
J. Functional Programming 9 (3): 313–323, May 1999. Printed in the United Kingdom

c© 1999 Cambridge University Press

313

F U N C T I O N A L P E A R L

A poor man’s concurrency monad

KOEN CLAESSEN

Chalmers University of Technology

(e-mail: koen@cs.chalmers.se)

Abstract

Without adding any primitives to the language, we define a concurrency monad transformer

in Haskell. This allows us to add a limited form of concurrency to any existing monad.

The atomic actions of the new monad are lifted actions of the underlying monad. Some

extra operations, such as fork , to initiate new processes, are provided. We discuss the

implementation, and use some examples to illustrate the usefulness of this construction.

1 Introduction

The concept of a monad (Wadler, 1995) is nowadays heavily used in modern func-

tional programming languages. Monads are used to model some form of compu-

tation, such as non-determinism or a stateful calculation. Not only does this solve

many of the traditional problems in functional programming, such as I/O and mu-

table state, but it also offers a general framework that abstracts over many kinds of

computation.

It is known how to use monads to model concurrency. To do this, one usually

constructs an imperative monad, with operations that resemble the Unix fork

(Jones and Hudak, 1993). For reasons of efficiency and control, Concurrent Haskell

(Peyton Jones et al., 1996) even provides primitive operations, which are defined

outside the language.

This paper presents a way to model concurrency, generalising over arbitrary

monads. The idea is to have atomic actions in some monad that can be lifted into a

concurrent setting. We explore this idea within the language; we will not add any

primitives.

2 Monads

To express the properties of monads in Haskell, we will use the following type class

definition. The bind operator of the monad is denoted by (?), and the unit operator

by return .

https://doi.org/10.1017/S0956796899003342 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003342

314 K. Claessen

class Monad m where

(?) :: m α → (α → m β) → m β

return :: α → m α

Furthermore, throughout this paper we will use the so-called do-notation as syn-

tactic sugar for monadic expressions. The following example illustrates a traditional

monadic expression on the left, and the same, written in do-notation, on the right.

expr 1 ? λx. do x ← expr 1

expr 2 ? λ . ; expr 2

expr 3 ? λy. ; y ← expr 3

return expr 4 ; return expr 4

As an example, we present a monad with output, called the writer monad. This

monad has an extra operator called write . It takes a string as argument, which

becomes output in a side effect of the monad. The bind operator (?) of the monad

has to take care of combining the output of two computations.

A monad having this operator is an instance of the following class:

class Monad m ⇒ Writer m where

write :: String → m ()

A typical implementation of such a monad is a pair containing the result of the

computation, together with the output produced during that computation.

type W α = (α, String)

instance Monad W where

(a, s) ? k = let (b, s′) = k a in (b, s++ s′)
return x = (x, ‘’)

instance Writer W where

write s = ((), s)

Note how the bind operator concatenates the output of the two subactions.

Most monads come equipped with a run function. This function executes a

computation, taking the values inside one level downwards. The monad W has such

a run function, we call it output , which returns the output of a computation in W .

output :: W α → String

output (a, s) = s

https://doi.org/10.1017/S0956796899003342 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003342

Functional pearl 315

2.1 Monad transformers

Sometimes, a monad is parametrised over another monad. This is mostly done to

add more functionality to an existing monad. In this case we speak of a monad

transformer (Liang et al., 1995). An example is the exception monad transformer;

it adds a way to escape a monadic computation with an error message. In general,

operations that work on one specific monad can be lifted into the new, extended

monad.

Again, we can express this by using a type class:

class MonadTrans τ where

lift :: Monad m ⇒ m α → (τ m) α

A type constructor τ forms a monad transformer if there is an operation lift that

transforms any action in a monad m into an action in a monad τ m.

In this paper, we will discuss a monad transformer called C . It has the interesting

property that any monadic action that is lifted into the new monad will be considered

an atomic action in a concurrent setting. Also some extra operations are provided

for this monad, for example fork , which deals with process initiation.

3 Concurrency

How are we going to model concurrency? Since we are not allowed to add primitives

to the language, we are going to simulate concurrent processes by interleaving

them. Interleaving implements concurrency by running the first part of one process,

suspending it, and then allowing another process to run.

3.1 Continuations

To suspend a process, we need to grab its future and stick it away for later use.

Continuations are an excellent way of doing this. We can change a function into

continuation passing style by adding an extra parameter, the continuation. Instead

of producing the result directly, the function will now apply the continuation to the

result. We can view the continuation as the future of the computation, as it specifies

what to do with the result of the function.

