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1. Introduction
This paper is a sequel to previous papers (1, 2, 3) on the solution of axi-

symmetric potential problems for circular disks and spherical caps by means
of integral equations and applies the methods developed in these papers to
the electrostatic potential problem for a perfectly conducting thin spherical
cap or circular disk between two infinite earthed conducting planes.

Representations of the potentials due to distributions of charge over a
spherical cap and a circular disk as contour integrals have been given by the
author (1) and Green and Zerna (4). By means of these results an expression
for the potential due to a cap or disk between two earthed planes as a sum
of contour integrals is found by the method of images, the condition that the
potential be a given function on the cap or disk leading to a Fredholm integral
equation of the second kind for an unknown function occurring in this potential.
This equation can be solved by iteration when the planes are a large distance
apart and the capacity of the cap or disk found. The solution for a cap is
given in sections 2 to 5 and the solution for a disk stated in section 6.

In a previous paper (3) the problem of a disk between two planes is considered
in the general case when the potential is given on the disk and the planes.
The method of this paper, whilst not so general as that of (3), gives a simpler
derivation of the governing Fredholm equation of the problem and is applicable
to most cases of interest.

2. The Potential due to a Spherical Cap between Two Earthed Planes
We consider a thin spherical cap E of radius a and semi-angle a, placed

between two infinite earthed parallel conducting planes at a distance 2/ apart,
the axis of symmetry of the cap being normal to the planes. For simplicity the
centre 0 of S is taken to be equidistant from the planes, though the method
of this paper can be applied whatever the position of 0. We suppose the
cylindrical and spherical polar coordinates of a point referred to 0 as origin
and the axis of symmetry Oz of S as polar axis to be (z, m, <t>) and (r, 0, 0),
the cap being given by r = a (0^0^a) and the two planes by z = ±f(J>a).

If V0(z, w) is the potential due to an axisymmetric distribution of electric
charge in infinite unbounded space, the singularities of the distribution lying
in the region -f<z<f though not on the surface r = a (O^flga), we require
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the potential V(z, m), denned in the region —f£z^f, which has the same
singularities as V0(z, ro) in this region and which is zero on the planes z = ±f.
On the cap we suppose it given as a known even function fo(0) symmetric
about the axis Oz.

We write V(z, w) as

V(z, w) = V0(z, w) + Vl(z> xn)+U{r, 0), (2.1)

where K,(z, m) + LF(r, 0) is the perturbation potential which must be added
to K0(z, 07) in order that the conditions on V(z, w) be satisfied. This perturba-
tion potential is written as the sum of two potentials, the first of which, Vx(z, w),
is chosen to have no singularities in the region between the planes and to
be such that on the planes z =

Such a function is readily constructed by the method of images as

V,{z, w) = f, [_K 0 ( -z + (4fi + 2)/, n j ) -K 0 ( -2 - (4n + 2)/s w)

)] (2.2)

The remaining part of the perturbation potential, U(r, 0), is then zero on
the planes z = ±f whilst on the cap r = a (0^0^a) it satisfies the condition

U(a,0)=f(O) (OS0^«), (2.3)
where

/(0) = /o(0) - V0(a cos 6, a sin 0) - V^a cos 0, a sin 0)

and is an even function. In addition U{r, 0) is continuously differentiable
everywhere in the region —f^z^f except possibly on the edge of 2 and is
0(r~ *) at a large distance r from Z.

The potential of a distribution of charge on Z can be represented as a
contour integral in the form (1)

If for this charge distribution we construct its image system in the planes
z = ± / under the condition that these planes be at zero potential, the potential
due to the distribution on L together with the image distribution is the potential
U{r, 0) we require and can be expressed as

_ f* 9_M)d!L 1 (25)
J-a('-In-ie1''+a2e-i''+2ar2n_1cos02n_1)*J'

where (rn, 9n, </>), (n = 0, ± 1 , ±2, ...), are the spherical polar coordinates
of the point (r, 0, <f>) referred to Oz as polar axis and the point 0n, whose

https://doi.org/10.1017/S0013091500025281 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500025281


