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We investigate the following nonlinear Neumann boundary-value problem with
associated p(x)-Laplace-type operator

− div(ϕ(x, ∇u)) + |u|p(x)−2u = f(x, u) in Ω,

ϕ(x, ∇u)
∂u

∂n
= g(x, u) on ∂Ω,

⎫⎪⎬
⎪⎭ (P)

where the function ϕ(x, v) is of type |v|p(x)−2v with continuous function
p : Ω → (1, ∞) and both f : Ω × R → R and g : ∂Ω × R → R satisfy a Carathéodory
condition. We first show the existence of infinitely many weak solutions for the
Neumann problems using the Fountain theorem with the Cerami condition but
without the Ambrosetti and Rabinowitz condition. Next, we give a result on the
existence of a sequence of weak solutions for problem (P) converging to 0 in
L∞-norm by employing De Giorgi’s iteration and the localization method under
suitable conditions.

Keywords: p(x)-Laplace type; Fountain theorem; De Giorgi’s iteration;
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1. Introduction

The interest in variational problems with p(x)-growth conditions is founded on
their prevalence throughout various areas of mathematical physics such as elastic
mechanics, electro-rheological fluid dynamics and image processing, etc.; we refer
the reader to [10,29,33] and references therein.
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In this paper we are concerned with the existence of infinitely many weak solu-
tions for the following nonlinear Neumann boundary-value problem with associated
p(x)-Laplace-type operator

− div(ϕ(x,∇u)) + |u|p(x)−2
u = f(x, u) in Ω,

ϕ(x,∇u)
∂u

∂n
= g(x, u) on ∂Ω,

⎫⎬
⎭ (P)

where the function ϕ(x, v) is of type |v|p(x)−2v with continuous function p : Ω →
(1,∞), Ω is a bounded domain in R

N for N � 3 with Lipschitz boundary ∂Ω, ∂u/∂n
denotes the outer normal derivative of u with respect to ∂Ω, and both f : Ω ×R →
R and g : ∂Ω × R → R satisfy a Carathéodory condition. The p(x)-Laplace-type
operator div(ϕ(x,∇u)), which is the natural generalization of the p(x)-Laplace
operator div(|∇u|p(x)−2∇u), has been widely studied by many researchers; see [6,
18,23–25,29,32] and references therein. Concerning elliptic equations with nonlinear
boundary conditions, we refer the reader to [6, 8, 28,38,40,41].

Superlinear problems have been studied extensively by many authors; see, for
instance, [6,15,23,28,38,40,41]. In particular, Yao [40] showed the existence of non-
trivial solutions for the inhomogeneous and nonlinear Neumann boundary-value
problem involving the p(x)-Laplacian; see [6] for the p(x)-Laplace type. A common
feature of these results is the following Ambrosetti and Rabinowitz (AR) condition,
which was introduced by Ambrosetti and Rabinowitz [1] for the case in which
p(x) ≡ 2.

(AR) There exist positive constants M and θ such that θ > p+ and

0 < θF (x, t) � f(x, t)t for x ∈ Ω and |t| � M,

where p+ = supx∈Ω p(x) and F (x, t) =
∫ t

0 f(x, s) ds.

This condition guarantees the boundedness of the Palais–Smale (PS) sequence of
the Euler–Lagrange functional, which plays a crucial role in the applications of
critical-point theory. However, the AR condition is quite restrictive because there
are many superlinear functions that do not satisfy it. In this direction, Miyagaki
and Souto [30] have tried to drop the AR condition for the p(x) ≡ 2 case in order to
get existence of a non-trivial solution for a superlinear eigenvalue Dirichlet problem
by assuming the following condition.

(f1) There exists t0 > 0 such that

f(x, t)
tp+−1 is increasing in t � t0 and decreasing in t � −t0

for all x ∈ Ω, where Ω is a bounded domain in R
N .

Recently, some authors [7,9,18,22,26] generalized the results in [30]. In the case
of variable exponents, Ji [22] generalized results in [30] to construct the existence of
a non-trivial solution for the p(x)-Laplacian Dirichlet problem under the following
condition.
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(f2) There is a constant C∗ > 0 such that

tf(x, t) − p+F (x, t) � sf(x, s) − p+F (x, s) + C∗

for any x ∈ Ω, 0 < t < s or s < t < 0.

Condition (f2) was first considered by Miyagaki and Souto [30] in the p(x) ≡
2 case and it is a weaker condition than (f1). Also, under condition (f2), Ge
[18] established the existence of a non-trivial weak solution for the p(x)-Laplacian
problem involving a non-local term, and, for the case in which p(x) ≡ p, Li and
Yang [26] proved the existence of a non-trivial weak solution for the p-Laplacian
problem. Following the basic ideas of [26], Chung and Toan [9] considered a class
of nonlinear and non-homogeneous problems in an Orlicz–Sobolev space setting.
Recently, using an abstract result contained in [5], the authors in [2,3] obtained the
existence of a non-trivial weak solution for a parametric Neumann problem driven
by the p(x)-Laplacian without the AR condition.

The aims of this paper are twofold. The first is to show the existence of infinitely
many weak solutions for problem (P) without the AR condition (see theorem 3.11).
Such a result for the elliptic boundary-value problem with nonlinear Neumann
boundary condition involving the p(x)-Laplacian is very rare even if p(x) is a
constant. To the best of our knowledge, most of the results about the existence
of weak solutions for Neumann problems are derived under the AR condition;
see [6, 8, 28, 38, 40, 41]. Inspired by the papers [3, 18, 22, 26, 30], we demonstrate
our result in a more general setting.

The second aim is to extend the recent results in [31, 34, 36], namely, we prove
the existence of non-trivial weak solutions for problem (P), the nonlinear Neu-
mann boundary-value problem with associated p(x)-Laplacian-type operator (see
theorem 4.7). Roughly speaking, we establish the existence of small solutions in
the sense that the sequence of solutions converging to 0 in the L∞-norm relies
only on local behaviour of the nonlinear equation, under assumptions on f(x, t),
only for sufficiently small t. Our method is based on employing the global varia-
tional formulation-type method and the modified functional method that were first
introduced by Wang in [36]. More specifically, the strategy of the modified func-
tional method is to modify and extend f(x, t) to an appropriate f̃(x, t); using the
associated modified functional Ĩ with this f̃(x, t), Wang showed the existence of a
sequence of solutions converging to 0 in L∞-norm (see [36] for Neumann problems).
Tan and Fang [34] showed this result for the p(x)-Laplacian Dirichlet problem using
a regularity result of Fan [13] without its proof. Recently, Ho and Sim [21] extended
the regularity-type lemma in Vergara and Zacher [35] or Winkert and Zacher [39]
and applied such a result to show the boundedness of solutions for the Dirichlet
problem with the variable exponents via De Giorgi’s technique. Borrowing this
idea, we give a direct proof of the L∞-bound of weak solutions for problem (P),
modifying that of [20, theorem 4.2]. To put it briefly, the following two aspects are
worth mentioning. First, we show the existence of infinitely many weak solutions
for the Neumann problems (P) using the Fountain theorem with the Cerami condi-
tion under a more complicated nonlinear boundary condition in comparison to [20].
Second, we establish the existence of a sequence of weak solutions for problems
converging to 0 in L∞-norm based on the regularity lemma in [21], which is slightly
different from that of [39, theorem 1.1].
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This paper is organized as follows. In § 2 we recall some basic results for the
variable exponent Lebesgue–Sobolev spaces. In § 3, under certain conditions on ϕ,
f and g, we establish the existence result of infinitely many weak solutions for
problem (P) (theorem 3.11) by employing as the main tool the variational princi-
ple. In § 4 we prove the existence of infinitely many weak solutions (theorem 4.7)
for the boundary-value problem of nonlinear type based on the global variational
formulations-type method and the modified functional method.

2. Preliminaries

In this section we recall some definitions and basic properties of the variable expo-
nent Lebesgue spaces Lp(·)(Ω) and the variable exponent Lebesgue–Sobolev spaces
W 1,p(·)(Ω) that will be treated in the next sections. For a deeper treatment on
these spaces, we refer the reader to [10,11,16,23].

Set
C+(Ω) =

{
h ∈ C(Ω) : min

x∈Ω
h(x) > 1

}
.

For any h ∈ C+(Ω), we define

h+ = sup
x∈Ω

h(x) and h− = inf
x∈Ω

h(x).

For any p ∈ C+(Ω), we introduce the variable exponent Lebesgue space

Lp(·)(Ω) :=
{

u : u is a measurable real-valued function,

∫
Ω

|u(x)|p(x) dx < ∞
}

,

endowed with the Luxemburg norm

‖u‖Lp(·)(Ω) = inf
{

λ > 0:
∫

Ω

∣∣∣∣u(x)
λ

∣∣∣∣
p(x)

dx � 1
}

.

The dual space of Lp(·)(Ω) is Lp′(·)(Ω), where 1/p(x) + 1/p′(x) = 1.
The variable exponent Sobolev space W 1,p(·)(Ω) is defined by

W 1,p(·)(Ω) = {u ∈ Lp(·)(Ω) : |∇u| ∈ Lp(·)(Ω)},

where the norm is

‖u‖W 1,p(·)(Ω) = ‖u‖Lp(·)(Ω) + ‖∇u‖Lp(·)(Ω). (2.1)

Next, we recall elementary inequalities below.

Lemma 2.1 (Fan and Zhao [16]). The space Lp(·)(Ω) is a separable, uniformly con-
vex Banach space and its conjugate space is Lp′(·)(Ω), where 1/p(x) + 1/p′(x) = 1.
For any u ∈ Lp(·)(Ω) and v ∈ Lp′(·)(Ω), we have∣∣∣∣

∫
Ω

uv dx

∣∣∣∣ �
(

1
p−

+
1

(p′)−

)
‖u‖Lp(·)(Ω)‖v‖Lp′(·)(Ω) � 2‖u‖Lp(·)(Ω)‖v‖Lp′(·)(Ω).
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Lemma 2.2 (Fan and Zhao [16]). Define

ρ(u) =
∫

Ω

|u|p(x) dx for all u ∈ Lp(·)(Ω).