Given a computation type Action , a function that uses a continuation with result

type α has the following type:

type C α = (α → Action) → Action

The type Action contains the actual computation. Since, in our case, we want to

parametrise this over an arbitrary monad, we want Action (and also C) to be

dependent on a monad m.

type C m α = (α → Action m) → Action m

https://doi.org/10.1017/S0956796899003342 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003342

316 K. Claessen

C is the concurrency monad transformer we use in this paper. This means that C m

is a monad, for every monad m.

instance Monad m ⇒ Monad (C m) where

f ? k = λc. f (λa. k a c)

return x = λc. c x

Sequencing of continuations is done by creating a new continuation for the left

computation that contains the right computation. The unit operator just passes its

argument to the continuation.

3.2 Actions

The type Action m specifies the actual actions we can do in the new monad. What

does this type look like? For reasons of simplicity, flexibility and expressiveness

(Scholz, 1995), we implement it as a datatype that describes the different actions we

provide in the monad.

First, we need atoms, which are computations in the monad m. We are inside a

continuation, so we want these atomic computations to return a new action. Also,

we need a constructor for creating new processes. Finally, we provide a constructor

that does not have a continuation; we will use it to end a process. We also call this

the empty process.

data Action m

= Atom (m (Action m))

| Fork (Action m) (Action m)

| Stop
To express the connection between an expression of type C m α and an expression

of type Action m, we define a function action that transforms one into the other.

It finishes the computation by giving it the Stop continuation.

action :: Monad m ⇒ C m α → Action m

action m = m (λa. Stop)

To make the constructors of the datatype Action easily accessible, we can define

functions that correspond to them. They will create an action in the monad C m.

The first function is the function atom , which turns an arbitrary computation in

the monad m into an atomic action in C m. It runs the atomic computation and

monadically returns a new action, using the continuation.1

atom :: Monad m ⇒ m α → C m α

atom m = λc. Atom (do a ← m ; return (c a))

1 This is actually the monadic map, but because Functor is not a superclass of Monad in Haskell we
cannot use map .

https://doi.org/10.1017/S0956796899003342 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003342

Functional pearl 317

In addition, we have a function that uses the Stop constructor, called stop . It

discards any continuation, thus ending a computation.

stop :: Monad m ⇒ C m α

stop = λc. Stop

To access Fork , we define two operations. The first, called par , combines two

computations into one by forking them both, and passing the continuation to both

parts. The second, fork , resembles the more traditional imperative fork. It forks

its argument after turning it into an action, and continues by passing () to the

continuation.

par :: Monad m ⇒ C m α → C m α → C m α

par m1 m2 = λc. Fork (m1 c) (m2 c)

fork :: Monad m ⇒ C m α → C m ()

fork m = λc. Fork (action m) (c ())

The type constructor C is indeed a monad transformer. Its lifting function is the

function atom ; every lifted action becomes an atomic action in the concurrent

setting.

instance MonadTrans C where

lift = atom

We have now defined ways to construct actions of type C m α, but we still can not

do anything with them. How do we model concurrently running actions? How do

we interpret them?

3.3 Semantics

At any moment, the status of the computation is going to be modelled by a list of

(concurrently running) actions. We will use a scheduling technique called round-robin

to interleave the processes. The concept is easy: if there is an empty list of processes,

we are done. Otherwise, we take a process, run its first part, take the continuation,

and put that at the back of the list. We keep doing this recursively until the list is

empty.

We implement this idea in the function round .

round :: Monad m ⇒ [Action m] → m ()

round [] = return ()

round (a : as) = case a of

Atom am → do a′ ← am ; round (as ++ [a′])
Fork a1 a2 → round (as ++ [a1, a2])

Stop → round as

https://doi.org/10.1017/S0956796899003342 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003342

318 K. Claessen

An Atom monadically executes its argument, and puts the resulting process at the

back of the process list. Fork creates two new processes, and Stop discards its

process.

As for any monad, we need a run function for C m as well. It just transforms its

argument into an action, creates a singleton process list, and applies the round-robin

function to it.

run :: Monad m ⇒ C m α → m ()

run m = round [action m]

As we can see, the type α disappears in the result type. This means that we lose

the result of the original computation. This seems very odd, but often (and in the

cases of the examples in this paper) we are only interested in the side effects of a

computation. It is possible to generalise the type of run , but that goes beyond the

scope of this paper.

4 Examples

We present two examples of monads that can be lifted into the new concurrent

world.

4.1 Concurrent output

Recall the writer monad example from section 2. We can try lifting this monad into

the concurrent world. To do this, we want to say that every instance of a writer

monad can be lifted into a concurrent writer monad.2

instance Writer m ⇒ Writer (C m) where

write s = lift (write s)

The function lift here is the atom of the monad transformer C . Every write

action, after lifting, becomes an atomic action. This means that no computation will

produce output while another write is writing.