AXISYMMETRIC BOUNDARY VALUE PROBLEMS 97

cylindrical polar coordinates referred to 0 are (2nf, 0, 0), as origin. We thus
have that

r\ = r
2 + 4n2f2-4nfr cos 6, rn cos 9n = r cos 0-2nf,

rn sin 9n = r sin 0, (n = 0, ±1, ±2, ...), (2.6)

where we understand (r0, 90, 4>) as (r, 0, 0). The first integral in (2.5) represents
a charge distribution on the surface rln = a (O^92n^oc) and the second a
distribution on the surface r2n_x — a (n — oc^92n-i^n). The function g(r\) is
taken to be real, continuous and even. Further we have that

(r2ein + a2e~in-2ar cos 0)* = peiiT for r^a,
= pe~iiz for r<a, (2.7)

with p^O, O^T^TT for
-n<x^0 for -<

When r = a, we have that

(r2ein + a2e~i"-2ar cos Of = a(2 cos r}-2 cos 0)* (0^ | ^ |),
while

. (rV»+a2g-i l ' -2arcos0)*= ±/a(2 cos 0 -2 cos # (0<|»/|),

if/•-*« through values greater than a,

= + /a(2 cos 9 - 2 cos rtf (9 < \ r) |),

if/--»a through values less than a, (2.8)

the upper sign holding for 0^>;^a and the lower for — a.^r]<0. The integral
in (2.5) involving this square root is to be interpreted as a Cauchy integral
at the point r = a (9 = 0). Similarly we have that

(r2
ne"> + a2e-"'-2ar2n cos 9lnf = p2ne*'^ for r2n>a,

(n=±h ±2,.. .), (2.9)

with P2n^0, 0^x2n^n for

g0 for -

similar expressions holding for the remaining square roots in (2.5).
The potential U{r, 9) defined by (2.5) is O^"1) for large r and is real since

g(r\) is an even function. Further it follows from the proofs given for the
electrostatic potential problem for a single cap (1) that U(r, 9) is continuously
differentiable everywhere except on the edge r = a {9 — a) of 2. We next
show that the condition (2.3) satisfied by U(r, 9) on E leads to a Fredholm
integral equation determiningg{t)). #

3. The Integral Equation for g(rj)

In order to obtain the equation determining g(j\) we find the value of
U(r, 9) as (r, 9, <j>) tends to a point (a, 9, <f>) on the cap Z. We first consider
the contribution to U(a, 9) of the term in (2.5) representing a charge distribution

https://doi.org/10.1017/S0013091500025281 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500025281


98 W. D. COLLINS

on E, this term being given by (2.4). It follows from a proof given in the
potential problem for a single cap (1) that the integral (2.4) is continuous for
normal approach to E and hence from (2.7) and (2.8) its value on E is found as

f
Jo

] 0 (2 cos r\-2 cos 0)*

Making the substitutions t = tan % 0, x = tan 1^, and writing

g(if) cos to = C (tan iff), (3.1)
we obtain (2.4) as

The limits of the remaining integrals in (2.5) as the point (r, 9, <j>) tends to
the point (a, 9, <j>) of E are simply their values at {a, 0, <f>). If we consider the
integral

for n = 1,2, ..., and note from (2.6) that on r = a we have

r\n = a2 + 16n2/2-8na/cos 9, r2n cos 02n = a cos 6-Anf,

the value of I2n on the cap is

Making the substitutions / = tan |0, y = tan \r\, tx = tan \a, and using (3.1),
we obtain after some manipulation of the denominator of the integrand

T" —if+iy(2nf-a))2-t\2nfy-i(a

We now want to express I2n as an integral of the form (3.2). This we do by
representing its integrand other than G(y) as a Jacobi integral (5), the square
root being interpreted in accordance with (2.9), so that

j = " v - . > J i r*,,\ i d$dy
o 2nf+ iy(2nf- a) +1 cos ^{2nfy - i(a + 2nf)