Then

(1) ρ(u) > 1 (respectively, ρ(u) = 1, ρ(u) < 1) if and only if ‖u‖Lp(·)(Ω) > 1
(respectively, ‖u‖Lp(·)(Ω) = 1, ‖u‖Lp(·)(Ω) < 1);

(2) if ‖u‖Lp(·)(Ω) > 1, then ‖u‖p−
Lp(·)(Ω) � ρ(u) � ‖u‖p+

Lp(·)(Ω);

(3) if ‖u‖Lp(·)(Ω) < 1, then ‖u‖p+

Lp(·)(Ω) � ρ(u) � ‖u‖p−
Lp(·)(Ω).

Similarly, we deduce the following lemma.

Lemma 2.3. If we define

ρ1(u) =
∫

Ω

|u|p(x) + |∇u|p(x) dx for all u ∈ W 1,p(·)(Ω),

then

(1) ρ1(u) > 1 (respectively, ρ1(u) = 1, ρ1(u) < 1) if and only if ‖u‖W 1,p(·)(Ω) > 1
(respectively, ‖u‖W 1,p(·)(Ω) = 1, ‖u‖W 1,p(·)(Ω) < 1);

(2) if ‖u‖W 1,p(·)(Ω) > 1, then ‖u‖p−
W 1,p(·)(Ω) � ρ1(u) � ‖u‖p+

W 1,p(·)(Ω);

(3) if ‖u‖W 1,p(·)(Ω) < 1, then ‖u‖p+

W 1,p(·)(Ω) � ρ1(u) � ‖u‖p−
W 1,p(·)(Ω).

Lemma 2.4 (Fan and Zhao [16]). Let Ω ⊂ R
N be an open, bounded set with Lip-

schitz boundary and let p ∈ C+(Ω) with 1 < p− � p+ < ∞. If q ∈ L∞(Ω) with
q− > 1 satisfies

q(x) � p∗(x) :=

⎧⎨
⎩

Np(x)
N − p(x)

if N > p(x),

+∞ if N � p(x)

for all x ∈ Ω, then we have

W 1,p(·)(Ω) ↪→ Lq(·)(Ω)

and the embedding is compact if infx∈Ω(p∗(x) − q(x)) > 0.

Lemma 2.5 (Fan [14]). Let Ω ⊂ R
N , N � 2, be a bounded domain with smooth

boundary. Suppose that p ∈ C+(Ω) and r ∈ C(∂Ω) satisfy the condition

1 � r(x) < p∂(x) :=

⎧⎨
⎩

(N − 1)p(x)
N − p(x)

if N > p(x),

+∞ if N � p(x)

for all x ∈ ∂Ω. Then the embedding W 1,p(·)(Ω) ↪→ Lr(·)(∂Ω) is compact and con-
tinuous.

Throughout this paper, we write X := W 1,p(·)(Ω) and X∗ is the dual space of
X. Furthermore, 〈·, ·〉 denotes the pairing of X and its dual X∗.
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3. Existence of infinitely many weak solutions

In this section we show the existence of infinitely many solutions for problem (P)
by applying the Fountain theorem under the Cerami condition.

Definition 3.1. We say that u ∈ X is a weak solution of problem (P) if∫
Ω

ϕ(x,∇u) · ∇v dx +
∫

Ω

|u|p(x)−2uv dx =
∫

Ω

f(x, u)v dx +
∫

∂Ω

g(x, u)v dS

for all v ∈ X.

Suppose that ϕ : Ω × R
N → R

N is the continuous derivative with respect to v of
the mapping Φ0 : Ω × R

N → R, Φ0 = Φ0(x, v), namely, ϕ(x, v) = (d/dv)Φ0(x, v).
We assume that ϕ and Φ0 satisfy the following assumptions.

(J1) The equality
Φ0(x,0) = 0

holds for almost all x ∈ Ω.

(J2) There is a function a ∈ Lp′(·)(Ω) and a non-negative constant b such that

|ϕ(x, v)| � a(x) + b|v|p(x)−1

for almost all x ∈ Ω and for all v ∈ R
N .

(J3) Φ0(x, ·) is strictly convex in R
N for all x ∈ Ω.

(J4) There exists a positive constant d such that

d|v|p(x) � ϕ(x, v) · v and d|v|p(x) � p+Φ0(x, v)

for all x ∈ Ω and v ∈ R
N .

(J5) There exists a positive constant µ1 such that

H(x, sv) � H(x, v) + µ1

for v ∈ R
N and s ∈ [0, 1], where H(x, v) = p+Φ0(x, v) − ϕ(x, v) · v for almost

all x ∈ Ω.

Let us define the functional Φ : X → R by

Φ(u) =
∫

Ω

Φ0(x,∇u) dx +
∫

Ω

1
p(x)

|u|p(x) dx.

Under assumptions (J1), (J2) and (J4), it follows from [23, 29] that the functional
Φ is well defined on X, Φ ∈ C1(X, R) and its Fréchet derivative is given by

〈Φ′(u), v〉 =
∫

Ω

ϕ(x,∇u) · ∇v dx +
∫

Ω

|u|p(x)−2uv dx. (3.1)

We give some examples that satisfy assumption (J5).
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Example 3.2. Let us consider

ϕ(x, t) = |t|p(x)−2t and Φ0(x, t) =
1

p(x)
|t|p(x)

for t ∈ R. Then H(x, st) � H(x, t) for all s ∈ [0, 1], and so assumption (J5) holds
for any positive constant µ1.

Example 3.3. Let us consider

ϕ(x, t) = (1 + t2)(p(x)−2)/2t and Φ0(x, t) =
1

p(x)
[(1 + t2)p(x)/2 − 1]

for t ∈ R, where p(x) � 2 for all x ∈ Ω. Then

H(x, t) = p+Φ0(x, t) − ϕ(x, t)t =
p+

p(x)
[(1 + t2)p(x)/2 − 1] − (1 + t2)(p(x)−2)/2t2 � 0

for any t ∈ R. For fixed t, the function H(x, st) is continuous for s ∈ [0, 1]. Thus, we
can choose s0 ∈ [0, 1] such that H(x, s0t) = maxs∈[0,1] H(x, st). It is obvious that
s0 > 0. If s0 = 1, then H(x, st) � H(x, t) for all s ∈ [0, 1] and t ∈ R. If 0 < s0 < 1,
we have

lim
|t|→∞

H(x, s0t)
H(x, t)

= s
p(x)
0 < 1.

Therefore, there exists t0 large enough such that H(x, s0t)/H(x, t) < 1 for all |t| > t0
and so H(x, s0t) < H(x, t) for all |t| > t0. Put

µ1 := 1 + max
(t,s)∈[−t0,t0]×[0,1]

H(x, st).

It follows that H(x, st) < H(x, t) + µ1 for all t ∈ R and s ∈ [0, 1], that is, condition
(J5) holds.

Example 3.4. Let us consider

ϕ(x, v) =
(

1 +
|v|p(x)√

1 + |v|2p(x)

)
|v|p(x)−2v

and

Φ0(x, v) =
1

p(x)
(|v|p(x) +

√
1 + |v|2p(x) − 1)

for v ∈ R
N . Then

H(x, v) = p+Φ0(x, v) − ϕ(x, v) · v

=
p+

p(x)
(|v|p(x) +

√
1 + |v|2p(x) − 1) −

(
1 +

|v|p(x)√
1 + |v|2p(x)

)
|v|p(x)

for any v ∈ R
N . It is easy to show that

H(x, v) − H(x, sv) � −1.

Thus, condition (J5) holds for µ1 > 1.
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The following assertion can be found in [24].

Lemma 3.5. Assume that (J1)–(J4) hold. Then the functional Φ : X → R is convex
and weakly lower semi-continuous on X. Moreover, the operator Φ′ is a mapping of
type (S+), i.e. if un ⇀ u in X and lim supn→∞〈Φ′(un) − Φ′(u), un − u〉 � 0, then
un → u in X as n → ∞.

Next we need the following assumptions for f and g. Defining

F (x, t) =
∫ t

0
f(x, s) ds and G(x, t) =

∫ t

0
g(x, s) ds,

we then assume that the following hold.

(F1) f : Ω × R → R satisfies the Carathéodory condition in the sense that f(·, t) is
measurable for all t ∈ R and f(x, ·) is continuous for almost all x ∈ Ω.

(F2) f : Ω × R → R is a continuous function and there exist two constants d1 � 0
and d2 > 0 such that

|f(x, t)| � d1 + d2|t|α(x)−1

for all x ∈ Ω and for all t ∈ R, where α ∈ C+(Ω) and p+ < α(x) < p∗(x) for
all x ∈ Ω.

(F3) lim|t|→+∞(F (x, t)/|t|p+) = +∞ uniformly for all x ∈ Ω.

(F4) There exists a positive constant µ2 such that

F(x, t) � F(x, s) + µ2

for any x ∈ Ω, 0 < t < s or s < t < 0, where F(x, t) = tf(x, t) − p+F (x, t).

(F5) f(x,−t) = −f(x, t) holds for all (x, t) ∈ Ω × R.

(G1) g : ∂Ω × R → R satisfies the Carathéodory condition and there exist two
constants d3 � 0 and d4 > 0 such that

|g(x, t)| � d3 + d4|t|β(x)−1

for all x ∈ ∂Ω and for all t ∈ R, where β ∈ C+(∂Ω) and p+ < β(x) < p∂(x)
for all x ∈ ∂Ω.

