are quadratic functions of Cml and fml and are provided in
appendix C. Note that v · ∇f only involves rigid-body rotation, as it is independent of
viscosity, so that the leading-order term in (3.20c) is O(δ). Physically, it simply represents
rotation of the droplet shape with the angular velocity C. We choose to express all the
flow coefficients in terms of coefficients B and C (through [v · ∇f ]) as well as the shape
transient ḟ :

Aml = 2{δ( ḟml + [v · ∇f ]ml) + 3Bml}, (3.25a)

aml = 21
2 λ{−δ( ḟml + [v · ∇f ]ml) + 2Bml}, (3.25b)

bml = 1
4 {5δ( ḟml + [v · ∇f ]ml) − 6Bml}. (3.25c)

Flows associated with coefficients B and C represent straining and rigid-body rotational
flows, respectively.

3.5. Dynamic boundary condition
The dimensionless stress balance on the drop interface reads

[[pE]]n + q(Eθ θ̂ + Eφφ̂) + Ma[[ f H]] = 2
CaE

κmn. (3.26)

We retain terms up to order O(δ) in this equation. In the radial direction, this reads

[[pE]] + Ma r̂ · [[ f H]] = 2
CaE

(1 + 2δf ). (3.27)

Using orthogonality of spherical harmonics, we obtain one set of relations between the
dipole moments, flow and shape coefficients:

[[pE]]00 − Ma([[p0]] + 1
2 D02) = 2Ca−1

E (1 − δ f02), [[pE]]02 + 3
2 MaD02 = 6Ca−1

E δ f02,

[[pE]]12 − 3
2 MaD12 = −6Ca−1

E δ f12, [[p̃E]]12 − 3
2 MaD̃12 = −6Ca−1

E δf̃12,

[[pE]]22 + 3MaD22 = 12Ca−1
E δ f22, [[p̃E]]22 + 3MaD̃22 = 12Ca−1

E δf̃22,
(3.28)

where the hydrodynamic radial stress coefficients D are expressed in terms of the flow and
shape coefficients using (3.18) and (3.25) as

Dml = 3(2 + 3λ)Bml − 1
2δ(12 + 13λ)( ḟml + [v · ∇f ]ml). (3.29)
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The O(1) term on the right-hand side of the first equation in (3.28) is balanced by [[p0]]
and captures the Young–Laplace pressure jump due to surface tension in the undeformed
state.

A second set of relations is obtained from the polar stress boundary condition

qEθ + Ma θ̂ · [[ f H]] = 0, (3.30)

which, after applying orthogonality, yields

F̃11 = 1
Ma

qEθ,10, F11 = − 1
Ma

q̃Eθ,10,

G02 = 2
3Ma

qEθ,02, G12 = 1
3Ma

qEθ,12, G̃12 = 1
3Ma

q̃Eθ,12,

G22 = − 1
3Ma

qEθ,22, G̃22 = − 1
3Ma

q̃Eθ,22,

(3.31)

where G and F, similar to D, are expressed in terms of the flow and shape coefficients as

Fml = −3Cml, Gml = −5(1 + λ)Bml + 1
2δ(2 + 3λ)( ḟml + [v · ∇f ]ml). (3.32a,b)

Balancing stress in the azimuthal direction,

qEφ + Ma φ̂ · [[ f H]] = 0, (3.33)

gives us the same set of relations as in (3.31), with one additional relation,

F01 = 1
Ma

qEφ,01. (3.34)

The driving force for the fluid velocity are the tangential electric stresses, which induce
hydrodynamic tractions that scale as O(Ma−1). The magnitude of the resulting flow
therefore is such that both electric and hydrodynamic radial tractions in (3.28) are of
order O(1). Balancing these tractions with surface tension forces requires us to choose
δ ∝ Ca−1. We choose to define the small-deformation parameter δ as

δ = 3CaE

4(1 + 2R)2 , (3.35)

to be consistent with previous small-deformation theories (Taylor 1966). Physical
quantities required to parametrize the drop shape, such as the extent of ellipsoidal
deformations or tilt angle, are independent of this choice of δ. For given values of the
dipole moments Px,y,z, the relations provided in this section, (3.28), (3.31) and (3.34),
completely solve the EHD flow problem.

3.6. Charge conservation equation
We now proceed to derive a dipole moment evolution equation in each direction starting
from the charge conservation equation. In dimensionless form, it reads

∂q
∂t

+
(

Q + 2
1 + 2R

)
n · [[ j]] + ∇s · (qv) = 0, (3.36)

where the surface charge density and jump in electric current have been scaled by εE0 and
σ−E0, respectively. Taking moments of the charge conservation equation yields evolution
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Three-dimensional electrohydrodynamic drop theory

equations for the charge coefficients:

q̇01 +
(

Q + 2
1 + 2R

)
jn,01 + 3

4π

∫ π

0

∫ 2π

0
[∇s · (qv)][cos θ ] sin θ dφ dθ = 0, (3.37a)

q̇11 +
(

Q + 2
1 + 2R

)
jn,11 + 3

4π

∫ π

0

∫ 2π

0
[∇s · (qv)][sin θ cos φ] sin θ dφ dθ = 0, (3.37b)