2n/(l + yt cos \p)d^/dy. « ( l + ' 2)*p- G(y) f"
2n J_(o

 K" ]94n2f2(l+ytcosil,)2jr(y(2nf-a)-tcos4'(2nf+a))2

= a(l + t2)* f' dx f1- G(y)2w/<l+xj;)dj>
Jr Jo (<2-*2)* J- , . 4«2/2(l +.vy)2 + (x(2«/+a)-K2/i/-a))2'

(3.3)

since G(y) is an even function of y, g(ri) being an even function of rj.
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In the same way we can show that, when n = — 1, —2, ...,

G(y)2nf(l+xy)dy

<(2nf-a))2'
(3.4)

and also obtain similar expressions for the remaining integrals in (2.5).
The boundary condition (2.3) on 2 can be written as

U = F(0(l +12)i, r = a(0^t£ tt),
where

F(tan |0) =/(0) cos }0, (3.5)

so, on combining the limits of the integrals in (2.5) given by (3.2), (3.3) and
(3.4), we obtain

" "'""" .(3.6)
Jo'

where
f
Jo

K(x, y)G(y)dy = H{x), (-ta^x^tx) (3.7)
t

In this last equation the kernel K(x, y) is given by

K(x, y) = a ̂  [ 4 M 2 / 2 ( 1 + xy)i + (x(2nf+ a) _ y{2nf_ a))2

+ 4«2/2(l + xy)2 + (x(2nf- a) - y(2nf+ a))2

" ((2n -1 ) /+ a + ((2n - 1 ) / - d)xy)2 + (2n - l)2/2(x - yf

~ ((2« - 1 ) / - a + ((2n -1) /+ a)xy)2 + (2n - l)2/2(x - y)2\

Equation (3.6) is a Volterra integral equation of the first kind determining
H{x). It is in fact a form of Abel's equation, its solution being given by Green
and Zerna (4) as

(3.8)
o (x —ty

It now follows that, since/(0) and hence F(t) are even functions, H(x) is an even
function, so that in (3.7) H(x) = H(-x) for -ta^x<0. Equation (3.7) is
then a Fredholm integral equation of the second kind determining G(x) when
H(x) is known. If we substitute

x = tan i£, y = tan \rj,
write

#(tan if) = h({) cos K (3.9)
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and use (3.1), the Fredholm equation determining g(£) is obtained as

g(O^— k(£, tf)g(rf)dr] = h(£) ( —ag^ga), (3.10)

where

/> = § !
Z n =

(2» - l)/cos j(£ -1?) + a cos j(g + rj)

(2n - l)/cos j(£ -1>) - a cos 1
J"(2n-l)2/2-2(2n-l)a/cosK£-f?)cos|(£ + '?) + a2cos

(3.11)

From equation (3.10) it follows that g(£.) is even, real and continuous if
/?(<!;) is continuous. This last condition is satisfied provided f(6) is continuously
differentiable for 0 ^ 0 ^ a . Further, by a proof similar to that given in (3)
for the potential problem for two spherical caps (3.10) can be shown to
determine a unique function g(£,).

4. Alternative Expressions for k(£,, //)
We first give an integral representation for the kernel k(%, tf) of equation

(3.10) and then express k(£, rj) as an infinite series in powers of a//, this latter
expansion being needed in the iterative solution of (3.10) for the case when
the distance between the planes is large compared with the radius of the cap.

To obtain an integral representation of &(£, r\) we use results given in (6)
to express each term of the series in (3.11) as an infinite integral and find that

oo r p»
&(£, t]) = a £ exp [ - 2nfu cos %(£ - >j)] cos \2nfu sin \(£, — i])]

»= ' U o
x cos [aw sin i(£ + ri)]du

/•»

Jo
x cos [au cos i(£ + t]j]du

cos (au sin j(£, + >?))[cos (2fu sin #£ - >?)) - exp ( - 2fu cos j(j - >?))]
2(cosh (2/u cos i(£ - rj)) - cos (2/u sin K£ -1)))

cos (au cos K£ + >?)) sin (/u cos $(£ - rj)) cosh (fu sin %{£, - rj))~\ ,
(cosh (2/u sin i(£ - r])) - cos (2/u cos i(£ - ri))) J