(G2) lim|t|→+∞(G(x, t)/|t|p+) = +∞ uniformly for all x ∈ ∂Ω.

(G3) There exists a positive constant µ3 such that

G(x, t) � G(x, s) + µ3

for any x ∈ ∂Ω, 0 < t < s or s < t < 0, where G(x, t) = tg(x, t) − p+G(x, t).

(G4) g(x,−t) = −g(x, t) holds for all (x, t) ∈ ∂Ω × R.
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Define the functionals Ψ, J : X → R by

Ψ(u) =
∫

Ω

F (x, u) dx and J(u) =
∫

∂Ω

G(x, u) dS.

Then it is easy to check that Ψ, J ∈ C1(X, R) and their Fréchet derivatives are

〈Ψ ′(u), v〉 =
∫

Ω

f(x, u)v dx and 〈J ′(u), v〉 =
∫

∂Ω

g(x, u)v dS (3.2)

for any u, v ∈ X. Define the functional I : X → R by

I(u) = Φ(u) − Ψ(u) − J(u).

Then it follows that the functional I ∈ C1(X, R) and its Fréchet derivative is

〈I ′(u), v〉 =
∫

Ω

ϕ(x,∇u) · ∇v dx +
∫

Ω

|u|p(x)−2uv dx −
∫

Ω

f(x, u)v dx

−
∫

∂Ω

g(x, u)v dS

for any u, v ∈ X.

Lemma 3.6. Assume that (F1), (F2) and (G1) hold. Then Ψ and J are weakly–
strongly continuous on X and their derivative operators are compact.

Proof. Proceeding with an argument analogous to that of [6, proposition 3], it
follows that functionals Ψ and J are weakly–strongly continuous on X; see also [40].

For c ∈ R, we say that the energy functional I satisfies the Cerami condi-
tion ((C)c-condition for short) if any sequence {un} ⊂ X such that I(un) → c
and ‖I ′(un)‖X∗(1 + ‖un‖X) → 0 as n → ∞ has a convergent subsequence; such a
sequence is then called a Cerami sequence, or a (C)c-sequence for short. We next
show that the energy functional I satisfies the (C)c-condition, which plays a key
role in obtaining our main result in this section.

Remark 3.7. One of the key assumptions for proving that the functional I satisfies
the (C)c-condition (or the (PS)-condition) for c ∈ R is that

f(x, t) = o(|t|p+−1) as |t| → 0 uniformly for x ∈ Ω (3.3)

and

g(x, t) = o(|t|p+−1) as |t| → 0 uniformly for x ∈ ∂Ω; (3.4)

see, for instance, [4, 8, 22, 27, 30, 38, 40]. However, we prove the following result
without assumptions (3.3) and (3.4).

Lemma 3.8. Assume that (J1)–(J5), (F1)–(F4) and (G1)–(G3) hold. Then the
energy functional I satisfies the (C)c-condition.

https://doi.org/10.1017/S0308210517000117 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210517000117


10 E. B. Choi, J.-M. Kim and Y.-H. Kim

Proof. Given c ∈ R, let {un} ⊂ X be a (C)c-sequence of the functional I, that is,

I(un) → c and ‖I ′(un)‖X∗(1 + ‖un‖X) → 0 as n → ∞,

which shows that

c = I(un) + o(1) and 〈I ′(un), un〉 = o(1), (3.5)

where o(1) → 0 as n → ∞. Note that Ψ ′ and J ′ are mappings of type (S+) by
lemma 3.6. Since I ′ is a mapping of type (S+) and X is reflexive by lemmas 3.5 and
2.1, respectively, it suffices to show the boundedness of the sequence {un} in X. If
{un} is unbounded in X, then we can assume that ‖un‖X > 1 and ‖un‖X → ∞ as
n → ∞. Define a sequence {wn} in X with wn = un/‖un‖X . Then ‖wn‖X = 1 for
all n ∈ N. Therefore, by passing to a subsequence, still denoted by {wn}, we have
that {wn} converges weakly to w ∈ X and

wn(x) → w(x) a.e. in Ω and wn → w in Lα(·)(Ω) as n → ∞, (3.6)

wn(x) → w(x) a.e. in ∂Ω and wn → w in Lβ(·)(∂Ω) as n → ∞, (3.7)

where ‘a.e.’ indicates ‘almost everywhere’, using lemmas 2.4 and 2.5. Let Ω0 =
{x ∈ Ω : w(x) 
= 0}. From (3.6), |un(x)| = |wn(x)|‖un‖X → +∞ as n → ∞ for
x ∈ Ω0 ∩ Ω. Similarly, due to (3.7), we know that |un(x)| → +∞ as n → ∞ for
x ∈ Ω0 ∩ ∂Ω. It follows from (3.5), (J4) and lemma 2.3 that

c = I(un) + o(1) =
∫

Ω

Φ0(x,∇un) dx +
∫

Ω

1
p(x)

|un|p(x) dx −
∫

Ω

F (x, un) dx

−
∫

∂Ω

G(x, un) dS + o(1)

� C1‖un‖p−
X −

∫
Ω

F (x, un) dx −
∫

∂Ω

G(x, un) dS + o(1)

for some constant C1, and thus∫
Ω

F (x, un) dx+
∫

∂Ω

G(x, un) dS � C1‖un‖p−
X −c+o(1) → +∞ as n → ∞. (3.8)

Also, by assumption (J2) and lemmas 2.1 and 2.3, we get

I(un) =
∫

Ω

Φ0(x,∇un) dx +
∫

Ω

1
p(x)

|un|p(x) dx −
∫

Ω

F (x, un) dx

−
∫

∂Ω

G(x, un) dS

�
∫

Ω

a(x)|∇un| dx +
b

p−

∫
Ω

|∇un|p(x) dx +
1

p−

∫
Ω

|un|p(x) dx

−
∫

Ω

F (x, un) dx −
∫

∂Ω

G(x, un) dS

� (2‖a‖Lp′(·)(Ω) + b + 1)‖un‖p+
X −

∫
Ω

F (x, un) dx −
∫

∂Ω

G(x, un) dS,
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and we deduce from (3.5) that

2‖a‖Lp′(·)(Ω) + b + 1∫
Ω

F (x, un) dx +
∫

∂Ω
G(x, un) dS + c − o(1)

� 1
‖un‖p+

X

(3.9)

for n large enough. In addition, condition (F3) implies that there exists t0 > 1
such that F (x, t) > |t|p+ for all x ∈ Ω and |t| > t0. Since F (x, t) is continuous on
Ω× [−t0, t0] by (F2), there exists a positive constant C2 such that |F (x, t)| � C2 for
all (x, t) ∈ Ω × [−t0, t0]. Therefore, we can choose C3 ∈ R such that F (x, t) � C3
for all (x, t) ∈ Ω × R, and thus

F (x, un(x)) − C3

‖un‖p+
X

� 0 (3.10)

for all x ∈ Ω and for all n ∈ N. Similarly, using assumption (G2), we see that there
exists C4 ∈ R such that

G(x, un(x)) − C4

‖un‖p+
X

� 0 (3.11)

for all x ∈ ∂Ω and for all n ∈ N. Observe that assumptions (F3) and (G2) imply
that

lim
n→∞

F (x, un(x))
‖un‖p+

X

= lim
n→∞

F (x, un(x))
|un(x)|p+

|wn(x)|p+ = +∞, x ∈ Ω ∩ Ω0, (3.12)

and

lim
n→∞

G(x, un(x))
‖un‖p+

X

= lim
n→∞

G(x, un(x))
|un(x)|p+

|wn(x)|p+ = +∞, x ∈ ∂Ω ∩ Ω0. (3.13)

Now, we claim that |Ω0| = 0, where |Ω| denotes the Lebesque measure of Ω. If
|Ω0| 
= 0, then by (3.8)–(3.13) and Fatou’s lemma we have

2‖a‖Lp′(·)(Ω) + b + 1

= lim inf
n→∞

(2‖a‖Lp′(·)(Ω) + b + 1)(
∫

Ω
F (x, un(x)) dx +

∫
∂Ω

G(x, un(x)) dS)∫
Ω

F (x, un(x)) dx +
∫

∂Ω
G(x, un(x)) dS + c − o(1)

� lim inf
n→∞

∫
Ω

F (x, un(x))
‖un‖p+

X

dx + lim inf
n→∞

∫
∂Ω

G(x, un(x))
‖un‖p+

X

dS

= lim inf
n→∞

∫
Ω

F (x, un(x))
‖un‖p+

X

dx − lim sup
n→∞

∫
Ω

C3

‖un‖p+
X

dx

+ lim inf
n→∞

∫
∂Ω

G(x, un(x))
‖un‖p+

X

dS − lim sup
n→∞

∫
∂Ω

C4

‖un‖p+
X

dS

= lim inf
n→∞

∫
Ω

F (x, un(x)) − C3

‖un‖p+
X

dx + lim inf
n→∞

∫
∂Ω

G(x, un(x)) − C4

‖un‖p+
X

dS

� lim inf
n→∞

∫
Ω∩Ω0

F (x, un(x)) − C3

‖un‖p+
X

dx + lim inf
n→∞

∫
∂Ω∩Ω0

G(x, un(x)) − C4

‖un‖p+
X

dS

https://doi.org/10.1017/S0308210517000117 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210517000117


12 E. B. Choi, J.-M. Kim and Y.-H. Kim

�
∫

Ω∩Ω0

lim inf
n→∞

F (x, un(x)) − C3

‖un‖p+
X

dx +
∫

∂Ω∩Ω0

lim inf
n→∞

G(x, un(x)) − C4

‖un‖p+
X

dS

=
∫

Ω∩Ω0

lim inf
n→∞

F (x, un(x))
|un(x)|p+

|wn(x)|p+ dx −
∫

Ω∩Ω0

lim sup
n→∞

C3

‖un‖p+
X

dx

+
∫

∂Ω∩Ω0

lim inf
n→∞

G(x, un(x))
|un(x)|p+

|wn(x)|p+ dS −
∫

∂Ω∩Ω0

lim sup
n→∞

C4

‖un‖p+
X

dS

= +∞,

which is a contradiction. Therefore, |Ω0| = 0, and we have w(x) = 0 almost every-
where in Ω.