˙̃q11 +
(

Q + 2
1 + 2R

)
j̃n,11 + 3

4π

∫ π

0

∫ 2π

0
[∇s · (qv)][sin θ sin φ] sin θ dφ dθ = 0. (3.37c)

In view of (3.8a–c) and (3.9a–c), these can also be regarded as the governing equations
for the components of the dipole moment P. The interfacial velocity is simply found from
(3.19a,b) as vs = v−|r=1 = v+|r=1. After substituting the expression for vs along with
kinematic boundary conditions and applying orthogonality of spherical harmonics, we
obtain the final set of governing equations:

q̇01 +
(

Q + 2
1 + 2R

)
jn,01 + δ

{4
5

(
ḟ02 + [v · ∇f ]02

)
q01

− 6
5

[(˙̃f12 + ˜[v · ∇f ]12

)
q11 + (

ḟ12 + [v · ∇f ]12
)

q̃11

]}
+ q̃11C11 − q11C̃11 − 6

5
q01B02 + 9

5

(
q11B12 + q̃11B̃12

)
= 0, (3.38a)

q̇11 +
(

Q + 2
1 + 2R

)
jn,11 + δ

{
− 2

5

(
ḟ02 + [v · ∇f ]02

)
q11 − 6

5

(
ḟ12 + [v · ∇f ]12

)
q01

+ 12
5

[(
ḟ22 + [v · ∇f ]22

)
q11 +

(˙̃f22 + ˜[v · ∇f ]22

)
q̃11

]}
+ q01

(
C̃11 + 9

5
B12

)
+ 3

5
q11B02 + q̃11C01 − 18

5

(
q11B22 + q̃11B̃22

)
= 0 (3.38b)

and

˙̃q11 +
(

Q + 2
1 + 2R

)
j̃n,11 + δ

{
− 2

5

(
ḟ02 + [v · ∇f ]02

)
q̃11 − 6

5

(˙̃f12 + ˜[v · ∇f ]12

)
q01

12
5

[(
ḟ22 + [v · ∇f ]22

)
q̃11 −

(˙̃f22 + ˜[v · ∇f ]22

)
q11

]}
− q01

(
C11 − 9

5
B̃12

)
+ 3

5
q̃11B02 − q11C01 + 18

5

(
q̃11B22 − q11B̃22

)
= 0. (3.38c)

The initial condition for the charge moments is zero charge, i.e. qml(0) = 0. Note that, in
principle, the nonlinear term in (3.36) may excite higher-order charge multipoles beyond
q01, q11 and q̃11. These higher-order terms scale as O(Ma−nλ−n) with n > 2 and are
neglected here, consistent with the truncation of the multipole expansion (3.4a,b) after
the dipole term. Our theory therefore captures the leading-order O(Ma−1λ−1) effect of
straining flow in the charge convection term.

4. Recovering Quincke rotation of a solid sphere

We discuss the limit of λ→ ∞, i.e. Quincke rotation of a solid sphere, by considering
only the rigid-body rotational flow in the charge convection term. The charge conservation
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equation in the high-viscosity limit reduces to

q̇01 +
(

Q + 2
1 + 2R

)
jn,01 + q̃11C11 − q11C̃11 = 0,

q̇11 +
(

Q + 2
1 + 2R

)
jn,11 + q01C̃11 + q̃11C01 = 0,

˙̃q11 +
(

Q + 2
1 + 2R

)
j̃n,11 − q01C11 − q11C01 = 0,

(4.1)

where the solid-body rotational flows are given by the torque balance equations,

C01 = 1
3Ma

qEφ,01, C11 = − 1
3Ma

q̃Eθ,10, C̃11 = 1
3Ma

qEθ,10. (4.2a–c)

In order to proceed, we choose to apply an electric field in the y-direction, which implies
P+

y = 1 + 2Py, P−
y = 1 − Py, P+

x,z = 2Px,z and P−
x,z = Px,z. This choice of field direction

makes it easier for a direct comparison with the results of He et al. (2013). Substituting
these relations in the polar and azimuthal stress components, we obtain an expression for
the rotational flow fields in terms of the dipole moments:

C01 = Px

2Ma
, C11 = Pz

2Ma
, C̃11 = 0. (4.3a–c)

Substituting the dipole moments in the charge and jump in electric current provides
coupled equations for the dipole components:

Ṗy + Py − P2
x

2Ma
− P2

z

2Ma
= 1 − R

1 + 2R
,

Ṗx + Px

[
1 + 1

2Ma

(
Py − P0

y

)]
= 0,

Ṗz + Pz

[
1 + 1

2Ma

(
Py − P0

y

)]
= 0,

(4.4)

where P0
y = Py(0) = −(1 − Q)/(Q + 2) denotes the initial condition for the dipole

moment in the absence of surface charge. With no loss of generality, we assume a dipole
moment in the (x, y) plane. At steady state, the system of equations (4.4) admits two
solutions corresponding to no rotation, and steady Quincke rotation:

Px = 0, Py = 1 − R
1 + 2R

(no rotation), (4.5a,b)

Px =
√

2Ma
[

3(RQ − 1)

(Q + 2)(1 + 2R)
− 2Ma

]
, Py = P0

y − 2Ma (Quincke rotation).