...(4.1)
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We next express &(£, r\) as an infinite series in powers of a/f by means of
results given by Whittaker and Watson (7). If we write

2n/cos \{£, — ti)

; — ri)sm
cos£(f — t

2nf

and express each term of this series as a power series in ajlnf, we find that

S i= i £ £ (-l)rf-^Y+1

n = 1 r = 1 \2n/ /

where CC^+l) is Riemann's zeta-function (8a), defined by

H r + 1 ) - . ? . ; £ • r>0-
Similarly we find that

8 ^ - 1 ? ) C O S j(g ->
2n/

so that

S,+S2= f (-iyfeYr+1sin2'K« + 'j)cos[(r + iX5-'/)]C(2r+l). ...(4.2)
r = 1 \ 2 / /

Further, if we write

(2/i - l)/cos Kg -1?) + a cos Kg + >?)
= a y I"

2 n ^ i L(2«-

cos^(£ —

we have that

,= i \(2n-l)f

since

E.M.S.—G
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Finally

c a V

we find that

r
iL(2«- l ) 2 /

W. D. COLLINS

(2n - l)/cos |(£ -t\)-a cos i(£ 4
2 - 2(2n — l)a/cos i(g - f/) cos | (^ + >;)+ a2cos2K<J + '/)

cos i(i* —»;)

(2n-l)/

so that
OC

->V2/ .
(4.3)

From (3.11) we have that

fc(f. »0 = S1 + S2 —S3-S4—-cos-Kf->0 E —>
/ »= i n

and, since (8Z>)

E
n = 1

we find on using (4.2) and (4.3) that

*« ,» / )=-^ . ( log2)cosK«-f )

(4.4)

Y ^ (4.5)

5. The Cap Maintained at a Constant Potential
When the cap is maintained at a constant potential Uo and

V0(z, w) = F,(z, w) = 0,
equation (2.3) gives

U(a,9) = /o(0) = t/o(O^0ga).

From equations (3.5), (3.8) and (3.9) we then find that
977

n
so that in this case the integral equation to be solved for g(£) is

cos tf (-«g«g«) (5.1)
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The capacity C of the cap is found as

f«
U0C = a g(rj) cos ±ndr] (5.2)

Jo
In general it is probably necessary to solve equation (5.1) numerically

using the expression (4.1) for k(^, rj). However, when the distance between
the planes is large compared with the radius of the cap, we can solve (5.1)
by iteration to obtain an approximate solution for g{^). The appropriate
expression to use for &(<!;, rj) is then (4.4), which, if we neglect terms in (ajf)5

and higher powers, reduces to (4.5). Writing a = ajf, we thus find that

% (a + sin a)3(log 2)3 + ?-^ (3 sin 2a + 2 sin 3a) + a— (a + sin a)4(log 2)4

3 32 TC
4C(3)log2 L si

In2

<74lOg2

(T3(2 sin a + si

— 5 cos 2a cos 3a — 5 cos 4a 1
2 ;J

(4a sin a+2a sin 2a+2+cos a — 2 cos 2a — cos 3a)
In

+0(<r5) (5.3)
Sn2 ^ L ' • „

The capacity of the cap is then found from (5.2) as

- = - ( a + s ina)+ — (a + sin a)2 log 2+ — (a + sin a)3(log 2)2

an n n

. .. , _ : s i n 3 a + 5H cos a —3 cos 2a
7t | 16 \ 2

^ - ^ l o g 2 (

3 1

2a2(3 sin 2a+ 2 sin 3a) + 2a(5 + 7 cos a - 2 cos 2 a - 7 c o s 3 a

cos 3a —2 cos 4a I H—- (a + sin a) (log 2)3

2 . In

— 3 cos 4a) +13 sin a +11 sin 2a — sin 3a sin 4a — 2 sin 5a 1

) (5.4)
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When a = n, the cap becomes a sphere of radius a and the expression (2.5)
then holds for the region between the planes for which r^a. The expression
(5.3) for #(<!;) now becomes

