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ON KAHLER NILMANIFOLDS
WITH TOP HOMOLOGY IN CODIMENSION TWO

BRUCE GILLIGAN

Suppose G is a connected, complex, nilpotent Lie group and F is a discrete subgroup
of G such that G/Y is Kahler and the top nonvanishing homology group of G/T (with
coefficients in Z2) is in codimension two or less. We show that G is then Abelian.
We also note that an example from [12] shows that this fails if the top nonvanishing
homology is in codimension three.

1. INTRODUCTION

Consider a complex homogeneous manifold X = G/H, where G is a connected
complex Lie group and if is a closed, complex subgroup. There have been a number
of results concerning the structure of such X that are Kahler. If X is compact, see the
work of Matsushima [9] and Borel and Remmert [5] and if the metric is G-invariant see
[6]. If X is not compact and the metric is not necessarily G-invariant, then the situation
appears to be much more complicated. There are some results, but usually under some
restrictions on the structure of the group G. For example, if G is semisimple, then X is
Kahler if and only if H is an algebraic subgroup of G, see [4, 3], and if G is solvable,
then the fibre of its holomorphic reduction is a Cousin group [12].

This note presents an observation about Kahler homogeneous manifolds with Klein
form G/T with F a discrete subgroup of a complex, nilpotent group G under the topo-
logical assumption do/v ^ 2, that is, the top nonvanishing homology group of G/T with
coefficients in Z2 is in codimension at most two; see the next section for definitions. The
group G must be Abelian in this setting. We rely heavily upon Lie algebra calculations
from [12]. We also note that an example from [12] shows that without the topological
assumption d<;/r ^ 2 there exist Kahler nilmanifolds where no Abelian group can act
transitively.
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2. TOPOLOGICAL PRELIMINARIES

The purpose of this section is to introduce the topological machinery that we shall
need.

DEFINITION: Suppose X is a connected, smooth manifold X. Define

hx := min{r | Hk{X,Z2) = 0 for all k > r)

and set
dx " dxn\X — hx-

Note that dx = 0 if and only if X is compact.

In order to deal with fibre bundles we need the following Fibration Lemma from
[1]. The proofs of these statements involve spectral sequence arguments and are straight-
forward; see [1, Lemma 1 and Lemma 2], Note that X, F, and B are manifolds in our
setting and a manifold always has the homotopy type of a CW-complex, see [10].

LEMMA 1. (Fibration Lemma) Suppose X - ^ B is a fibre bundle, where X, F,
and B are smooth manifolds with X connected.

(a) Let B have the homotopy type of a CW-complex of dimension q. Then

dx > dF + (dimB -q).

(b) Moreover, if the bundle is simple, then

dx = dp + d,B-

In particular, dx~& dp.

3. KAHLER NILMANIFOLDS

For G a connected, simply connected, complex nilpotent Lie group the exponential
map exp : g —> G is one-to-one and onto. Let F be a discrete subgroup of G and consider
the (real) Lie subalgebra g0 of (j that is spanned by the lattice exp-1(r). Since G is
simply connected, the corresponding connected Lie subgroup Go '•= exp(fl0) is closed in
G and GQ/T is compact. We use the notation (T)G to denote the connected complex
subgroup of G that has Lie algebra go + Jflo- (This group is also closed in G.) Since
G/T is biholomorphic to G/{T)G X (F)o/r and (J / (F)G is biholomorphic to C* for some
nonnegative integer k, the most interesting case occurs when (F)G = G. Then GQ/T is a
generic CR-submanifold of G/T. If, in addition, G/T is Kahler, then we call the triple
(G, G0,T) a Kahler Cauchy-Riemann nilmanifold; see [12] for Kahler Cauchy-Riemann
solvmanifolds.

Given a Kahler Cauchy-Riemann nilmanifold (G, G0,T), we set

m := flo n i • go-
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and let 3 denote the centre of g. Using detailed Lie algebra computations Oeljeklaus and
Richthofer made two observations about Kahler Cauchy-Riemann nilmanifolds in [12]
that we shall use in the following. In the proof of Theorem 2' on pp. 409 - 410 they
showed that

(1) m C 3.

(An assumption in the statement of their Theorem 2' is that O(G/T) = C. However,
this assumption is not used in the first steps of the proof which involve showing that
(1) holds, but rather in a later part of the proof in order to show that G is Abelian.)
Oeljeklaus and Richthofer also noted in [12, Remark 4(b)] that

(2)

in the Kahler Cauchy-Riemann nilmanifold setting. We shall use (1) and (2) later on.

LEMMA 2 . Let g be a complex Lie algebra with centre 3 and assume codimc
0/3 < 1. Then g is Abelian.