(4.6a,b)

The solid-body angular velocity is then easily found as

C01 =
√

3(RQ − 1)

2Ma(Q + 2)(1 + 2R)
− 1 =

√
E2

0
E2

c,s
− 1, (4.7)
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Three-dimensional electrohydrodynamic drop theory

where Ec,s is the critical electric field for Quincke rotation of a solid sphere,

Ec,s =
√

2μ+

ε+τMW(ε̄ − σ̄ )
and ε̄ = ε− − ε+

ε− + 2ε+ , σ̄ = σ− − σ+

σ− + 2σ+ . (4.8a–c)

Equations (4.4)–(4.8a–c) match classic results for Quincke electro-rotation of rigid
spheres (Jones 1984; Das & Saintillan 2013) and highlight a supercritical pitchfork
bifurcation in which the axisymmetric equilibrium state with no rotation becomes unstable
and breaks symmetry for field strengths exceeding Ec,s. The system then evolves towards
steady rotation around an arbitrary axis normal to the field and is characterized by a tilted
dipole moment.

5. Results and discussion

We now compare our theoretical results with the existing experimental data of Salipante
& Vlahovska (2010). Most previous studies have quantified departures from sphericity
using Taylor’s deformation parameter DT = (r‖ − r⊥)/(r‖ + r⊥), where r‖ and r⊥ denote
the lengths of the drop in the directions parallel and perpendicular to the electric field,
respectively. The sign of DT distinguishes between oblate (DT < 0) and prolate (DT > 0)
shapes. However, its definition is ambiguous when the drop is tilted at an angle with respect
to the electric field. Following He et al. (2013), we define a new parameter DQ to quantify
drop deformation,

DQ = L − B
L + B

, (5.1)

where L and B denote the lengths of the longest and shortest axes of the drop, respectively
(see figure 1). We also introduce the tilt angle φ∗ as the angle between the longest axis of
the drop and the plane normal to the applied field, such that φ∗ = 0 in the Taylor regime
and φ∗ > 0 in the Quincke regime. It is worth noting that, unlike Taylor’s deformation
parameter, DQ is always positive. In the Taylor regime of axisymmetric deformations,
their magnitudes are the same: DQ = |DT |. As the drop deformation and tilt angle are
measured in the (x, y) plane, the steady shape deformation simplifies to

f (θ = π/2, φ) = −1
2 f02 + 3 f22 cos 2φ + 3f̃22 sin 2φ. (5.2)

The tilt angle φ∗ then reads

φ∗ = 1
2

tan−1

(
f̃22

f22

)
. (5.3)

The lengths of the longest and shortest axes of the drop are

L(φ = φ∗) = 2 − δ( f02 − 6 f22 cos 2φ∗ − 6f̃22 sin 2φ∗), (5.4a)

B(φ = π/2 + φ∗) = 2 − δ( f02 + 6 f22 cos 2φ∗ + 6f̃22 sin 2φ∗), (5.4b)

respectively, yielding the following expression for the deformation parameter in terms of
the shape coefficients and tilt angle:

DQ = 3δ( f22 cos 2φ∗ + f̃22 sin 2φ∗) + O(δ2). (5.5)

In the calculations presented below, we use the material properties, drop sizes and
electric field strengths listed in table 1, which match the experimental values of Salipante
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ε+/ε0 ε−/ε0 σ+ σ− μ+ γ Ec,s
(S m−1) (S m−1) (Pa s) (mN m−1) (kV cm−1)

5.3 3.0 4.5 × 10−11 0.12 × 10−11 0.69 4.5 2.69

Table 1. Material properties used herein corresponding to the experiments of Salipante & Vlahovska (2010).
Here ε0 = 8.8542 × 10−12 F m−1 denotes the permittivity of vacuum.

& Vlahovska (2010). The dimensionless parameters R = 36.6 and Q = 0.57 are held fixed,
while the other three dimensionless parameters λ, CaE and Ma change as we vary the drop
viscosity μ−, initial radius ad and electric field strength E0.