^ 5 cos K[ l +<r log 2 + (<r log 2)2 + (a log 2)3 + (<r log 2)4]
7

+ 3-^*3_) cos ^ [ a 3 + <x4 log 2] + 0(<x5),
87E

whilst the capacity C of the sphere is obtained from (5.4) as

- = 1 + a log 2 + (<x log 2)2 + (a log 2)3 + (<r log 2)4 + 0(<r5),
a

in agreement with the results of Rigby (9) and Hurst (10).
In conclusion it may be noted that the various terms in the expression

(2.5) for the potential U(r, 6) can be expanded as series of spherical harmonics
and an alternative form for U{r, 0) obtained.

6. The Potential due to a Circular Disk between Two Earthed Planes
The method of the previous sections can also be applied to the problem

of determining the potential due to a circular disk parallel to and lying between
two earthed planes. We consider only the case when the disk is midway
between the planes and state corresponding results to those obtained for a
spherical cap.

If (z, m, (j>) are the cylindrical polar coordinates of a point referred to the
centre of the disk, radius c, as origin and the axis of the disk as z-axis, the
disk is given by z = O(Ogro^c) and the planes by z = ± / . If V0(z, m) is
the potential due to an axisymmetric distribution of charge in infinite unbounded
space, the singularities of the distribution lying in the region —f<z<f but
not on the surface z = 0 (0 ̂  w ̂  c), the potential V{z, w), defined in the region
—f<z<f, which has the same singularities as V0(z, m) in this region, is zero
on the planes z = ± / a n d is a known even function/0(ro) on the disk, is

V(z, m) = V0(z, m) + V1(z, w)+U(z, ro),
where Vx(z, w) is given by (2.2) and

git)dt
(w2+{z-2fn+itff

In this expression for U{z, w) g{t) is real, continuous and even and the square
roots are interpreted similarly to (2.7), (2.8) and (2.9). The function U(z, m)
can be shown to be real, harmonic and continuously differentiable at all
points except those on the rim z = 0 (m = c) of the disk. Further it is 0(r-1)
at a large distance r from the disk.

On the disk
K(0, w) = fo(m) (0 ̂  m g c),

so that U{z, w) satisfies the condition
£7(0, m) = J{m) = fo(m) - Vo(0, w) - Vx (0, m) (0 ̂  m g c),

n = - c o J -cKV
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/o(ro) and f(m) being known continuously differentiate even functions. This
condition gives as the integral equation determining g{t)

k{t-s)g(s)ds=h{t) (-c^t^c), (6.2)
1J-c

where the kernel of the equation is given by

f
Jo

= I (l-tanh/u)cos(t-5)urfu, (6.3)
Jo

and h(t) by

ndt]0{t2-m2f

with A(/) = h( — t)( — c^t<0), //(<•) being an even function. Equation (6.2)
is the equation obtained in Cooke's solution of this problem by the method
of dual integral equations (11).

When the disk is maintained at a constant potential Uo, we have that
f(w) = Uo, so that

and the capacity C of the disk is given by

U0C= Pg(t)dt.
Jo

To obtain an approximate solution of (6.2) by iteration when the distance
between the planes is large compared with the radius of the disk we expand
the kernel k(t—s) as a power series in (i—s)//obtaining

1 oo n ft A2"
k(t-s)=- V (_iy225.(!zf) ,

f n ^ } 2n\\f )
where

(1 - tanh v)v2ndv
o

•J. -^—dv
o « +1

= log 2, n = 0,
= 2-4"(22n-l)(2n!X(2n

use being made of an integral expression for the zeta-function (8a, equation (5)).
If we neglect terms in (/ - s)4//5 and higher powers, we have that
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and from (6.2) find as an approximate solution for g{f)

The capacity C of the disk is then found as

It may be noted that, if the integrands of the various integrals in (6.1) are
expressed as integrals involving Bessel functions, U{z, xn) can be expressed as
a Hankel integral.
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