P R O O F : We assume that g is not Abelian, and thus codimcfl/3 = 1, and derive
a contradiction from this. Let it : g —> 0/3 be the projection and pick a generator
X G 0/3. Choose any X' £ g with w(X') = X. Then for any elements Xi,X2 € g one
has 7r(Xi) = a{X with a, e C for i = 1,2. Thus Xt = atX' + Yt, where Y,; e 3 for i - 1,2.
Since the Yt are central, this gives

[Xlt X2] = [cnX' + YltaaX' + Y2] = axa2[X', X'\ = 0.

This shows that 0 is Abelian, a contradiction to our assumption and completes the
proof. D

The next observation was pointed out to us by K. Oeljeklaus.

PROPOSITION 1. Let (G, Go, T) be a Kahler Cauchy-Riemana nihnanifold with
(T)G = G and let G/V -+G/J be its holomorphic reduction. Then J° c Z, where Z is
the centre ofG. At the Lie algebra level one has

m c j C 3.

PROOF: Since G/J is holomorphically separable, J" is the smallest connected closed
complex subgroup of G that contains M, the connected group corresponding to the Lie
algebra m; see [7, the proof of Theorem 7, p. 46]. By (1) one has m C 3. But the subgroup
Z • F is closed in G, see [7, Theorem 4]. Thus J" C Z T and, because J" is connected,
J° C Z. The corresponding statement about the inclusions of the Lie algebras follows
from this inclusion. D

THEOREM 1. Let (G,G0,T) be a Kahler Cauchy-Riemann nilmanifold with
dG/r ^ 2. Then G is Abelian.
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P R O O F : If O(G/T) a C, then G/T is a Cousin group by [12] and thus G is Abelian.

In particular, this handles the case when G/T is compact.

Next we assume that O{G/T) ^ C and let G/T -> G/J be its holomorphic reduction,

see [7]. Note that dim G/J > 0 by assumption. Since G/J is Stein [7], one has

dG/j ^ dime G/J.

Prom the Fibration Lemma one gets da/r ^ da/j. Thus

(3) 2

CASE 1 dime G/J = 1. Since J° C Z, one has codimc^ < codimcJ = 1 . So G is
Abelian by Lemma 2.

CASE 2 dime G/J = 2. One must have equality in equation (3). Hence G/J is a Stein
solvmanifold with dG/j = 2. Every solvmanifold X admits a fibration X —• Y, where
Y is a compact solvmanifold and the fibre is a real vector space of real dimension dx
[2, 11]. So one has a fibration

G/J A Y,
where Y is a compact solvmanifold with real dimension two. In particular, G/J has the
homotopy type of a CW-complex of dimension 2. Since dG/r = 2, it follows from the
Fibration Lemma that dj/r = 0 and the fibre J/T of the holomorphic reduction of G/T
is compact. Since the base of the holomorphic reduction of G/T is Stein and its fibre is
a torus, one sees that m = j C 3. So the complex codimension of m in g is two.

Let's consider the possibilities for how 3 can fit into the following inclusions

m C 3 C fl.

First suppose that m = 3. In a nilpotent Lie algebra the centre 3 meets every ideal
nontrivially. In particular, 3 meets g'o nontrivially, since the latter is not zero, if G is not
Abelian. Thus

But this contradicts (2). Hence m is a proper subalgebra of 3. By Lemma 2 it is not
possible that the codimension of 3 in g be exactly equal to one. Thus 3 = 0. Therefore,
if G/T is Kahler with dG/r ^ 2, then G is Abelian. This completes the proof of the
Theorem. D

EXAMPLE 1. Then [12, Example 6(a)] illustrates "how one can fit" both m and g0 into
3 so that they do not meet in an example of a Kahler nilmanifold X with dx = 3. In this
example, no Abelian group can act transitively on X, since ni(X) is not Abelian. Here
the complex codimension of 3 in g is two and the complex codimension of m in 3 is one.
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E X A M P L E 2. Thus [12, Example 6(b)] is an example of a G/T, where m = 3 has codi-
mension two in g. So there is "no room" for a nontrivial intersection of g'Q with 3 without
meeting m. Since G is not Abelian, there is no Kahler structure on G/T.

E X A M P L E 3. For solvable groups this result no longer holds. The coset space of G = C2

(taken with its structure of a solvable, complex Lie group) by the discrete subgroup

yields a homogeneous space X := G/T that is a nontrivial C*-bundle over C . A two-to-
one covering of X is a product, but no Abelian complex Lie group can act holomorphically
and transitively on the space X itself. See [8, p. 1102].

R E M A R K . The reader should note that we have used some essential facts about nilpotent
Lie groups in the proof of the Theorem. For example, a positive dimensional nilpotent
Lie group has a positive dimensional centre. This is no longer the case for solvable Lie
groups. Whether there always exists an Abelian complex Lie group that acts transitively
on a finite covering of a Kahler solvmanifold G/T with da/r < 2 is beyond the scope of
the present paper. As far as we can tell, another approach to this problem will be needed.
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