5.1. Drop dynamics ignoring transient charge relaxation and straining flow
In this section, we neglect transient charge relaxation as well as the straining component
of the flow in the charge conservation equation. In this case, our theory reduces to the
model previously proposed by He et al. (2013) exactly. As Pz = 0, we immediately deduce
[[pE]]12 = [[p̃E]]12 = qEθ,10 = q̃Eθ,10 = qEθ,12 = q̃Eθ,12 = 0. Using the radial and polar
stress balance equations, we find the evolution equations for the relevant shape functions:

δḟ02 = H02 = − 1
MaΛ1

(Λ2 f02 − 2[[pE]]02 + 2Λ3qEθ,02), (5.6a)

δ( ḟ22 + 2C01 f̃22) = H22 = − 1
MaΛ1

(Λ2 f22 − [[pE]]22 − Λ3qEθ,22), (5.6b)

δ(
˙̃f22 − 2C01 f22) = H̃22 = − 1

MaΛ1
(Λ2 f̃22 − [[p̃E]]22 − Λ3q̃Eθ,22), (5.6c)

where

Λ1 = 3(19λ+ 16)(2λ+ 3)

10(1 + λ) , Λ2 = 9
(1 + 2R)2 , Λ3 = 3(2 + 3λ)

5(1 + λ) . (5.7a–c)

From these expressions and substituting C01 = Px/2Ma from the azimuthal stress
balance (3.34), we find the steady-state value of the shape coefficients f22 and f̃22 required
for calculating φ∗ and DQ:

f22 = S[Λ2(Λ3qEθ,22 + [[pE]]22) − Λ1δPx(Λ3q̃Eθ,22 + [[p̃E]]22)], (5.8)

f̃22 = S[Λ2(Λ3q̃Eθ,22 + [[p̃E]]22) + Λ1δPx(Λ3qEθ,22 + [[pE]]22)], (5.9)

where S = [Λ2
2 + (Λ1δPx)

2]−1. Neglecting the straining part in the charge convection
term results in the electric problem being the same as that for a solid spherical particle.
Consequently, the critical electric field for the onset of Quincke rotation of a drop remains
the same as that of a solid sphere. The dipole moments Px,y required in the above
expressions are therefore simply given by the solutions obtained in (4.6a,b) for Quincke
rotation of a solid sphere. The tilt angle and deformation for two drops of different sizes
and viscosity ratios (ad, λ) = (0.9 mm, 14.1) and (ad, λ) = (0.7 mm, 1.41) are plotted
in figure 2 (dashed lines). These results are discussed in more detail in the next section.
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Figure 2. Effect of straining flows. (a) Tilt and (b) deformation parameter for two different datasets matching
the experiments of Salipante & Vlahovska (2010). Red and blue colours correspond to drop sizes and viscosity
ratios (ad, λ) = (0.9 mm, 14.1) and (ad, λ) = (0.7 mm, 1.41), respectively. Markers are experimental results,
while solid and dashed lines are predictions from theory with both straining and rotational flows (S + R) and
only rotational flow (R), respectively. Inclusion of straining flows is observed to increase the critical electric
field for the onset of rotation, in good agreement with experimental results. (c) Flow assessment parameter ζ

shows the relative magnitude of straining and rotational flows as a function of electric field strength for the
same two drops in the Taylor and Quincke regimes. Movies showing the flow fields and drop shapes for these
two cases are provided in the supplementary material accompanying this article.

5.2. Drop dynamics with transient charge relaxation and straining flow
Next, we look at the full model including the effects of transient charge relaxation and
straining flow in the charge conservation equation. The tangential components of the
interfacial velocity are of a similar form as the radial components in (5.6):

B02 = − 1
MaΛ4

(Λ2 f02 − 2[[pE]]02 + 2Λ5qEθ,02), (5.10a)

B22 = − 1
MaΛ4

(Λ2 f22 − [[pE]]22 − Λ5qEθ,22), (5.10b)

B̃22 = − 1
MaΛ4

(Λ2 f̃22 − [[p̃E]]22 − Λ5q̃Eθ,22), (5.10c)

where

Λ4 = 3(19λ+ 16)(2λ+ 3)

2 + 3λ
, Λ5 = 12 + 13λ

2 + 3λ
. (5.11a,b)

It is instructive to note that these straining flows scale as O(Ma−1λ−1) and in principle
induce higher-order multipoles neglected in this work. Using the charge conservation
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equation (3.38), we also obtain the dipole moment evolution equations for a droplet subject
to an electric field in the y-direction,

Ṗx + Px +
(

−2
5

H02 + 12
5

H22 + 3
5

B02 − 18
5

B22

)
Px

+
(

12
5

H̃22 + C01 − 18
5

B̃22

)
(Py − P0

y) = 0, (5.12a)

Ṗy + Py +
(

12
5

H̃22 − C01 − 18
5

B̃22

)
Px

+
(

−2
5

H02 − 12
5

H22 + 3
5

B02 + 18
5

B22

)
(Py − P0

y) = 1 − R
1 + 2R

. (5.12b)

Equations (5.12) are subject to initial conditions [Px(0), Py(0)] = (0, P0
y) for the dipole,

and we also impose f02(0) = f22(0) = f̃22(0) = 0 for an initially spherical drop. The
solution to the full problem is then obtained by numerically integrating (5.6) and
(5.12) in time using an explicit fourth-order Runge–Kutta scheme (Pozrikidis 1998) until
steady-state values for the shape coefficients and dipole moments are reached. In the
simulations, we typically introduce a small perturbation in the initial condition for Px at
t = 0, which either decays or amplifies depending on whether the drop is in the Taylor
or Quincke regime, respectively. The MATLAB code used to integrate the equations
has been made available to the reader and can be found in the supplementary material
accompanying this article (available at https://doi.org/10.1017/jfm.2020.924).