Before we present an example, we first define an auxilary function loop . This

function works in any writer monad. It takes one argument, a string, and writes it

repeatedly to the output.

loop :: Writer m ⇒ String → m ()

loop s = do write s ; loop s

We use this function to define a computation in C m α that creates two processes

that are constantly writing. One process writes the string ‘fish’, the other writes

‘cat’.

2 Actually, we want to say this for all monad transformers at once, but Haskell does not currently allow
us to express this.

https://doi.org/10.1017/S0956796899003342 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003342

Functional pearl 319

example :: Writer m ⇒ C m ()

example = do write ‘start!’

; fork (loop ‘fish’)

; loop ‘cat’

The result of the expression output (run example) looks like the following string:

‘start!fishcatfishcatfishcatfishcatfishcatfishca ...’

Because we defined write as an atomic action, the writing of one ‘fish’ and one

‘cat’ cannot interfere. If we want finer grained behaviour, we can split one write

action into several write actions, e.g. the separate characters of a string. A simple

way of doing this is to change the lifting of write :

instance Writer m ⇒ Writer (C m) where

write [] = return ()

write (c : s) = do lift (write [c]) ; write s

The lifting is now done character-by-character. The result of the expression output

(run example) now looks like this.

‘start!fciasthcfaitschafticsahtfciasthcfaitscha ...’

4.2 Merging of infinite lists

A well known problem, called the merging of infinite lists, is as follows. Suppose

we have an infinite list of infinite lists, and want to collapse this list into one big

infinite list. The property we want to hold is that every element in any of the original

lists is reachable within a finite number of steps in the new list. This technique is

for example used to prove that the set Q of rationals has a countable number of

elements.

Using the writer monad with the new lifting, we can solve this problem for an

infinite list of infinite strings. The idea is that, for each string, we create a process

that writes the string. If we fork this infinite number of processes, and run the

resulting computation, the output will be the desired infinite string.

We will take a step back to present a piece of useful theory. There are monads that

have a so-called monoidal structure on them. That means that there is an operator,

denoted by (++), that combines two computations of the same type into one, and

that there is an identity element for this operation, called zero . In Haskell, we can

say:

class Monad m ⇒ Monoidal m where

(++) :: m α → m α → m α

zero :: m α

https://doi.org/10.1017/S0956796899003342 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003342

320 K. Claessen

The function concat , with type Monoidal m ⇒ [m α] → α, uses (++) and zero to

concatenate a (possibly infinite) list of such computations together.

The reason we are looking at this is that C m admits a monoidal structure; the

parallel composition par represents the (++), and the process stop represents its

identity element zero .

instance Monad m ⇒ Monoidal (C m) where

(++) = par

zero = stop

This means we can use concat to transform an infinite list of processes into a

process that concurrently runs these computations. To merge an infinite list of

infinite strings, we transform every string into a writing process, fork them with

concat , and extract the output.

merge :: [String] → String

merge = output b run b concat b map write

Of course, this function also works for finite lists, and can be adapted to act on

more general lists than strings.

4.3 Concurrent state

In Haskell, the so-called IO monad provides mutable state. Within the monad we can

create, access, and update pieces of storage. The type of a storage that contains an

object of type α is Var α. The functions we use to control these Var s, the non-proper

morphisms of IO , have the following types:

newVar :: IO (Var α)

readVar :: Var α → IO α

writeVar :: Var α → α → IO ()

In the lifted version of this monad, the C IO monad, we can have several concurrent

processes sharing pieces of state. In a concurrent world however, we often want

more structure on shared state. Concurrent Haskell (Peyton Jones et al., 1996), an

extension of Haskell with primitives for creating concurrent processes, recognised

this. It introduces a new form of shared state: the MVar .

Like a Var , an MVar can contain a value, but it may also be empty. An MVar

becomes empty after a process has done a read operation on it. Processes reading

an empty MVar will block, until a new value is put into the MVar . MVars are a

powerful mechanism for creating higher level concurrent data abstractions. They

can for example be used for synchronization and data sharing at the same time.

It is possible to integrate MVars with our concurrency monad transformer, using

the mutable state primitives we already have. First, we have to think of how to

represent an MVar . An MVar can be in two different states; it can either be full

(containing some value), or empty.

https://doi.org/10.1017/S0956796899003342 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003342

Functional pearl 321

type MVar α = Var (Maybe α)

data Maybe α = Just α | Nothing
We use the datatype Maybe to indicate that there is Just a value in an MVar , or

Nothing at all.