Since I(tun) is continuous for t ∈ [0, 1], for each n ∈ N there exists tn ∈ [0, 1]
such that

I(tnun) := max
t∈[0,1]

I(tun). (3.14)

Let {k} be a sequence of real numbers such that k > 1 for any k and limk→∞ k =
+∞. Then ‖kwn‖X = k > 1 for all k and n. For fixed k, since wn → 0 strongly in
the spaces Lα(·)(Ω) and Lβ(·)(∂Ω) as n → ∞, it follows from the continuity of the
Nemytskii operator that F (x, kwn) → 0 in L1(Ω) as n → ∞, and G(x, kwn) → 0
in L1(∂Ω) as n → ∞; see [17, theorem 1.1]. We derive that

lim
n→∞

∫
Ω

F (x, kwn) dx = 0 (3.15)

and

lim
n→∞

∫
∂Ω

G(x, kwn) dS = 0. (3.16)

Since ‖un‖X → ∞ as n → ∞, we obtain that ‖un‖X > k and so 0 < k/‖un‖X < 1
for n large enough. It follows from (J4), (3.15), (3.16) and lemma 2.3 that

I(tnun) � I

(
k

‖un‖X
un

)
= I(kwn)

=
∫

Ω

Φ0(x,∇kwn) dx +
∫

Ω

1
p(x)

|kwn|p(x) dx −
∫

Ω

F (x, kwn) dx

−
∫

∂Ω

G(x, kwn) dS

� d

p+

∫
Ω

|∇kwn|p(x) dx +
1

p+

∫
Ω

|kwn|p(x) dx −
∫

Ω

F (x, kwn) dx

−
∫

∂Ω

G(x, kwn) dS

� C5‖kwn‖p−
X −

∫
Ω

F (x, kwn) dx −
∫

∂Ω

G(x, kwn) dS

� C5

2


p−
k (3.17)
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for some positive constant C5 and for any n large enough. Letting n, k → ∞ in
relation (3.17) implies that

lim
n→∞

I(tnun) = +∞. (3.18)

For any n large enough, it is obvious that I(tnun) > 0 = I(0) = I(0un), and thus
tn > 0. If tn < 1, then (d/dt)I(tun)|t=tn = 0, which implies that 〈I ′(tnun), tnun〉 =
0. If tn = 1, then 〈I ′(un), un〉 = o(1). Hence, we always know that

〈I ′(tnun), tnun〉 = o(1) (3.19)

for sufficiently large n. On the other hand, for all n large enough, we deduce from
assumptions (J5), (F4), (G3), (3.5) and (3.19) that

I(tnun) = I(tnun) − 1
p+

〈I ′(tnun), tnun〉 + o(1)

=
∫

Ω

Φ0(x, tn∇un) dx +
∫

Ω

1
p(x)

|tnun|p(x) dx −
∫

Ω

F (x, tnun) dx

−
∫

∂Ω

G(x, tnun) dS − 1
p+

∫
Ω

ϕ(x, tn∇un) · (tn∇un) dx

− 1
p+

∫
Ω

|tnun|p(x) dx +
1

p+

∫
Ω

f(x, tnun)tnun dx

+
1

p+

∫
∂Ω

g(x, tnun)tnun dS + o(1)

=
1

p+

∫
Ω

H(x, tn∇un) dx +
∫

Ω

1
p(x)

|tnun|p(x) dx − 1
p+

∫
Ω

|tnun|p(x) dx

+
1

p+

∫
Ω

F(x, tnun) dx +
1

p+

∫
∂Ω

G(x, tnun) dS + o(1)

� 1
p+

∫
Ω

(H(x,∇un) + µ1) dx +
∫

Ω

1
p(x)

|un|p(x) dx − 1
p+

∫
Ω

|un|p(x) dx

+
1

p+

∫
Ω

(F(x, un) + µ2) dx +
1

p+

∫
∂Ω

(G(x, un) + µ3) dS + o(1)

�
∫

Ω

Φ0(x,∇un) dx +
∫

Ω

1
p(x)

|un|p(x) dx −
∫

Ω

F (x, un) dx

−
∫

∂Ω

G(x, un) dS − 1
p+

( ∫
Ω

ϕ(x,∇un) · ∇un dx +
∫

Ω

|un|p(x) dx

−
∫

Ω

f(x, un)un dx −
∫

∂Ω

g(x, un)un dS

)
+ o(1) + C6

= I(un) − 1
p+

〈I ′(un), un〉 + o(1) + C6

→ c + C6 as n → ∞

for some positive constant C6. Due to (3.18), we have a contradiction, and thus the
sequence {un} is bounded in X. Therefore, the functional I satisfies the (C)c-con-
dition for any c ∈ R.
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It is well known that since X is a reflexive and separable Banach space, there are
{en} ⊆ X and {f∗

n} ⊆ X∗ such that

X = span{en : n = 1, 2, . . . }, X∗ = span{f∗
n : n = 1, 2, . . . },

and

〈f∗
i , ej〉 =

{
1 if i = j,

0 if i 
= j.

Let us define Xk = span{ek}, Yk =
⊕k

m=1 Xm and Zk =
⊕∞

m=k Xm for k ∈ N.
In order to establish the existence and multiplicity results, we use the following
Fountain theorem.

Lemma 3.9 (see Willem [37]). Let X be a real reflexive Banach space and let I ∈
C1(X, R) satisfy the (C)c-condition for any c > 0 and I even. If for each sufficiently
large k ∈ N there exist ρk > δk > 0 such that

(1) bk := inf{I(u) : u ∈ Zk, ‖u‖X = δk} → ∞ as k → ∞,

(2) ak := max{I(u) : u ∈ Yk, ‖u‖X = ρk} � 0.

hold, then the functional I has an unbounded sequence of critical values, i.e. there
exists a sequence {un} ⊂ X such that I ′(un) = 0 and I(un) → +∞ as n → +∞.

The following result is useful to prove our main theorem.

Lemma 3.10 (Fan [12]). Define

θk = sup
‖u‖X=1, u∈Zk

‖u‖Lα(·)(Ω) and ηk = sup
‖u‖X=1, u∈Zk

‖u‖Lβ(·)(∂Ω),

where α(x) and β(x) were given in (F2) and (G1), respectively. Then limk→∞ θk = 0
and limk→∞ ηk = 0.

Theorem 3.11. Assume that (J1)–(J5), (F1)–(F5) and (G1)–(G4) hold. Then if
Φ0(x,−v) = Φ0(x, v) holds for all (x, v) ∈ Ω × R

N , then the energy functional I
has a sequence of critical points {±un} in X such that Iλ(±un) → ∞ as n → ∞.

Proof. Obviously, I is an even functional and satisfies the (C)c-condition for any
c > 0. It is enough to show that there exist ρk > δk > 0 such that

(1) bk := inf{I(u) : u ∈ Zk, ‖u‖X = δk} → ∞ as k → ∞,

(2) ak := max{I(u) : u ∈ Yk, ‖u‖X = ρk} � 0

for k large enough.
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First of all, we prove condition (1). Assume that ‖u‖X > 1. It follows from (J4),
(F2), (G1) and lemmas 2.2 and 2.3 that

I(u) =
∫

Ω

Φ0(x,∇u) dx +
∫

Ω

1
p(x)

|u|p(x) dx −
∫

Ω

F (x, u) dx −
∫

∂Ω

G(x, u) dS

� d

p+

∫
Ω

|∇u|p(x) dx +
1

p+

∫
Ω

|u|p(x) dx −
∫

Ω

(
d1|u| +

d2

α(x)
|u|α(x)

)
dx

−
∫

∂Ω

(
d3|u| +

d4

β(x)
|u|β(x)

)
dS

� min{d, 1}
p+

‖u‖p−
X − max{d1, d3}‖u‖X − d2

α−
max{‖u‖α−

Lα(·)(Ω), ‖u‖α+

Lα(·)(Ω)}

− d4

β−
max{‖u‖β−

Lβ(·)(∂Ω), ‖u‖β+

Lβ(·)(∂Ω)}

� min{d, 1}
p+

‖u‖p−
X − max{d1, d3}‖u‖X

− C7 max{‖u‖α+

Lα(·)(Ω), ‖u‖α−
Lα(·)(Ω), ‖u‖β+

Lβ(·)(∂Ω), ‖u‖β−
Lβ(·)(∂Ω)}

for some positive constant C7. Put

‖u‖α+

Lα(·)(Ω) = max{‖u‖α+

Lα(·)(Ω), ‖u‖α−
Lα(·)(Ω), ‖u‖β+

Lβ(·)(∂Ω), ‖u‖β−
Lβ(·)(∂Ω)}.

Then we have

I(u) � min{d, 1}
p+

‖u‖p−
X − max{d1, d3}‖u‖X − C7θ

α+
k ‖u‖α+

X .

Choose δk = (α+C7θ
α+
k / min{d, 1})1/(p−−α+). It is clear that δk → ∞ as k → ∞

because p− < α+ and θk → 0 as k → ∞ by lemma 3.10. Therefore, if u ∈ Zk and
‖u‖X = δk, we have

I(u) � min{d, 1}
2

(
1

p+
− 1

α+

)
δ

p−
k − max{d1, d3}δk → ∞ as k → ∞.