In figure 2, we compare our theory with the experimental results of Salipante &
Vlahovska (2010). Here, again, we consider two different systems with distinct drop sizes
and viscosity ratios: (ad, λ) = (0.9 mm, 14.1) (in red) and (ad, λ) = (0.7 mm, 1.41) (in
blue). The experiments clearly show that the critical electric field Ec,d for the onset of
Quincke rotation is higher for the less viscous drop. The complete theory including both
straining and rotational flows (solid lines) in the charge convection equation accurately
predicts the experimental results and captures the increase in the critical electric field.
This effect is more pronounced for the less viscous drop, as the straining flow is stronger
in that case, and indeed our model predicts Ec,d = 1.081Ec,s for λ = 14.1 and Ec,d =
1.241Ec,s for λ = 1.41 in terms of the critical field Ec,s for a rigid sphere. On the other
hand, the theory neglecting the straining flow (dashed lines) fails to predict any shift in the
critical electric field. It is interesting to note that, as the electric field is increased into the
Quincke regime, the rotational component of the flow becomes stronger and the difference
between the predictions of the two theories therefore decreases. In figure 2(b), we plot the
drop deformation DQ as a function of electric field strength. In the Taylor regime, the drop
keeps stretching and becomes more oblate with increasing field strength due to an increase
in the straining flow. However, once the drop enters the Quincke regime, the rotational flow
tends to compete with the straining flow, making the drop more spherical in shape. This
effect seen in experiments is captured well by our theory.

In order to compare the relative strength of the straining and rotational components of
the flow, we introduce a flow assessment parameter defined as

ζ = tr(S2) − tr(W 2)

tr(S2) + tr(W 2)
, (5.13)

where S and W are the rate-of-strain and rate-of-rotation tensors, respectively (Das
& Saintillan 2017a). With this definition, ζ = 1 represents purely straining flow while
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Three-dimensional electrohydrodynamic drop theory

ζ = −1 represents purely rotational flow. In order to determine the nature of the flow field
inside the drop, we compute its value at the origin where it assumes a simple form in terms
of the flow coefficients,

ζ(r = 0) = 9(b2
02 + 8b2

22 + 8b̃2
22) + 2C2

01

9(b2
02 + 8b2

22 + 8b̃2
22) − 2C2

01

, (5.14)

which we plot for the two different drops in figure 2(c). In the Taylor regime, ζ is
identically 1, as rotational flows are absent, but it sharply drops in magnitude at the onset
of Quincke rotation. The increase in critical electric field is seen in this plot as well if
straining flow is included in the charge conservation equation (solid lines). In the Quincke
regime, ζ ≈ −1 for the high-viscosity drop (red lines), as the rotational flow is much
stronger than the straining flow. On the other hand, ζ assumes an intermediate value for
the lower-viscosity drop (blue lines), as the straining flow is stronger in magnitude in that
case. Movies showing the flow fields and drop shapes for these two cases are provided in
the supplementary material.

Figure 3 compares the drop tilt angle predicted by the theory with the experiments
of Salipante & Vlahovska (2010) for three different viscosity ratios, λ = 0.14, 1.41 and
14.1, and a range of drop sizes, ad = 0.50–2.45 m. For a given viscosity ratio, our model
predicts that the onset of Quincke rotation increases with increasing drop size, though
this trend is not seen in experiments, as we further discuss below. Once Quincke rotation
takes place, the smaller drops have a higher tilt angle compared to the larger ones, up
to a certain electric field strength, after which this trend reverses. This is particularly
visible for the lowest viscosity ratio of λ = 0.14 in figure 3(c). The theory does best
at capturing the onset of rotation in the case of high- and medium-viscosity drops in
figures 3(a) and 3(b), respectively, but underpredicts the critical electric field for λ = 0.14
in figure 3(c). This can be attributed to three reasons. Firstly, lower-viscosity drops undergo
larger deformations so that the small-deformation theory becomes less accurate. Secondly,
we recall from § 3.4 that the asymptotic order of our theory requires λ = O(δ−1). Lastly,
lower-viscosity drops have much higher straining flows, as the strength of the straining flow
scales as ∼λ−1 for fixed Mason number Ma. These straining flows result in stronger charge
convection, which can only be captured by including higher-order terms in O(Ma−1λ−1)
(see relevant discussion in § 3.6). However, once rotation has ensued, drop deformation
decreases and straining flow is overcome by rotational flow, and, as a consequence, the
drop tilt angle is very well captured by the theory for sufficiently large E/Ec,s past the onset
of rotation, regardless of the viscosity ratio. We also note that, while the theory developed
here is valid in the weak charge convection regime, the results are found to match well
with the experiments even when Ma−1λ−1 ∼ 1, i.e. for the high- and medium-viscosity
drops.

