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COINCIDENCE SETS OF COINCIDENCE 
PRODUCING MAPS 

BY 

H E L G A S C H I R M E R 

ABSTRACT. A theorem by H. Robbins shows that every closed 
and non-empty subset of the unit ball Bn in Euclidean n-space is 
the fixed point set of a self map of Bn. This result is extended to 
coincidence producing maps of Bn, where a map /:X—> Y is 
coincidence producing (or universal) if it has a coincidence with 
every map g:X—> Y. The main result implies that if f:Bn, S n _ 1 -> 
Bn, S n - 1 is coincidence producing and AczBn closed and non
empty, then there exist a map / ' : B n , Sn~1 -* B", S n _ 1 and a map 
g : Bn -> B n such that / ' | S n - 1 is homotopic to /1 S n _ 1 and A is the 
coincidence set of / ' and g. 

1. The problem. In 1967 H. Robbins [5] gave a simple proof of the fact that 
every closed and non-empty subset of the unit ball Bn in Euclidean n-space Rn 

is the fixed point set of a map f:Bn-^Bn. This result has since been extended 
by several authors, and it is known that the class of spaces which have the 
property that every closed and non-empty subset can be realized as the fixed 
point set of a continuous selfmap includes e.g. all compact topological man
ifolds, locally finite simplicial complexes with the weak topology, 1-dimensional 
Peano continua and locally compact metrizable topological groups. See [9] for 
a survey and for references. 

Here we consider a related problem for the coincidence set 

com(f,g) = {xeBn\f(x) = g(x)} 

of two maps /, g:Bn —> Bn. Clearly every closed subset A of Bn can occur as 
such a coincidence set, and Robbins' idea of proof suffices to show that if A is 
also non-empty, then / can be prescribed not only as the identity (as in the 
fixed point case), but also in a more general manner (see the Lemma in §2). 
But a less trivial extension of Robbins' problem arises if / is prescribed as a 
coincidence producing map, where a map f:X—*Y is called coincidence 
producing [7] (or, equivalently, universal [2]) if coin(/, g) ^ 0 for every 
g:X^Y. 
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It was shown in [6] that f:Bn —> B n is coincidence producing if it maps the 
boundary Sn~x of B n essentially onto itself, and hence we ask whether any 
given closed and non-empty subset A of Bn can be realized as the coincidence 
set coin(/, g) if / is prescribed as such a coincidence producing map. In general 
this is not true (see §3b), and we can only prove that for any given map 
/ : B n , Sn_1—> Bn , S n l (whether coincidence producing or not) there exists a 
map / ' : B n , Snl-*Bn, S n _ 1 with f | S""1 homotopic to / | S n - 1 so that 
coin(/', g) = A for some g : Bn —> Bn (see the Theorem in §2). 

After [6] was published, Holsztynski [3], [4] showed that a map f:Bn -> Bn 

is coincidence producing if and only if the restriction of / to f~1(Sn~1) is 
essential. It is an open problem to find conditions o n A c B " which ensure that 
A is the coincidence set of a prescribed coincidence producing map f:Bn-*Bn 

and any map g:Bn —» Bn , and to find an analogue of the Theorem in §2 for 
arbitrary coincidence producing maps. 

2. The result. The following lemma is a straightforward extension of 
Theorem 1 in [5] and its proof, but it will be useful. 

LEMMA. Let f:Bn —»Bn be a map and A a closed non-empty subset of Bn. 
If there exists a point ceBn so that f~x(c)^A, then A=coin( / , g) for some 
map g : B n - > B n . 

Proof. Define g by 

Og(x) = 0/(x}+èd(x, A)f(x)c, 

where O is the origin and d the Euclidean metric. 

Now we state and prove our result. The symbol — denotes a homotopy. 

THEOREM. Let f:Bn,Snl-*Bn,Snl be a map and A a closed and non
empty subset of Bn. Then there exists a map / ' : B n , S n _ 1 -* B n , S n _ 1 so that 

(i) f>\s»-^f\Sn-\ 
(ii) coin(f, g) = A for some g:Bn^Bn. 