Like the previous argument, I(u) → ∞ as k → ∞ in the other three cases since
p− < α− � α+, p− < β− � β+ and θk, ηk → 0 as k → ∞ by lemma 3.10.

Next we prove condition (2). Let u ∈ Yk and ‖u‖X > 1. By assumptions (F3) and
(G2), we see that for any M > 0 there exist two positive constants, both denoted
by C(M), which depend on M and satisfy

F (x, t) � M |t|p+ − C(M) for all (x, t) ∈ Ω × R (3.20)

and

G(x, t) � M |t|p+ − C(M) for all (x, t) ∈ ∂Ω × R. (3.21)
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For k > 1, it follows from (J2), (3.20), (3.21) and lemmas 2.1 and 2.3 that

I(u) =
∫

Ω

Φ0(x,∇u) dx +
∫

Ω

1
p(x)

|u|p(x) dx −
∫

Ω

F (x, u) dx −
∫

∂Ω

G(x, u) dS

�
∫

Ω

a(x)|∇u| dx +
∫

Ω

1
p(x)

b|∇u|p(x) dx +
∫

Ω

1
p(x)

|u|p(x) dx

−
∫

Ω

{M |u|p+ − C(M)} dx −
∫

∂Ω

{M |u|p+ − C(M)} dS

� 2‖a‖Lp′(·)(Ω)‖∇u‖Lp(·)(Ω) + (b + 1)‖u‖p+
X − M

∫
Ω

|u|p+ dx

− M

∫
∂Ω

|u|p+ dS + C(M)(|Ω| + |∂Ω|)

� (2‖a‖Lp′(·)(Ω) + b + 1)‖u‖p+
X − M

( ∫
Ω

|u|p+ dx +
∫

∂Ω

|u|p+ dS

)
+ C8

for some positive constant C8. Since dimYk < ∞, all norms are equivalent in Yk.
So

I(u) � (2‖a‖Lp′(·)(Ω) + b + 1)‖u‖p+
X − MC9‖u‖p+

X + C8

for some positive constant C9. If M is large enough such that (2‖a‖Lp′(·)(Ω) + b +
1) < MC9, then we obtain I(u) → −∞ as ‖u‖X → ∞, and thus we can choose
ρk > δk > 0.

4. Existence of infinitely many weak solutions converging to zero

In this section we prove the existence of infinitely many weak solutions for the non-
linear Neumann boundary-value problem (P) using the argument in [34, 36] (the-
orem 4.7 below). For this, we employ the regularity lemma (lemma 4.3) and the
cut-off method (lemma 4.6). First of all, we need the following additional assump-
tions on ϕ, Φ0, f and g.

(J6) ϕ(x, v) · v − p−Φ0(x, v) � 0 for all x ∈ Ω and for all v ∈ R
N .

(F6) There exists a constant s0 > 0 such that p−F (x, t)−f(x, t)t > 0 for all x ∈ Ω
and for 0 < |t| � s0.

(F7) lim|t|→0(f(x, t)/|t|p−−2t) = +∞ uniformly for all x ∈ Ω.

(G5) There exists a constant s1 > 0 such that p−G(x, t)−g(x, t)t > 0 for all x ∈ ∂Ω
and for 0 < |t| � s1.

(G6) lim|t|→0 (g(x, t)/|t|p−−2t) = +∞ uniformly for all x ∈ ∂Ω.

Let us introduce the following lemma, which will be useful in the proof of a result
about regularity for a weak solution of problem (P). Define u+ = max{u, 0} and
u− = − min{u, 0}.

Remark 4.1. If u ∈ X and k � 0, then (u − k)+, (u + k)− ∈ X.

To apply De Giorgi’s technique, we need the following crucial lemma. The proof
is given in [21, lemma 4.3], which is an extension of [35, lemma 2.2].
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Lemma 4.2. Let {Zn}∞
n=1 be a sequence of positive numbers satisfying the recursion

inequality
Zn+1 � kbn(Z1+δ1

n + Z1+δ2
n ), n = 0, 1, 2, . . . ,

for some b > 1, k > 0 and δ2 � δ1 > 0. If Z0 � min{1, (2k)(−1)/δ1b(−1)/δ2
1} or

Z0 � min{(2k)(−1)/δ1b(−1)/δ2
1 , (2k)(−1)/δ2b−1/(δ1δ2)−(δ2−δ1)/δ2

2},

then Zn � 1 for some n ∈ N ∪ {0}. Moreover,

Zn � min{1, (2k)(−1)/δ1b(−1)/δ2
1b(−n)/δ1}

for any n � n0, where n0 is the smallest n ∈ N∪{0} satisfying Zn � 1. In particular,
Zn → 0 as n → ∞.

Next, from an analogous argument to that in [20, theorem 4.2], we prove propo-
sition 4.3, which is a regularity-type lemma, via De Giorgi’s technique and the
localization method. We point out that proposition 4.3 is reproved in the present
circumstances because the lemma 4.2 above is slightly different from [39, lemma 2.1],
even though their method was applied to the Neumann problem with a nonlinear
boundary condition.

Proposition 4.3. Assume that (J1), (J2), (J4), (F1), (F2) and (G1) hold. Then
there exist positive constants η, ρ such that if u is a weak solution of problem (P),
then

− η

[
1 +

( ∫
Ω

(−u)α(x)
+ dx +

∫
∂Ω

(−u)β(x)
+ dS

)ρ]
� ess inf

Ω
u

� ess sup
Ω

u

� η

[
1 +

( ∫
Ω

u
α(x)
+ dx +

∫
∂Ω

u
β(x)
+ dS

)ρ]
,

that is, u ∈ L∞(Ω).

Proof. Let Ak = {x ∈ Ω : u(x) > k}, Ãk = {x ∈ Ω : − u(x) > k}, k ∈ N. Taking
v = (u − k)+ ∈ X as a test function in (P) and integrating over Ω, we have∫

Ω

ϕ(x,∇u) · ∇v dx +
∫

Ω

|u|p(x)−2uv dx =
∫

Ω

f(x, u)v dx +
∫

∂Ω

g(x, u)v dS.

Equivalently,

∫
Ω∩Ak

ϕ(x,∇u) · ∇u dx +
∫

Ω∩Ak

|u|p(x)−2u(u − k) dx

=
∫

Ω∩Ak

f(x, u)(u − k) dx +
∫

∂Ω∩Ak

g(x, u)(u − k) dS.
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Hence, since u � u − k > 0 and u � k � 1 on Ak, by (F2) and (G1),∫
Ω∩Ak

ϕ(x,∇u) · ∇u dx

� −
∫

Ω∩Ak

|u|p(x)−2u(u − k) dx +
∫

Ω∩Ak

(d1 + d2|u|α(x)−1)(u − k) dx

+
∫

∂Ω∩Ak

(d3 + d4|u|β(x)−1)(u − k) dS

�
∫

Ω∩Ak

(d1 + d2|u|α(x)−1)u dx +
∫

∂Ω∩Ak

(d3 + d4|u|β(x)−1)u dS

� (d1 + d2)
∫

Ω∩Ak

uα(x) dx + (d3 + d4)
∫

∂Ω∩Ak

uβ(x) dS. (4.1)

Similarly, taking v = −(u + k)− = −(−u − k)+ ∈ X as a test function in (P) we
obtain∫

Ω∩Ãk

ϕ(x,∇u)·∇u dx � (d1+d2)
∫

Ω∩Ãk

(−u)α(x) dx+(d3+d4)
∫

∂Ω∩Ãk

(−u)β(x) dS.

(4.2)
Put kn := k∗(2 − 1/2n), n = 0, 1, 2, . . . , with k∗ � 1 specified later, and

Zn :=
∫

Ω∩Akn

(u − kn)α(x) dx +
∫

∂Ω∩Akn

(u − kn)β(x) dS.

Note that k∗ � kn � kn+1 � 2k∗ for all n ∈ N. Recalling the definition of kn, we
have

∫
Ω∩Akn

(u − kn)α(x) dx �
∫

Ω∩Akn+1

uα(x)
(

1 − kn

kn+1

)α(x)

dx

�
∫

Ω∩Akn+1

uα(x)

2α(x)(n+2) dx

and

Zn �
∫

Ω∩Akn+1

uα(x)

2α(x)(n+2) dx +
∫

∂Ω∩Akn+1

uβ(x)

2β(x)(n+2) dS

� 1
2α+(n+2)

∫
Ω∩Akn+1

uα(x) dx +
1

2β+(n+2)

∫
∂Ω∩Akn+1

uβ(x) dS

� 1
2max{α+,β+}(n+2)

( ∫
Ω∩Akn+1

uα(x) dx +
∫

∂Ω∩Akn+1

uβ(x) dS

)
.

Thus, ∫
Ω∩Akn+1

uα(x) dx +
∫

∂Ω∩Akn+1

uβ(x) dS � en+2
1 Zn, (4.3)
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where e1 = 2max{α+,β+} > 1. It follows from (J4), (4.1) and (4.3) that∫
Ω∩Akn+1

d|∇(u − kn+1)|p(x) dx

�
∫

Ω∩Akn+1

ϕ(x,∇(u − kn+1)) · ∇(u − kn+1) dx

� (d1 + d2)
∫

Ω∩Akn+1

uα(x) dx + (d3 + d4)
∫

∂Ω∩Akn+1

uβ(x) dS

� (d1 + d2 + d3 + d4)en+2
1 Zn. (4.4)

For the Lebesgue measure of Akn+1 , we estimate

|Akn+1 | �
∫

Ω∩Akn+1

(
u − kn

kn+1 − kn

)α(x)

dx +
∫

∂Ω∩Akn+1

(
u − kn

kn+1 − kn

)β(x)

dS

�
∫

Ω∩Akn+1

(
2n+1

k∗

)α(x)

(u − kn)α(x) dx

+
∫

∂Ω∩Akn+1

(
2n+1

k∗

)β(x)

(u − kn)β(x) dS

� 2(n+1)α+

k
α−
∗

∫
Ω∩Akn+1

(u − kn)α(x) dx +
2(n+1)β+

k
β−
∗

∫
∂Ω∩Akn+1

(u − kn)β(x) dS

� 2(n+1) max{α+,β+}

k∗

×
( ∫

Ω∩Akn+1

(u − kn)α(x) dx +
∫

∂Ω∩Akn+1

(u − kn)β(x) dS

)
.