5.3. Linear stability analysis for critical electric field
In this section, we perform a linear stability analysis on the governing equations (5.6)
and (5.12) to determine the critical electric field for the onset of electro-rotation in the
case of a drop. The equilibrium state, denoted with a superscript e, is the axisymmetric
Taylor regime with no rotation and a dipole moment perfectly aligned with the field. For
an applied field in the y-direction, we obtain Pe

y by solving the cubic equation

Pe
y + 2(Q + 2)

25Ma(1 + λ)(P
e
y − 1)(Pe

y − P0
y)

2 = 1 − R
1 + 2R

. (5.15)
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Figure 3. Tilt angle for drops of various sizes ad and viscosity ratios (a) λ = 14.1, (b) λ = 1.41 and
(c) λ = 0.14. Lines are predictions from theory, which includes both straining and rotational components of
the flow, as presented in § 5.2. Squares, diamonds, triangles and circles are experimental results of Salipante
& Vlahovska (2010). The critical electric field for the onset of Quincke rotation increases with a decrease in
viscosity ratio and is well captured by the theory.

In the Taylor regime, the shape is axisymmetric. It is captured by coefficients f e
02 and f e

22,
which can be found by using (5.6). We perturb the equilibrium base state as⎛⎜⎜⎜⎜⎜⎝

Px

Py

f02

f22

f̃22

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
0
Pe

y

f e
02

f e
22
0

⎞⎟⎟⎟⎟⎟⎠+ α

⎛⎜⎜⎜⎜⎜⎝
P′

x
P′

y

f ′
02

f ′
22

f̃ ′
22

⎞⎟⎟⎟⎟⎟⎠ , (5.16)

where primed variables denote perturbations. In the limit of α � 1, we linearize (5.6) and
(5.12) and obtain an eigenvalue problem,

d
dt

⎛⎜⎜⎜⎜⎜⎝
P′

x
P′

y

f ′
02

f ′
22

f̃ ′
22

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
J11 0 0 0 J15

0 J22 J23 J24 0
0 J32 J33 0 0
0 J42 0 J44 0
J51 0 0 0 J55

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝
P′

x
P′

y

f ′
02

f ′
22

f̃ ′
22

⎞⎟⎟⎟⎟⎟⎠ , (5.17)

where the exact expressions for the components of the constant Jacobian matrix J =
J (Ma, λ, R, Q) are provided in appendix D. Inspection of (5.17) shows that the transverse
dipole moment and shape perturbation P′

x and f̃ ′
22 depend on each other but are uncoupled

from the other variables, a consequence of the quadratic nature of electric stresses.
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Figure 4. Critical electric field versus (a) drop radius and (b) viscosity ratio. The critical field Ec for a drop
is normalized by the critical value Ec,s for a rigid spherical particle. Lines are predictions from the theory
including straining flow, while markers are experimental results of Salipante & Vlahovska (2010). The critical
field obtained from the linear stability analysis gives the same result as the numerical solutions; hence, it is not
shown here for brevity.

To analyse the stability, we therefore need only to consider the simpler system

d
dt

(
P′

x

f̃ ′
22

)
=
(J11 J15

J51 J55

)(
P′

x

f̃ ′
22

)
. (5.18)

Its eigenvalues are then determined numerically, and the critical value Ec/Ec,s of the
applied field at which at least one eigenvalue becomes positive is recorded.

In figure 4, we plot the variation of the critical electric field Ec for the onset of Quincke
rotation of drops for a wide range of drop sizes and viscosity ratios, comparing experiments
with numerical solutions. Figure 4(a) shows the variation of the critical electric field with
drop radius for various viscosity ratios λ = 0.14–14.1. The critical field for a given drop
size is observed to decrease with increase in viscosity ratio. However, across the range
of viscosity ratios, it is observed in experiments that bigger drops have a lower critical
electric field than smaller ones. This is shown more clearly in figure 4(b), where we plot the
critical electric field as a function of viscosity ratio for various drop sizes. The observation
that smaller drops have a higher critical electric field for Quincke rotation has also been
reported in boundary element simulations (Das & Saintillan 2017a). However, it is not
captured by the first-order small-deformation theory, which predicts the opposite trend.
We speculate that higher-order contributions of the dipole moment may be responsible
for the discrepancy. It has already been noted in previous studies that the critical electric
field of an oblate spheroid (bigger and more deformed drop) is higher than that of a solid
sphere (smaller and less deformed drop) due to a stronger induced dipole in the former
case (Cēbers, Lemaire & Lobry 2000; Salipante & Vlahovska 2013). We also note that
the hydrodynamic torque required for rotating an oblate spheroid is smaller compared to
that of a sphere, which acts to decrease the critical electric field for the onset of rotation
(Kim & Karrila 2013). A full analysis of these effects is beyond the scope of this paper.
It is also noted inexplicably that, while the trend of Ec as a function of the drop radius ad
disagrees with experiments, its variation with the viscosity ratio λ tends to agree well with
experiments. Predictions of the linear stability analysis for the critical electric field give
the same result as that obtained by numerically integrating the complete set of ordinary
differential equations (ODEs) (5.6) and (5.12).
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6. Conclusions