Let us now define the operations that work on MVars. The function that creates

an MVar lifts the creation of a Var , and puts Nothing in it.

newMVar :: C IO (MVar α)

newMVar = lift (do v ← newVar

; writeVar v Nothing

; return v)

We can use the same trick when writing to an MVar .3

writeMVar :: MVar α → α → C IO ()

writeMVar v a = lift (writeVar v (Just a))

The hardest function to define is readMVar , since it has to deal with blocking. To

avoid interference when reading an MVar , we perform an atomic action that pulls

the value out of the Var and puts Nothing back. We introduce an auxilary function

takeVar , working on the unlifted IO monad, that does this.

takeVar :: MVar α → IO (Maybe α)

takeVar v = do am ← readVar v

; writeVar v Nothing

; return am

Once we have this function, the definition of a blocking readMVar is not hard

anymore. We represent blocking by repeatedly trying to read the variable. We

realise that this busy-wait implementation is very inefficient, and we indeed have

used other methods as well (such as that used by Jones et al. (1997)), but we present

the easiest implementation here.

readMVar :: MVar α → C IO α

readMVar v = do am ← lift (takeVar v)

; case am of

Nothing → readMVar v

Just a → return a

Note that readMVar itself is not an atomic action, so other processes can also read

the MVar just after takeVar . Fortunately, at that point, the MVar is already blocked

by the function takeVar . It is impossible for readMVar to be atomic, since other

processes deserve a chance when it is blocking on an MVar .

For some examples of the use of MVars, we refer the reader to the paper about

Concurrent Haskell (Peyton Jones et al., 1996), where MVars are introduced.

3 We are a bit sloppy here; the real semantics of MVars is slightly different (Peyton Jones et al., 1996).

https://doi.org/10.1017/S0956796899003342 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003342

322 K. Claessen

5 Discussion

The work presented in this paper is an excellent example of the flexiblity of monads

and monad transformers. The power of dealing with different types of computations

in this way is very general, and should definitely be more widely used and supported

by programming languages. We really had to push the Haskell type class mechanism

to its limits in order to make this work. A slightly extended class mechanism would

have been helpful (Peyton Jones et al., 1997).

To show that this idea is more than just a toy, we have used this same setting

to add concurrency to the graphical system TkGofer (Vullinghs et al., 1996). The

system increased in expressive power, and its implementation in simplicity. It turns

out to be a very useful extension to TkGofer.

We have also experimented with lifting other well-known monads into this con-

current setting. Lifted lists, for example, can be used to express the infinite merging

problem more concisely. However, a problem with the type system forced us to fool

it in order to make this work. Exception and environment monads (Wadler, 1995)

do have the expected behaviour, though we are not able to lift all of the non-proper

morphisms of these monads. This is because some of them need a computation as

an argument, so that lifting becomes non-trivial.

However, there are a few drawbacks. We have not implemented real concurrency.

We simply allow interleaving of atomic actions, whose atomicity plays a vital role in

the system. If one atomic action itself does not terminate, the concurrent computation

of which it is a part of does not terminate either. We cannot change this, because

we cannot step outside the language to interrupt the evaluation of an expression.

The source code of the functions and classes mentioned in this paper is publically

available at http://www.dcs.gla.ac.uk/jfp/online/jfpvol9-1/claessen/pearl.hs. It

also contains another, more efficient but slightly bigger implementation of MVars.

Acknowledgements

I would like to thank Richard Bird, Byron Cook, Andrew Moran, Thomas Nordin,

Andrei Sabelfeld, Mark Shields, Ton Vullinghs and Arjan van Yzendoorn for their

useful comments on earlier drafts of this paper. Most of the work for this paper

was done while visiting the Oregon Graduate Institute, and an earlier version was

used as part of my Master’s thesis at the University of Utrecht, under supervision

of Erik Meijer.

References

Jones, M. and Hudak, P. (1993) Implicit and Explicit Parallel Programming in Haskell.

Technical Report YALEU/DCS/RR-982, Yale University.

Jones, M. et al. (1997) The Hugs System. Nottingham University and Yale University. Url:

http:// www.haskell.org.

Liang, Sh., Hudak, P. and Jones, M. (1995) Monad Transformers and Modular Interpreters.

Conference Record of 22nd POPL ’95. ACM.

https://doi.org/10.1017/S0956796899003342 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003342

Functional pearl 323

Peyton Jones, S., Gordon, A. and Finne, S. (1996) Concurrent Haskell. Proceedings of the

23rd POPL ’96. ACM.

Peyton Jones, S., Jones, M. and Meijer, E. (1997) Type classes: An exploration of the design

space. Proceedings of the Haskell Workshop of the ICPF ’97. ACM.

Scholz, E. (1995) A Concurrency Monad Based on Constructor Primitives. Universität Berlin.

Vullinghs, T., Schulte, W. and Schwinn, T. (1996) An Introduction to Tk-

Gofer. Technical Report 96-03, University of Ulm. Url: http:// www.informatik.uni-

ulm.de/ pm/ ftp/ tkgofer.html.

Wadler, P. (1995) Monads for Functional Programming. Advanced Functional Programming.

Lecture Notes in Computer Science. Springer-Verlag.

https://doi.org/10.1017/S0956796899003342 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003342