So

|Akn+1 | � en+1
1

k∗
Zn. (4.5)

The compactness of Ω implies that for any R > 0, there exists a finite open cover
{Bi(R)}m

i=1 of balls Bi := Bi(R) with radius R such that Ω ⊂
⋃m

i=1 Bi. Define

p+
i = max

Bi∩Ω
p(x), α+

i = max
Bi∩Ω

α(x), β+
i = max

Bi∩Ω
β(x),

p−
i = min

Bi∩Ω
p(x), α−

i = min
Bi∩Ω

α(x), β−
i = min

Bi∩Ω
β(x),

(p−
i )∗ =

⎧⎪⎨
⎪⎩

Np−
i

N − p−
i

if N > p−
i ,

+∞ if N � p−
i ,

(p−
i )∂ =

⎧⎪⎨
⎪⎩

(N − 1)p−
i

N − p−
i

if N > p−
i ,

+∞ if N � p−
i .

Since p(x) � α(x) < p∗(x) for all x ∈ Ω, p(x) � β(x) < p∂(x) for all x ∈ ∂Ω, and
p ∈ C(Ω), α ∈ C+(Ω), β ∈ C+(∂Ω), we may take a sufficiently small R > 0 such
that for all i ∈ {1, . . . , m} we have

p+
i � α+

i < (p−
i )∗ and p+

i � β+
i < (p−

i )∂ . (4.6)
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Case 1 (p+
i � α+

i < (p−
i )∗). In this case, p+

i � α+
i is clear and if p(x) � N for all

x ∈ Ω, then α+
i < (p−

i )∗ is obvious. For the case in which p(x) < N , we can modify
the proof in [20] to get α+

i < (p−
i )∗. For the convenience of the reader, we prove it.

Assume that there exists x ∈ Ω such that p(x) < N . Then we have

inf
x∈Ω

(p∗(x) − α(x)) = δ1 > 0

for some δ1 > 0. Since p(x) is uniformly continuous on Ω, for a sufficiently small
R > 0 we have

|p(x) − p(y)| � ε1 for all x, y ∈ Bi ∩ Ω,

where

ε1 = min
{

N2α+

(N + α+)(N + 2α+)
,

δ1N
2

2(N + α+)(N + 2α+)

}
.

Fix i ∈ {1, . . . , m}. Defining xi ∈ Bi ∩ Ω such that p(xi) = p−
i , we consider the

following three cases. The first, the p(xi) � N case, is obvious. For the second, that
in which Nα+/(N + α+) < p(xi) < N , we have

(p−
i )∗ =

Np(xi)
N − p(xi)

= −N +
N2

N − p(xi)
> −N +

N2

N − Nα+/(N + α+)
= α+ � α+

i .

For the final case, in which p(xi) � Nα+/(N + α+), for all y ∈ Bi ∩ Ω we have

p(y) < p(xi) + ε1 � Nα+

N + α+
+ ε1 � Nα+(N + 2α+)

(N + α+)(N + 2α+)
+

N2α+

(N + α+)(N + 2α+)

=
2Nα+

N + 2α+

< N.

Writing α+
i = α(yi) for some yi ∈ Bi ∩ Ω, we have

|p∗(yi) − p∗(xi)| =
∣∣∣∣ N2

N − p(yi)
− N − N2

N − p(xi)
+ N

∣∣∣∣
= N2 |p(yi) − p(xi)|

(N − p(yi))(N − p(xi))

< N2 ε1

(N − 2Nα+(N + 2α+))(N − Nα+/(N + α+))

= ε1N
2 (N + 2α+)(N + α+)

N4

� δ1

2
.

Therefore, we get

α+
i = α(yi) � p∗(yi) − δ1 � p∗(xi) +

δ1

2
− δ1 < p∗(xi) = (p−

i )∗.
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Case 2 (p+
i � β+

i < (p−
i )∂). In this case, p+

i � β+
i is clear and if p(x) � N for all

x ∈ ∂Ω, then β+
i < (p−

i )∂ is obvious. Assume that there exists x ∈ ∂Ω such that
p(x) < N . Then we have

inf
x∈∂Ω

(p∂(x) − β(x)) = δ2 > 0

for some δ2 > 0. Since p(x) is uniformly continuous on ∂Ω, for a sufficiently small
R > 0 we have

|p(x) − p(y)| � ε2 for all x, y ∈ Bi ∩ ∂Ω,

where

ε2 = min
{

Nβ+(N − 2)
(N − 1 + β+)(N + 2β+)

,
δ2N

2

2(N − 1 + β+)(N + 2β+)

}
.

Fix i ∈ {1, . . . , m}. Defining xi ∈ Bi ∩ ∂Ω such that p(xi) = p−
i , we consider the

following three cases. The first, the p(xi) � N case, is obvious. For the second, that
in which Nβ+/(N −1+β+) < p(xi) < N , we have (Nβ+ +p(xi))/(β+ +N) < p(xi)
and

(p−
i )∂ =

(N − 1)p(xi)
N − p(xi)

= −N +
N2 − p(xi)
N − p(xi)

> −N +
N2 − p(xi)

N − (Nβ+ + p(xi))/(β+ + N)
= β+

� β+
i .

For the final case, in which p(xi) � Nβ+/(N −1+β+), for all y ∈ Bi ∩∂Ω we have

p(y) < p(xi) + ε2 � Nβ+

N − 1 + β+
+ ε2

� Nβ+(N + 2β+)
(N − 1 + β+)(N + 2β+)

+
Nβ+(N − 2)

(N − 1 + β+)(N + 2β+)

=
2Nβ+

N + 2β+

< N.

Denoting β+
i = β(yi) for some yi ∈ Bi ∩ ∂Ω, we have

|p∂(yi) − p∂(xi)| =
∣∣∣∣N2 − p(yi)

N − p(yi)
− N2 − p(xi)

N − p(xi)

∣∣∣∣

=

∣∣∣∣∣∣∣∣
(N3 − p(xi)N2 − p(yi)N + p(yi)p(xi))

−(N3 − p(yi)N2 − p(xi)N + p(xi)p(yi))
(N − p(yi))(N − p(xi))

∣∣∣∣∣∣∣∣
=

∣∣∣∣ (N2 − N)(p(yi) − p(xi))
(N − p(yi))(N − p(xi))

∣∣∣∣
< N(N − 1)

ε2

(N − 2Nβ+/(N + 2β+))(N − Nβ+/(N − 1 + β+))
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= ε2
(N + 2β+)(N − 1 + β+)

N2

� δ2

2
.

Therefore, we get

β+
i = β(yi) � p∂(yi) − δ2 � p∂(xi) +

δ2

2
− δ2 < p∂(xi) = (p−

i )∂ .

By way of cases 1 and 2, we show inequality (4.6). Next, to obtain the relation
between Zn and Zn+1, we choose a partition of unity {ξi}m

i=1 ⊂ C∞
0 (RN ) associated

with an open cover {Bi}m
i=1, that is, we have

supp ξi ⊂ Bi, 0 � ξi � 1,

m∑
i=1

ξi = 1.

Observe that∫
Ω∩Akn+1

d|∇(u − kn+1)|p(x) dx

=
∫

Ω∩Akn+1

d|∇(u − kn+1)|p(x)
m∑

i=1

ξi dx

�
m∑

i=1

∫
Ω∩Akn+1

d{|∇(u − kn+1)|p
−
i − 1}ξi dx

�
m∑

i=1

∫
Ω∩Akn+1

d|∇(u − kn+1)|p
−
i ξ

p−
i

i dx − d|Ω ∩ Akn+1 |.

Therefore, it follows from the above inequality, (4.4) and (4.5) that we obtain

m∑
i=1

∫
Ω∩Akn+1

d|ξi∇(u − kn+1)|p
−
i dx � (d1 + d2 + d3 + d4)en+2

1 Zn + d|Ω ∩ Akn+1 |

� (d1 + d2 + d3 + d4)en+2
1 Zn +

den+1
1

k∗
Zn

= e2e
n
1Zn, (4.7)

where e2 := (d1 + d2 + d3 + d4)e2
1 + de1/k∗.

Now, we estimate Zn+1 from Zn. Using the partition of unity and Jensen’s
inequality, we get

Zn+1 =
∫

Ω∩Akn+1

(u − kn+1)α(x) dx +
∫

∂Ω∩Akn+1

(u − kn+1)β(x) dS

=
∫

Ω∩Akn+1

(u − kn+1)α(x)
( m∑

i=1

ξi

)α+

dx

+
∫

∂Ω∩Akn+1

(u − kn+1)β(x)
( m∑

i=1

ξi

)β+

dS
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� mα+−1
m∑

i=1

∫
Ω∩Akn+1

(u − kn+1)α(x)ξ
α+
i dx

+ mβ+−1
m∑

i=1

∫
∂Ω∩Akn+1

(u − kn+1)β(x)ξ
β+
i dS

� mα+−1
m∑

i=1

∫
Ω∩Akn+1

(u − kn+1)α(x)ξ
α(x)
i dx

+ mβ+−1
m∑

i=1

∫
∂Ω∩Akn+1

(u − kn+1)β(x)ξ
β(x)
i dS.