We have developed a leading-order small-deformation theory for the EHD of a dielectric
drop in an applied electric field using the complete Melcher–Taylor leaky-dielectric model
in three dimensions. Our model improves upon past theories that had neglected the effect
of straining flows or been limited to axisymmetric deformations. It is most accurate in
the limits of strong capillary forces, highly viscous drops and weak but finite charge
convection, and is able to capture the transition to Quincke rotation seen in experiments
and simulations. A coupled set of nonlinear ODEs involving dipole moments, shape and
flow field coefficients were derived. Numerical solutions of this systems of ODEs were
compared with existing experiments and showed excellent agreement in the appropriate
limits of high viscosity and small deformations.

The main novelty of our work is the retention of the nonlinear straining flow in
the governing equation for charge transport, which allowed us to explore variations in
the critical electric field for electro-rotation observed in both experiments (Salipante &
Vlahovska 2010) and simulations (Das & Saintillan 2017a). Predictions of the theory
for the drop deformation and tilt angle, and for the critical electric field, showed good
quantitative agreement with experimental data in the appropriate limits, with the exception
of the dependence of Ec on drop size, which we hypothesize requires higher-order
effects to be captured accurately. This may perhaps be achieved using a spheroidal
drop theory allowing for large deformations as in the work of Zhang, Zahn & Lin
(2013). While drop deformation increases monotonically with electric field strength in
the Taylor regime due to the sole presence of straining flows, our theory shows that, once
Quincke rotation occurs, the rotational flow dominates and tends to decrease deformations
in agreement with experimental observations. Our theoretical model, in addition to
furthering our fundamental understanding of the role of interfacial flows in droplet EHD,
may also be useful for building models for emulsions of interacting drops (Varshney
et al. 2016; Zabarankin 2020) and for understanding other instabilities and complex
dynamics observed in related systems (Dommersnes et al. 2013; Ouriemi & Vlahovska
2014; Brosseau & Vlahovska 2017).

Supplementary material and movies. Supplementary material and movies are available at https://doi.org/
10.1017/jfm.2020.924.
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Appendix A. Surface normal and curvature

We parametrize the drop shape by the implicit equation ξ(x, t) = r − 1 − δf (θ, φ, t) = 0.
The unit normal is then given by n = ∇ξ/|∇ξ |, and the total curvature by 2κm = ∇s · n =
(I − nn) : ∇n. Using (3.2) for the shape deformation and keeping terms up to O(δ), we
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Three-dimensional electrohydrodynamic drop theory

find

n = r̂ + 3δ{[cos 2θ ( f12 cos φ + f̃12 sin φ)

+ sin θ cos θ ( f02 − f22 cos 2φ − f̃22 sin 2φ)]θ̂

+ [cos θ ( f12 sin φ − f̃12 cos φ) − 2 sin θ ( f22 sin 2φ − f̃22 cos 2φ)]φ̂} (A1)

and

∇s · n = 2 + 2δ[(3 cos2 θ − 1) f02 − 6 sin θ cos θ ( f12 cos φ + f̃12 sin φ)

+ 6 sin2 θ ( f22 cos 2φ + f̃22 sin 2φ)]. (A2)

Appendix B. Electric stresses

The radial electric stresses on the drop–fluid interface are written in terms of dipole
moments as

[[pE]] = [[pE]]00 + [[pE]]02 cos2 θ + ([[pE]]12 cos φ + [[p̃E]]12 sin φ) sin 2θ

+ ([[pE]]22 cos 2φ + [[p̃E]]22 sin 2φ) sin2 θ, (B1)

with coefficients given by

[[pE]]00 = 1
4 [P+2

x + P+2
y − P−2

x − P−2
y − 2(1 − Q)P−2

z ], (B2a)

[[pE]]02 = 1
4 [−P+2

x − P+2
y + 2P+2

z − (1 − 2Q)(P−2
x + P−2

y − 2P−2
z )], (B2b)

[[pE]]12 = 1
2 [P+

x P+
z + (1 − 2Q)P−

x P−
z ], (B2c)

[[p̃E]]12 = 1
2 [P+

y P+
z + (1 − 2Q)P−

y P−
z ], (B2d)

[[pE]]22 = 1
4 [P+2

x − P+2
y + (1 − 2Q)(P−2

x − P−2
y )], (B2e)

[[p̃E]]22 = 1
2 [P+

x P+
y + (1 − 2Q)P−

x P−
y ]. (B2f )

Similarly, the polar stresses on the interface are expressed as

qEθ = qEθ,02 sin 2θ + qEθ,10 cos φ + q̃Eθ,10 sin φ

+ (qEθ,12 cos φ + q̃Eθ,12 sin φ) cos 2θ + (qEθ,22 cos 2φ + q̃Eθ,22 sin 2φ) sin 2θ