Proof. We assume n > 2 , as the Theorem can easily be proved directly if 
n = l . 

Case 1). A£Sn~\ Select a point aeA with a£Sn~\ consider Bn as the 
cone aS"'1 resp. OSn\ and define / ' : B n , S n ~ 1 , a^Bn, S n " \ O with 
f'\Sn-1 = f\Sn-1 as the cone on f\Sn~\ Then apply the Lemma. 

Case 2). AaS"'1 and A not finite. Homotope / | S n _ 1 to /" | S n _ 1 : Sn _ 1 -> 
S n _ 1 so that (/" | S"-1)-1^) is a finite set {bu b2,..., bk} for some c e Sn~\ and 
define f" :Bn , Sn~\ O -» B n , Sn _ 1 , O as the cone on f" | S n _ 1 . It is now possible 
to select points al9 a 2 , . . . , ak in A and an orientation-preserving 
homeomorphism h: Bn —» B n (i.e. a homeomorphism where h | S n _ 1 is homotopic 
to the identity map of Sn_1) so that Ma,) = bj for / = 1, 2 , . . . , fc. Finally apply the 
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Lemma to obtain g":Bn^Bn with coin(f, g") = h(A), and let f = f'<>h and 
g = g"° h. 

Case 3). A^Sn~x and A finite. First select a point a0eA, let A' = AU 
{O}-{a0}, and use Case 1) to obtain maps /' : Bn, Sn_1 -> Bn, Sn_1 and g' : Bn -> 
Bn with f(O) = 0, / f | S n - 1 = / | S n _ 1 and coin(f, g') = A\ Then take a closed 
convex neighbourhood N<^Bn of the segment [a0, O] with JVfl A ={a0}. Let 
Bd JV denote the boundary of N in Rn, label the points of Bd N-{a0} as xx and 
the points of N-{a0} as xt (0<f<l) , where Ô6ct = Oa0+ ta0*i> a nd let u(x^) be 
the (free) vector /'(*i)g'(*i)- Define g(xt), for jeteiV-{a0}, by 

Ô ^ ) = Q T S ) + ^ ) 

if this yields a point in Bn (see the Figure). Otherwise let g(xt) be the point of 
intersection with Sn_1 of the ray from f'(xt) in the direction of v(xx). Finally 
extend g |N-{a0} to g:Bn-*Bn by g(a0) = f'(a0) and g(x) = g'(x) for xe 
Bn-N. It is easy to check that g is continuous and that coin(/', g) = A. 

REMARK. If n > 3, then a simple proof of the Cases 2) and 3) can be obtained 
with the help of Lemma 7.2 on p. 351 of [1], which shows that there exist 

Figure 
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f"\Sn~1-f\Sn~1 and ceS""1 so that (f'T1(c) = b is a singleton. From this 
fact / ' and g can be obtained as in the proof of Case 2). 

3. Discussion oi the result 
a) It is possible to strengthen the Theorem by requiring that g(Sn-1)<= S n _ 1 . 

A proof can be obtained by using ideas from the proof of the Theorem as well 
as from those of Theorems 1 and 2 in [8], and is left as an exercise to the 
reader. 

b) The Theorem is false, however, if / = / ' is required. To see this, let 
fBn^Bn b e g i v e n b y 

f2x for 0 < H < i 
\xl\\x\\ for è<||x| |=sl. 

If Btll2 = {xeBn | | |x||<è}, then / |B? / 2:B? / 2:Bn
AI2-> Bn is coincidence produc

ing by Theorem A of [4], so there exists no map g:Bn-*Bn with 
coin(/, g) c Bn -BÏ /2.Infactitfollows from this theorem thatif/, g : Bn -> Bn ,then 
coin(/, g)nC¥= 0 for every closed C<=Bn on which f\C:C-^B is coinci
dence producing. Hence we ask the 

QUESTION. Given a map g\Bn->Bn and a closed subset A of B", is 
A = coin(/, g) for some map g:Bn -> Bn if and only if APiC^ 0 for every 
closed C<=Bn on which f\ C:C-^Bn is coincidence producing? 
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