Thus

Zn+1 � mmax{α+,β+}−1
m∑

i=1

[ ∫
Ω∩Akn+1

(u − kn+1)α+ξ
α+
i dx

+
∫

∂Ω∩Akn+1

(u − kn+1)β+ξ
β+
i dS

+
∫

Ω∩Akn+1

(u − kn+1)α−ξ
α−
i dx

+
∫

∂Ω∩Akn+1

(u − kn+1)β−ξ
β−
i dS

]
. (4.8)

For each i ∈ {1, . . . , m}, define

α̃i :=

{
1
2 (α+

i + (p−
i )∗) if (p−

i )∗ < ∞,

α+
i + 1 if (p−

i )∗ = ∞,

β̃i :=

{
1
2 (β+

i + (p−
i )∂) if (p−

i )∂ < ∞,

β+
i + 1 if (p−

i )∂ = ∞.

Thus, α+
i < α̃i < (p−

i )∗ and β+
i < β̃i < (p−

i )∂ , and so we deduce following continu-
ous embedding:

W 1,p−
i (Ω) ↪→ Lα̃i(Ω), W 1,p−

i (Ω) ↪→ Lβ̃i(∂Ω).

Let i ∈ {1, . . . , m} be fixed and suppose that γ1 ∈ {α+
i , α−

i }, γ2 ∈ {β+
i , β−

i }.
Then, p−

i � γ1 � α+
i < α̃i < (p−

i )∗ and p−
i � γ2 � β+

i < β̃i < (p−
i )∂ . Using the

Hölder inequality and the claim about the embedding, we get∫
Ω∩Akn+1

(u − kn+1)
γ1
+ ξγ1

i dx +
∫

∂Ω∩Akn+1

(u − kn+1)
γ2
+ ξγ2

i dS

�
( ∫

Ω

{ξi(u − kn+1)+}α̃i dx

)γ1/α̃i

|Ω ∩ Akn+1 |1−γ1/α̃i

+
( ∫

∂Ω

{ξi(u − kn+1)+}β̃i dS

)γ2/β̃i

|∂Ω ∩ Akn+1 |1−γ2/β̃i
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� ‖ξi(u − kn+1)+‖γ1

Lα̃i (Ω)|Akn+1 |1−γ1/α̃i + ‖ξi(u − kn+1)+‖γ2

Lβ̃i (∂Ω)
|Akn+1 |1−γ2/β̃i

� Cγ1
i (‖ξi(u − kn+1)+‖

Lp
−
i (Ω)

+ ‖∇{ξi(u − kn+1)+}‖
Lp

−
i (Ω)

)γ1 |Akn+1 |1−γ1/α̃i

+ Dγ2
i (‖ξi(u − kn+1)+‖

Lp
−
i (Ω)

+ ‖∇{ξi(u − kn+1)+}‖
Lp

−
i (Ω)

)γ2 |Akn+1 |1−γ2/β̃i

� (2Ci)γ1

( ∫
Ω

|ξi(u − kn+1)+|p
−
i dx

+
∫

Ω

|∇{ξi(u − kn+1)+}|p
−
i dx

)γ1/p−
i

|Akn+1 |1−γ1/α̃i

+ (2Di)γ2

( ∫
Ω

|ξi(u − kn+1)+|p
−
i dx

+
∫

Ω

|∇{ξi(u − kn+1)+}|p
−
i dx

)γ2/p−
i

|Akn+1 |1−γ2/β̃i ,

where Ci and Di are the embedding constants. In addition, we have∫
Ω

|ξi(u − kn+1)+|p
−
i dx �

∫
Ω∩Akn+1

uα(x) dx � en+2
1 Zn, (4.9)

and from (4.3) and (4.7) we estimate∫
Ω

|∇{ξi(u − kn+1)+}|p
−
i dx � 2p−

i −1
∫

Ω∩Akn+1

|ξi∇(u − kn+1)|p
−
i dx

+ 2p−
i −1

∫
Ω∩Akn+1

(u − kn+1)p−
i |∇ξi|p

−
i dx

� 2p−
i −1 1

d
e2e

n
1Zn + 2p−

i −1Lp−
i en+2

1 Zn, (4.10)

where L is a positive constant satisfying

|∇ξi| � L (i = 1, . . . , m).

Using (4.10), relation (4.9) becomes∫
Ω∩Akn+1

(u − kn+1)
γ1
+ ξγ1

i dx +
∫

∂Ω∩Akn+1

(u − kn+1)
γ2
+ ξγ2

i dS

� (2Ci)γ1

(
e2
1 + 2p−

i −1 1
d
e2 + 2p−

i −1Lp−
i e2

1

)γ1/p−
i

(eγ1/p−
i

1 )nZ
γ1/p−

i
n |Akn+1 |1−γ1/α̃i

+ (2Di)γ2

(
e2
1 + 2p−

i −1 1
d
e2 + 2p−

i −1Lp−
i e2

1

)γ2/p−
i

(eγ2/p−
i

1 )nZ
γ2/p−

i
n |Akn+1 |1−γ2/β̃i .

(4.11)

Noting that Z
R/p−

i
n � Zn + Z

max{α+/p−,β+/p−}
n for R ∈ {γ1, γ2} and using (4.5), we

have

|Akn+1 |1−γ1/α̃i �
(

en+1
1

k∗
Zn

)1−γ1/α̃i

� e
1−γ1/α̃i

1

k1−η
∗

(e1−γ1/α̃i

1 )n(Zn + Z1−η
n ) (4.12)
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and

|Akn+1 |1−γ1/β̃i �
(

en+1
1

k∗
Zn

)1−γ2/β̃i

� e
1−γ1/β̃i

1

k1−η
∗

(e1−γ2/β̃i

1 )n(Zn + Z1−η
n ), (4.13)

where η := max1�i�m{α+
i /α̃i, β

+
i /β̃i} < 1. It follows from (4.11)–(4.13) that∫

Ω∩Akn+1

(u − kn+1)γ1ξγ1
i dx +

∫
∂Ω∩Akn+1

(u − kn+1)γ2ξγ2
i dS

� eγ1

k1−η
∗

(eγ1/p−
i

1 )n(e1−γ1/α̃i

1 )n(Zn + Z1−η
n )(Zn + Zmax{α+/p−,β+/p−}

n )

+
eγ2

k1−η
∗

(eγ2/p−
i

1 )n(e1−γ2/β̃i

1 )n(Zn + Z1−η
n )(Zn + Zmax{α+/p−,β+/p−}

n )

� (eγ1 + eγ2)
1

k1−η
∗

(e1+(α++β+)/p−

1 )n(Zn + Z1−η
n )(Zn + Zmax{α+/p−,β+/p−}

n ),

(4.14)

where

eγ1 := (2Ci)γ1(e2
1 + 2p−

i −1d−1e2 + 2p−
i −1Lp−

i e2
1)

γ1/p−
i e

1−γ1/α̃i

1

and

eγ2 := (2Di)γ2(e2
1 + 2p−

i −1d−1e2 + 2p−
i −1Lp−

i e2
1)

γ2/p−
i e

1−γ2/β̃i

1 .

We deduce from (4.8) and (4.14) that

Zn+1 � e3

4k1−η
∗

bn(Z2
n + Z2−η

n + Z1+max{α+/p−,β+/p−}
n + Z1+max{α+/p−,β+/p−}−η

n ),

where

e3 = 4mmax{α+,β+}−1
m∑

i=1

(eα+
i

+ eβ+
i

+ eα−
i

+ eβ−
i

) > 0,

b = e
1+(α++β+)/p−
1 > 1.

Arguing the cases Zn � 1 and Zn < 1, and noting that the smallest and the largest
exponents are 2 − η and 1 + max{α+/p−, β+/p−}, respectively, we get

Zn+1 � e3

k1−η
∗

bn(Z2−η
n + Z1+max{α+/p−,β+/p−}

n ).

In other words,
Zn+1 � e3

kδ1∗
bn(Z1+δ1

n + Z1+δ2
n ), (4.15)

where 0 < δ1 = 1 − η < 1 � δ2 = max{α+/p−, β+/p−}. Applying lemma 4.2 with
(4.15), we obtain that

Zn =
∫

Ω

(u − kn)α(x)
+ dx +

∫
∂Ω

(u − kn)β(x)
+ dS → 0 as n → ∞ (4.16)
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provided that
Z0 � min{1, k

δ1−1/δ1
∗ b−1/δ2

1} (4.17)

or

Z0 � min
{(

2e3

kδ1∗

)−1/δ1

b−1/δ2
1 ,

(
2e3

kδ1∗

)−1/δ2

b−1/(δ1δ2)−(δ2−δ1)/δ2
2

}
. (4.18)

Observe that

Z0 =
∫

Ω∩Ak∗

(u − k∗)α(x) dx +
∫

∂Ω∩Ak∗

(u − k∗)β(x) dS

�
∫

Ω

u
α(x)
+ dx +

∫
∂Ω

u
β(x)
+ dS.

Set

k∗ = [1 + (2e3)1/δ1b1/δ2
1+(δ2−δ1)/δ1δ2 ]

[
1 +

( ∫
Ω

u
α(x)
+ dx +

∫
∂Ω

u
β(x)
+ dS

)δ2/δ1
]
.

So we have inequality (4.17) if ρ � 1 or inequality (4.18) if ρ > 1, where

ρ =
∫

Ω

u
α(x)
+ dx +

∫
∂Ω

u
β(x)
+ dS.

Since kn ↑ 2k∗, (4.16) implies that∫
Ω

(u − 2k∗)
α(x)
+ dx +

∫
∂Ω

(u − 2k∗)
β(x)
+ dS = 0.