(B3)

where

qEθ,02 = 1
4 [P+

x P−
x + P+

y P−
y − 2P+

z P−
z − Q(P−2

x + P−2
y − 2P−2

z )], (B4a)

qEθ,10 = 1
2 [P+

z P−
x − P−

z P+
x ], (B4b)

q̃Eθ,10 = 1
2 [P+

z P−
y − P−

z P+
y ], (B4c)

qEθ,12 = 1
2 [P+

z P−
x + P−

z P+
x − 2QP−

z P−
x ], (B4d)

q̃Eθ,12 = 1
2 [P+

z P−
y + P−

z P+
y − 2QP−

z P−
y ], (B4e)

qEθ,22 = 1
4 [P+

x P−
x − P+

y P−
y − Q(P−2

x − P−2
y )], (B4f )

q̃Eθ,22 = 1
4 [P+

x P−
y + P−

x P+
y − 2QP−

x P−
y ]. (B4g)
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Finally, the azimuthal stresses are given by

qEφ = qEφ,01 sin θ + (qEφ,11 cos φ + q̃Eφ,11 sin φ) cos θ

+ (qEφ,21 cos 2φ + q̃Eφ,21 sin 2φ) sin θ, (B5)

where

qEφ,01 = 1
2 [P+

x P−
y − P−

x P+
y ], (B6)

qEφ,11 = P−
y (P+

z − QP−
z ), (B7)

q̃Eφ,11 = −P−
x (P+

z − QP−
z ) (B8)

qEφ,21 = 2q̃Eθ,22 = 1
2 [P+

x P−
y + P−

x P+
y − 2QP−

x P−
y ] (B9)

q̃Eφ,21 = −2qEθ,22 = −1
2 [P+

x P−
x − P+

y P−
y − Q(P−2

x − P−2
y )]. (B10)

Some identities useful in deriving these expressions are

r · ∇pl = npl, r · ∇∇pl = (l − 1)∇pl. (B11a,b)

Appendix C. Radial kinematic boundary condition

The convective derivative v · ∇f in the kinematic boundary conditions (3.20a–c) is
expanded as

[v · ∇f ] = 1
2 (3 cos2 θ − 1)[v · ∇f ]02 − 3 cos θ sin θ ([v · ∇f ]12 cos φ

+ ˜[v · ∇f ]12 sin φ) + 3 sin2 θ ([v · ∇f ]22 cos 2φ + ˜[v · ∇f ]22 sin 2φ), (C1)

with coefficients

[v · ∇f ]02 = 3(C̃11 f12 − C11 f̃12), (C2a)

[v · ∇f ]12 = C01 f̃12 − C̃11 f02 + 2(C̃11 f22 − C11 f̃22), (C2b)

[˜v · ∇f ]12 = −C01 f12 + C11 f02 + 2(C11 f22 + C̃11 f̃22) (C2c)

[v · ∇f ]22 = −1
2 C̃11 f12 − 1

2 C11 f̃12 + 2C01 f̃22, (C2d)

[˜v · ∇f ]22 = 1
2 C11 f12 − 1

2 C̃11 f̃12 − 2C01 f22. (C2e)

Appendix D. Jacobian matrix for stability analysis

The components of the Jacobian matrix in (5.17) are given by

J11 = −1 − 1
25Ma(1 + λ)(1 − Pe

y)[1 + 2Pe
y − Q(1 − Pe

y)]

− 1
Ma

(Pe
y − P0

y)

{
1
2

+ 6
5

(
2

Λ1
− 3

Λ4

)[
1 + 2Pe

y +
(

Q − 1
2

)
(1 − Pe

y)

]
+ 6

5

(
2Λ3

Λ1
− 3Λ5

Λ4

)[
1
4

− Pe
y + 1

2
Q(1 − Pe

y)

]}
, (D1a)
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J22 = −1 + 2
5Ma(1 + λ)(1 − Pe

y)[1 + 2Pe
y − Q(1 − Pe

y)]

− 8
5Ma

(Pe
y − P0

y)

{(
2

Λ1
− 3

Λ4

)[
1 + 2Pe

y +
(

Q − 1
2

)
(1 − Pe

y)

]
+
(

2Λ3

Λ1
− 3Λ5

Λ4

)[
1
4

− Pe
y + 1

2
Q(1 − Pe

y)

]}
, (D1b)

J33 = J44 = J55 = − 1
δMaΛ1

9
(1 + 2R)2 , (D1c)

J15 = 6Λ2

5Ma
(Pe

y − P0
y)

(
2

Λ1
− 3

Λ4

)
, J23 = −1

6
J15, J24 = −J15, (D1d)

J42 = − 1
δMaΛ1

{[
1 + 2Pe

y +
(

Q − 1
2

)
(1 − Pe

y)

]
+ Λ3

[
1
4

− Pe
y + 1

2
Q(1 − Pe

y)

]}
,

(D1e)

J32 = 2J42, J51 = −J42 − 1
Ma

f22,0. (D1f )
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