Consequently, (u − 2k∗)+ = 0 a.e. in Ω and this means that ess supΩ u � 2k∗. The
boundedness from below of u can be shown analogously by replacing u with −u,
Ak with Ãk, and using (4.2) instead of (4.1). This completes the proof.

The following lemma is quoted from [19].

Lemma 4.4 (Heinz [19]). Let I ∈ C1(X, R), where X is a Banach space. Assume
that I satisfies the (PS)-condition, is even and bounded from below, and I(0) = 0.
If for any n ∈ N there exists an n-dimensional subspace Xn and a ρn > 0 such that

sup
Xn∩Sρn

I < 0,

where Sρ := {u ∈ X : ‖u‖X = ρ}, then I has a sequence of critical values cn < 0
satisfying cn → 0 as n → ∞.

Lemma 4.5. Assume that (J1), (J2), (J4), (J6), (F1), (F2) and (G1) hold. If,
furthermore,

p−F (x, t) − f(x, t)t > 0 for all x ∈ Ω and for t 
= 0, (4.19)

and

p−G(x, t) − g(x, t)t > 0 for all x ∈ ∂Ω and for t 
= 0, (4.20)
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then
I(u) = 〈I ′(u), u〉 = 0 if and only if u = 0.

Proof. Let I(u) = 〈I ′(u), u〉 = 0. Then we see that

0 = −p−I(u) = −p−

∫
Ω

Φ0(x,∇u) dx − p−

∫
Ω

1
p(x)

|u|p(x) dx

+ p−

∫
Ω

F (x, u) dx + p−

∫
∂Ω

G(x, u) dS

� −p−

∫
Ω

Φ0(x,∇u) dx −
∫

Ω

|u|p(x) dx

+ p−

∫
Ω

F (x, u) dx + p−

∫
∂Ω

G(x, u) dS, (4.21)

and

〈I ′(u), u〉 =
∫

Ω

ϕ(x,∇u) · ∇u dx +
∫

Ω

|u|p(x) dx

−
∫

Ω

f(x, u)u dx −
∫

∂Ω

g(x, u)u dS

= 0. (4.22)

It follows from assumption (J6) and relations (4.21) and (4.22) that∫
Ω

{p−F (x, u) − f(x, u)u} dx +
∫

∂Ω

{p−G(x, u) − g(x, u)u} dS � 0.

Consequently, assumptions (4.19) and (4.20) imply that u = 0. The converse is
clear from assumption (J1).

Lemma 4.6. Assume that (F1), (F2), (F6), (F7), (G1), (G5) and (G6) hold. Then
there are t0 > 0, f̃ ∈ C1(Ω × R, R) and g̃ ∈ C1(∂Ω × R, R) such that f̃(x, t) and
g̃(x, t) are odd in t and satisfy

F̃(x, t) = p−F̃ (x, t) − f̃(x, t)t � 0,

G̃(x, t) = p−G̃(x, t) − g̃(x, t)t � 0,

F̃(x, t) = 0 ⇐⇒ t ≡ 0 or |t| � 2t0,

G̃(x, t) = 0 ⇐⇒ t ≡ 0 or |t| � 2t0.

Proof. Let us define a cut-off function κ1 ∈ C1(R, R) satisfying κ1(t) = 1 for
|t| � t0, κ1(t) = 0 for |t| � 2t0, |κ′

1(t)| � 2/t0 and κ′
1(t)t � 0. So, we define

F̃ (x, t) = κ1(t)F (x, t) + (1 − κ1(t))γ1|t|p− and f̃(x, t) =
∂

∂t
F̃ (x, t), (4.23)

where γ1 > 0 is a constant. It is straightforward to see that

p−F̃ (x, t) − f̃(x, t)t = κ1(t)F(x, t) − κ′
1(t)tF (x, t) + κ′

1(t)tγ1|t|p− ,
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where F(x, t) := p−F (x, t) − f(x, t)t. For 0 � |t| � t0 and |t| � 2t0 the conclusion
follows. By (F7), we choose a sufficiently small t0 > 0 such that F (x, t) � γ1t

p− for
t0 � |t| � 2t0. Due to the assumption that κ′

1(t)t � 0 we get the conclusion.
Let us define a cut-off function κ2 ∈ C1(R, R) satisfying κ2(t) = 1 for |t| � t0,

κ2(t) = 0 for |t| � 2t0, |κ′
2(t)| � 2/t0 and κ′

2(t)t � 0. As in (4.23), we define

G̃(x, t) = κ2(t)G(x, t) + (1 − κ2(t))γ2|t|p− and g̃(x, t) =
∂

∂t
G̃(x, t), (4.24)

where γ2 > 0 is a constant. From analogous arguments, we deduce the conclusion.

Now we prove the second main result using proposition 4.3 and lemmas 4.4
and 4.6.

Theorem 4.7. Assume that (J1)–(J4), (J6), (F1), (F2), (F5)–(F7), (G1) and
(G4)–(G6) hold. If Φ0(x,−v) = Φ0(x, v) holds for all (x, v) ∈ Ω×R

N , then problem
(P) has a sequence of weak solutions un such that ‖un‖L∞(Ω) → 0 as n → ∞.

Proof. Let u ∈ X and ‖u‖X > 1. We can choose positive constants c1 and c2

satisfying

‖u‖p−
Lp− (Ω) � c1‖u‖p−

X and ‖u‖p−
Lp− (∂Ω) � c2‖u‖p−

X .

For the given functions f(x, t) and g(x, t), we can modify and extend f̃ ∈ C1(Ω ×
R, R) and g̃ ∈ C1(∂Ω × R, R) satisfying all properties listed in lemma 4.6 with γ1

and γ2 such that p+(c1γ1 + c2γ2) � min{d, 1} for the positive constant d from (J4).
And also, by lemma 4.6, it is easy to show that Ĩ ∈ C1(X, R) and is even on X.
Moreover,

Ĩ(u) :=
∫

Ω

Φ0(x,∇u) dx +
∫

Ω

1
p(x)

|u|p(x) dx −
∫

Ω

F̃ (x, u) dx −
∫

∂Ω

G̃(x, u) dS

� d

p+

∫
Ω

|∇u|p(x) dx +
1

p+

∫
Ω

|u|p(x) dx

−
∫

Ω∩Ω1

{κ1(u)F (x, u) + (1 − κ1(u))γ1|u|p−} dx −
∫

Ω∩Ω2

γ1|u|p− dx

−
∫

∂Ω∩Ω1

{κ2(u)G(x, u) + (1 − κ2(u))γ2|u|p−} dS −
∫

∂Ω∩Ω2

γ2|u|p− dS

� min{d, 1}
p+

‖u‖p−
X −

∫
Ω∩Ω1

F (x, u) dx −
∫

Ω

γ1|u|p− dx −
∫

∂Ω∩Ω1

G(x, u) dS

−
∫

∂Ω

γ2|u|p− dS

� min{d, 1}
p+

‖u‖p−
X − γ1c1‖u‖p−

X − γ2c2‖u‖p−
X

−
∫

Ω∩Ω1

{
d1|u| +

d2

p+
|u|α(x)

}
dx −

∫
∂Ω∩Ω1

{
d3|u| +

d4

p+
|u|β(x)

}
dS,
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where Ω1 := {x ∈ Ω : 0 � |u(x)| � 2t0} and Ω2 := {x ∈ Ω : 2t0 � |u(x)|}. Thus, we
have

Ĩ(u) � min{d, 1}
p+

‖u‖p−
X − (γ1c1 + γ2c2)‖u‖p−

X + C10

for some positive constant C10, so that Ĩ is coercive, that is, Ĩ(u) → ∞ as ‖u‖X →
∞. By a standard argument, Ĩ satisfies the (PS)c-condition. In order to apply
lemma 4.4, we only need to find, for any n ∈ N, a subspace Xn and a ρn > 0 such
that supXn∩Sρn

Ĩ < 0. For any n ∈ N we find n independent smooth functions φi

for i = 1, . . . , n, and define Xn := span{φ1, . . . , φn}. By (J2) and lemma 4.6, when
‖u‖X < 1 we have that

Ĩ(u) :=
∫

Ω

Φ0(x,∇u) dx +
∫

Ω

1
p(x)

|u|p(x) dx −
∫

Ω

F̃ (x, u) dx −
∫

∂Ω

G̃(x, u) dS

� (2‖a‖Lp′(·)(Ω) + b + 1)‖u‖p−
X − C11

∫
Ω

F (x, u) dx − C11

∫
∂Ω

G(x, u) dS

for a positive constant C11. It follows from assumptions (F7) and (G6) that, for a
sufficiently large M0 > 0, there exists δ0 > 0 such that |t| < δ0 implies both∫

Ω

F (x, t) dx � M0

p−

∫
Ω

|t|p− dx and
∫

∂Ω

G(x, t) dS � M0

p−

∫
∂Ω

|t|p− dS.

By this and the fact that all norms on Xn are equivalent, choosing a suitable
constant C11 and sufficiently small ρn > 0, we can obtain

sup
Xn∩Sρn

Ĩ < 0. (4.25)

By lemma 4.4, we get a sequence cn < 0 for Ĩ satisfying cn → 0 when n goes to ∞.
Then for any un ∈ X satisfying Ĩ(un) = cn and Ĩ ′(un) = 0, the sequence {un} is a
(PS)0-sequence of Ĩ(u), and {un} has a convergent subsequence. By lemmas 4.5 and
4.6, 0 is the only critical point with 0 energy and the subsequence of {un} has to
converge to 0. An indirect argument shows that the sequence {un} has to converge
to 0. On the other hand, by proposition 4.3, un ∈ C(Ω). Since ‖un‖L∞(Ω) → 0, by
lemma 4.6 again, we have ‖un‖C(Ω) � t0. Thus, {un} are weak solutions of problem
(P). The proof is complete.
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